
Tut 5: Naive Bayes Classifier

Feb 2025

The general mathematical formulation of a generative model:

hD(x) = argmax
j∈{1,...,K}

P(Y = j|X = x)

= argmax
j∈{1,...,K}

P(X = x|Y = j)P(Y = j)

P(X = x)

= argmax
j∈{1,...,K}

P(X = x|Y = j)P(Y = j)

= argmax
j∈{1,...,K}

[lnP(X = x|Y = j) + lnP(Y = j)]

(5.1)

Naive Bayes:

P(X = x|Y = j) ≈
p∏

i=1

P(Xi = xi|Y = j)

1. (Jan 2022 Final Q4(a), 10 marks) The training data for part (a) is given in Table 4.1.

Table 4.1: Training data for credit card application approval.

Age PriorDefault Employed Approved

59.67 Yes False +
27.25 No True -
20.67 No False -
16.50 No False -
26.67 Yes True +
37.50 Yes False -
36.25 Yes True +
21.17 No False -
32.33 Yes False +
58.42 Yes True +

Use the Näıve Bayes classifier model without Laplace smoothing to predict if the credit card
approval is positive or negative for the person is of age 38.17, has a prior default and is employed.

Solution. Let Y=Approved, X1=Age, X2=PriorDefault, X3=Employed.

P (Y = +|X1 = 38.17, X2 = Y es,X3 = True)

∝P (X1 = 38.17|Y = +)× P (X2 = Y es|Y = +)× P (X3 = True|Y = +)P (Y = +)
[1 mark]

Y P (Y ) X1 = 38.17 X2 = Y es X3 = True Product Prob

+ 5
10 = 0.5 0.02491317 5

5 = 1 3
5 = 0.6 0.0074740 0.9681

− 5
10 = 0.5 0.01230699 1

5 = 0.2 1
5 = 0.2 0.0002461 0.0319

[1.5 marks] [3 marks] [1.5 marks] [1.5 marks] [0.5 mark]
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Using scientific calculator, we can obtain the estimate:

µ+ =
59.67 + 26.67 + 36.25 + 32.33 + 58.42

5
= 42.668

σ+ =

√
(59.67− µ+)2 + (26.67− µ+)2 + ...+ (58.42− µ+)2

5− 1
= 15.33945

P (X1 = 38.17|Y = +) =
1√

2π(15.33945)
exp(−(38.17− 42.668)2

2(235.2986)
) = 0.02491317

Similarly,
µ− = 24.618

σ− = 8.158544805

Since the product P (X1 = 38.17|Y = +) × P (X2 = Y es|Y = +) × P (X3 = True|Y =
+)P (Y = +) > P (X1 = 38.17|Y = −) × P (X2 = Y es|Y = −) × P (X3 = True|Y =
−)P (Y = −), the credit card approval is positive. . . . . . . . . . . . . . [1 mark]

2. Ahmad would like to construct a model to decide if a day is suitable to play tennis. The table
below shows the results whether to play tennis, based on Outlook, Temperature and Wind,
collected by Ahmad.

Day Outlook Temperature Wind PlayTennis

D1 Sunny 34 Weak No
D2 Sunny 32 Strong No
D3 Overcast 28 Weak Yes
D4 Rain 22 Weak Yes
D5 Rain 16 Weak Yes
D6 Rain 8 Strong No
D7 Overcast 12 Strong Yes
D8 Sunny 20 Weak No
D9 Sunny 10 Weak Yes
D10 Rain 23 Weak Yes
D11 Sunny 19 Strong Yes
D12 Overcast 21 Strong Yes
D13 Overcast 31 Weak Yes
D14 Rain 25 Strong No

Using Näıve Bayes approach with Laplace smoothing, predict whether a sunny day with strong
wind, 27◦C, is suitable to play tennis.

Solution. Let y = PlayTennis(Y es = 1;No = 0)

X1=Outlook; X2=Temperature; X3=Wind

New observation: x∗1 = sunny; x∗2 = 27; x∗3 = strong

Steps for finding the posterior P(Y = 1|X = x∗).

� Prior, P(Y = 1) =
9

14
� Density functions,

P(X1 = sunny|Y = 1) =
2 + 1

9 + 3
=

1

4

P(X2 = 27|Y = 1) =
1√

2π(s2x2:y=1
)
e
−

(x∗2−x2:y=1)
2

2s2x2:y=1 =
1√

2π(6.8880)
e
− (27−20.2222)2

2(47.4445) =

0.0357
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where x2:y=1 = 20.2222; sx2:y=1 = 6.8880

P(X3 = strong|Y = 1) =
3 + 1

9 + 2
=

4

11
� Hence, posterior probability for PlayTennis=Yes is

P(Ŷ = 1|X = x∗)

∝ P (Y = 1) · P(X1 = sunny|Y = 1) · P(X2 = 27|Y = 1) · P(X3 = strong|y = 1)

=
9

14
· 1
4
· 0.0357 · 4

11
≈ 0.0021

Steps for finding the posterior P(Y = 0|X = x∗).

� Prior, P(Y = 0) =
5

14
� Density functions,

P(X1 = sunny|Y = 0) =
3 + 1

5 + 3
=

1

2

P(X2 = 27|Y = 0) =
1√

2π(s2x2:y=0)
e
−

(x∗2−x2:y=0)
2

2s2x2:y=0 =
1√

2π(10.4499)
e
− (27−23.8)2

2(109.20)2 = 0.0364

where x2:y=0 = 23.8000; sx2:y=0 = 10.4499

P(X3 = strong|y = 0) = 3+1
5+2 = 4

7

Hence, posterior probability for (PlayTennis = No) is

P(Y = 0|X = x∗)

∝ P(y = 0) · P(X1 = sunny|Y = 0) · P(X2 = 27|Y = 0) · P(X3 = strong|Y = 0)

=
5

14
· 1
2
· 0.0364 · 4

7
≈ 0.0037

Since P(Y = 0|X = x∗) > P(Y = 1|X = x∗), the day is not suitable to play tennis.

3. (Jan 2021 Final Q4(b)) Suppose the mood (M) of a student is affected by two features, the
weather (W) and his result (R) and the Table 4.2.

Table 4.2: Observed Data.

Weather (W) Result (R) Mood (M)

Bad Poor Unhappy
Good Poor Unhappy
Good Poor Unhappy
Good Poor Unhappy
Bad Good Unhappy
Bad Good Happy
Bad Good Happy
Good Good Happy

(a) Using Table 4.2 and a Naive Bayes classifier to predict the mood if today’s situation is that
the weather is good, the result is good. Show your computations clearly and write down
the classifier’s prediction. (1.5 marks)

Solution. Let Unhappy=U, Happy=H, G=Good. Then

P (M = U |W = G,R = G)

∝ P (W = G|M = U)× P (R = G|M = U)× P (M = U) =
3

5
× 1

5
× 5

8
= 0.075

[0.6 mark]
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P (M = H|W = G,R = G)

∝ P (W = G|M = H)× P (R = G|M = H)× P (M = H) =
1

3
× 3

3
× 3

8
= 0.125

[0.6 mark]
The classifier’s prediction of the mood is Happy. . . . . . . . . . . [0.3 mark]

(b) Using Table 4.2 and a Naive Bayes classifier to predict the mood if today’s situation is that
the weather is bad, the result is poor. Show your computations clearly and write down the
classifier’s prediction. (1.5 marks)

Solution. Let Unhappy=U, Happy=H, B=Bad, P=Poor. Then

P (M = U |W = B,R = P )

∝ P (W = B|M = U)× P (R = P |M = U)× P (M = U) =
2

5
× 4

5
× 5

8
= 0.2

[0.6 mark]
P (M = Happy|W = R,R = P )

∝ P (W = B|M = H)× P (R = P |M = H)× P (M = H) =
2

3
× 0

3
× 3

8
= 0

[0.6 mark]
The classifier’s prediction of the mood is Unhappy. . . . . . . . . . [0.3 mark]

(c) Suppose an additional feature, exercise (E), which indicates that the student will carry out
outdoor exercise or not, is added to the Table 4.2 to form Table 4.3.

Table 4.3: Observed Data with New Feature.

Weather (W) Result (R) Exercise (E) Mood (M)

Bad Poor No Unhappy
Good Poor Yes Unhappy
Good Poor Yes Unhappy
Good Poor Yes Unhappy
Bad Good No Unhappy
Bad Good No Happy
Bad Good No Happy
Good Good Yes Happy

Using Table 4.3 and the Naive Bayes Classifier to the mood if W=Good, R= Good, E=Yes.
Show your computations and the classifier’s prediction. Will the new feature improve the
performance of the Naive Bayes classifier from the one built based on Table 4.2? Justify
your answer. (2 marks)

Solution. Let Unhappy=U, Happy=H, G=Good, Y=Yes. Then

P (M = U |W = G,R = G,E = Y )
∝ P (W = G|M = U)× P (R = G|M = U)× P (E = Y |M = U)× P (M = U)

=
3

5
× 1

5
× 3

5
× 5

8
= 0.045 [0.3 mark]

P (M = H|W = G,R = G,E = Y )
∝ P (W = G|M = H)× P (R = G|M = H)× P (E = Y |M = H)× P (G = H)

=
1

3
× 3

3
× 1

3
× 3

8
= 0.04166667 [0.3 mark]

The classifier’s prediction of the mood is Unhappy. . . . . . . . . . . . . . . . . . . . . . . [0.2 mark]

No. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [0.2 mark]

The new feature E will not improve the performance of the Naive Bayes classifier’s
prediction because the new feature E is correlated with the feature W and violates the
assumption in Naive Bayes classifier. . . . . . . . . . . . . . . . . . [1 mark]

4. (Final Exam Jan 2023, Q5(a)) The data in Table 5.1 is from a study of car evaluation. The
values of the predictors are listed below:
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� X1=maint (price of the maintenance): vhigh, high, med, low

� X2=persons (capacity in terms of persons to carry): 2, 4, more

� X3=lugboot (the size of luggage boot): small, med, big

� X4=safety (estimated safety of the car): low, med, high

� Y=class (car acceptability): unacc, acc, good;

Obs. maint persons lugboot safety class

1 med more big high good
2 low more small high good
3 low 4 big high good
4 low 4 small high acc
5 med 4 small high acc
6 low 4 med med acc
7 low 2 small low unacc
8 vhigh more small med unacc
9 high 4 big med unacc

10 high 2 big high unacc
11 low 2 big high unacc

Table 5.1: Attributes of car evaluation.

(a) Write down all the parameters of the categorical naive Bayes model with Laplace
smoothing based on the data in Table 5.1. You may leave the parameters in fractional
form. (9 marks)

Solution. The posterior probability of the Näıve Bayes classifier model for the problem
has the form

P (Y |X1, X2, X3, X4) ∝ P (Y ) · P (X1|Y ) · P (X2|Y ) · P (X3|Y ) · P (X4|Y ) [1 mark]

The parameters are the prior probabilities summarised in the tables below.

maint, P (X1|Y ) persons, P (X2|Y )
Y P (Y ) vhigh high med low 2 4 more

good
3

11

0 + 1

3 + 4
=

1

7

0 + 1

3 + 4
=

1

7

1 + 1

3 + 4
=

2

7

2 + 1

3 + 4
=

3

7

0 + 1

3 + 3
=

1

6

1 + 1

3 + 3
=

2

6

2 + 1

3 + 3
=

3

6

acc
3

11

0 + 1

3 + 4
=

1

7

0 + 1

3 + 4
=

1

7

1 + 1

3 + 4
=

2

7

2 + 1

3 + 4
=

3

7

0 + 1

3 + 3
=

1

6

3 + 1

3 + 3
=

4

6

0 + 1

3 + 3
=

1

6

unacc
5

11

1 + 1

5 + 4
=

2

9

2 + 1

5 + 4
=

3

9

0 + 1

5 + 4
=

1

9

2 + 1

5 + 4
=

3

9

3 + 1

5 + 3
=

4

8

1 + 1

5 + 3
=

2

8

1 + 1

5 + 3
=

2

8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [1+2+2=5 marks]

Y lugboot, P (X3|Y ) safety, P (X4|Y )
small med big low med high

good
1 + 1

3 + 3
=

2

6

0 + 1

3 + 3
=

1

6

2 + 1

3 + 3
=

3

6

0 + 1

3 + 3
=

1

6

0 + 1

3 + 3
=

1

6

3 + 1

3 + 3
=

4

6

acc
2 + 1

3 + 3
=

3

6

1 + 1

3 + 3
=

2

6

0 + 1

3 + 3
=

1

6

0 + 1

3 + 3
=

1

6

1 + 1

3 + 3
=

2

6

2 + 1

3 + 3
=

3

6

unacc
2 + 1

5 + 3
=

3

8

0 + 1

5 + 3
=

1

8

3 + 1

5 + 3
=

4

8

1 + 1

5 + 3
=

2

8

2 + 1

5 + 3
=

3

8

2 + 1

5 + 3
=

3

8

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [1.5+1.5=3 marks]

Average: 4.95 / 9 marks in Jan 2023; 32% below 4.5 marks.

(b) Use the parameters in part (i) to estimate the posterior probabilities of the class to be
good, acc, and unacc given that price of maintenance is med, the capacity of persons is 4,
the size of luggage boot is big and the estimated safety of the car is high. (4 marks)
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Solution. From part (i), we have

P (Y = good|X1 = med, X2 = 4, X3 = big, X4 = high) ∝ 3

11
× 2

7
× 2

6
× 3

6
× 4

6
= 0.008658009

P (Y = acc|X1 = med, X2 = 4, X3 = big, X4 = high) ∝ 3

11
× 2

7
× 4

6
× 1

6
× 3

6
= 0.004329004

P (Y = unacc|X1 = med, X2 = 4, X3 = big, X4 = high) ∝ 5

11
× 1

9
× 2

8
× 4

8
× 3

8
= 0.002367424

[3 marks]
The posterior conditional probabilities are

P (Y = good|X) = 0.5638767, P (Y = acc|X) = 0.2819383, P (Y = unacc|X) = 0.154185,
[1 mark]

Average: 1.5 / 4 marks in Jan 2023; 43% below 2 marks.

5. (Final Assessment May 2020 Q2) The testing dataset of an insurance claim is given in Table 2.1.
The variables “gender”, “bmi”, “age bracket” and “previous claim” are the predictors and the
“claim” is the response.

Table 2.1: The testing data of an insurance claim (randomly sampled with repeated entry).
gender bmi age bracket previous claim claim

female under weight 18-30 0 no claim
female under weight 18-30 0 no claim
male over weight 31-50 0 no claim
female under weight 50+ 1 no claim
male normal weight 18-30 0 no claim
female under weight 18-30 1 no claim
male over weight 18-30 1 no claim
male over weight 50+ 1 claim
female normal weight 18-30 0 no claim
female obese 50+ 0 claim

The “gender” is binary categorical data, the “bmi” is a four-value categorical data with values
under weight, normal weight, over weight and obese, the “age bracket” is a three-value categor-
ical data with value “18-30”, “31-50” and “50+”, the “previous claim” is a binary categorical
data with 0 indicating “no previous claim” and 1 indicating “having a previous claim”. The
“claim” is a binary response with values “no claim” (negative class, with value 1) and “claim”
(positive class, with value 0).

(b) Write down the mathematical formula for the Naive Bayes model with the predictors and re-
sponse in Table 2.3. Use the Naive Bayes model trained on the training data from Table 2.3
to predict the “claim” of the insurance data in Table 2.1 as well as evaluating the per-
formance of the model by calculating the confusion matrix, accuracy, sensitivity, specificity,
PPV, NPV of the Naive Bayes model.

Table 2.3: The training dataset of an insurance claim data for Naive Bayes model.
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Obs. gender bmi age bracket previous claim claim

1 female obese 50+ 1 no claim
2 female under weight 31-50 0 no claim
3 male under weight 31-50 1 no claim
4 female over weight 18-30 1 no claim
5 female normal weight 31-50 0 no claim
6 female under weight 31-50 0 no claim
7 female obese 18-30 0 no claim
8 male under weight 50+ 1 no claim
9 female normal weight 31-50 0 no claim
10 male over weight 31-50 0 no claim
11 female normal weight 50+ 0 claim
12 male over weight 31-50 1 claim
13 male under weight 31-50 1 claim
14 male over weight 31-50 1 claim
15 male obese 50+ 0 claim
16 male under weight 50+ 0 claim
17 female obese 31-50 1 claim
18 female under weight 50+ 1 claim
19 female normal weight 50+ 1 claim
20 female under weight 18-30 1 claim

Note: The default cut-off is 0.5.
Solution. Let X be the predictors; g be the predictor “gender” with F (female) and
M (male); b be the predictor “bmi” with UW (under weight), OW (over weight), NW
(normal weight), OB (obese); a be the predictor “age bracket” with a18 (18-30), a31
(31-50) and a50 (50+); p be the predictor “previous claim”; Y be the “actual” response
“claim”. The Naive Bayes model is

P(Y |X) ∝ P(Y ) · P(g|Y ) · P(b|Y ) · P(a|Y ) · P(p|Y ) = prop. [0.5 mark]

Let Ŷ be the predicted response. Note that in the question, “no claim” has a value 1
(negative) and “claim” has a value 0 (positive) which we will follow here. For the given
training data, we have

P(Y = 1) = P(Y = 0) =
10

20
= 0.5. [0.5 mark]

Since it will not contribute to our calculation, we can actually ignore it. However, it
will be maintained to match textbook algorithm.

From Table 2.1, we need to calculate

P(g = F |Y = 1) = 0.7 P(g = M |Y = 1) = 0.3
P(g = F |Y = 0) = 0.5 P(g = M |Y = 0) = 0.5
P(b = UW |Y = 1) = 0.4 P(b = NW |Y = 1) = 0.2
P(b = OW |Y = 1) = 0.2 P(b = OB|Y = 1) = 0.2
P(b = UW |Y = 0) = 0.4 P(b = NW |Y = 0) = 0.2
P(b = OW |Y = 0) = 0.2 P(b = OB|Y = 0) = 0.2
P(a = a18|Y = 1) = 0.2 P(a = a31|Y = 1) = 0.6 P(a = a50|Y = 1) = 0.2
P(a = a18|Y = 0) = 0.1 P(a = a31|Y = 0) = 0.4 P(a = a50|Y = 0) = 0.5
P(p = 1|Y = 1) = 0.4 P(p = 0|Y = 1) = 0.6
P(p = 1|Y = 0) = 0.7 P(p = 0|Y = 0) = 0.3
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prior P(g|Y ) P(b|Y ) P(a|Y ) P(p|Y ) prop Ŷ Y
P(Y = 1) = 0.5 0.7 0.4 0.2 0.6 0.0168 ✓ no claim
P(Y = 0) = 0.5 0.5 0.4 0.1 0.3 0.0030
P(Y = 1) = 0.5 0.7 0.4 0.2 0.6 0.0168 ✓ no claim
P(Y = 0) = 0.5 0.5 0.4 0.1 0.3 0.0030
P(Y = 1) = 0.5 0.3 0.2 0.6 0.6 0.0108 ✓ no claim
P(Y = 0) = 0.5 0.5 0.2 0.4 0.3 0.0060
P(Y = 1) = 0.5 0.7 0.4 0.2 0.4 0.0112 no claim
P(Y = 0) = 0.5 0.5 0.4 0.5 0.7 0.0350 ✓
P(Y = 1) = 0.5 0.3 0.2 0.2 0.6 0.0036 ✓ no claim
P(Y = 0) = 0.5 0.5 0.2 0.1 0.3 0.0015
P(Y = 1) = 0.5 0.7 0.4 0.2 0.4 0.0112 ✓ no claim
P(Y = 0) = 0.5 0.5 0.4 0.1 0.7 0.0070
P(Y = 1) = 0.5 0.3 0.2 0.2 0.4 0.0024 no claim
P(Y = 0) = 0.5 0.5 0.2 0.1 0.7 0.0035 ✓
P(Y = 1) = 0.5 0.3 0.2 0.2 0.4 0.0024
P(Y = 0) = 0.5 0.5 0.2 0.5 0.7 0.0175 ✓ claim
P(Y = 1) = 0.5 0.7 0.2 0.2 0.6 0.0084 ✓ no claim
P(Y = 0) = 0.5 0.5 0.2 0.1 0.3 0.0015
P(Y = 1) = 0.5 0.7 0.2 0.2 0.6 0.0084 ✓
P(Y = 0) = 0.5 0.5 0.2 0.5 0.3 0.0075 claim

. . . . [2 marks]

From the table, the confusion matrix is as follows . . . . . . . . . . . . . . . . . . . . . . . . . . [0.5 mark]

claim (0) no claim (1)

predict 0 1 2
predict 1 1 6

Accuracy : 0.7, Sensitivity : 0.5, Specificity : 0.75, Pos Pred Value : 0.3333, Neg Pred
Value : 0.8571 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [0.5 mark]

(c) (Ref: Tut 4 on Logistic Regression) Can we compare the logistic regression model in part
(a) to the Naive Bayes model in part (b)? Can we say that the logistic regression model is
better than the Naive Bayes model solely based on the performance metrics in part (a) and
part (b)? Justify your answers with appropriate theory. (2 marks)

Solution. The two models cannot be compared because they are not trained with the
same set of training data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [0.5 mark]

We cannot say that the logistic regression model is better because the testing data size
is too small! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [0.5 mark]

Theoretically, logistic regression model performs better with large number of data and
the data is “linear”. However, when the number of data is limited, Naive Bayes model
will perform better than the logistic regression model based on Bayesian reasoning.
[0.5 mark]

We need cross-validation in order to have a better understanding of the generalisation
error. A single performance metric does not provide a good estimate for the generalisa-
tion error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [0.5 mark]

6. (Final Exam May 2023 Sem, Q4(a)) The Happiness Dataset in Table 4.1 is based on a survey
conducted where people rated different metrics of their city on a scale of 5 and answered if they
are happy or unhappy. The features are

� infoavail: the availability of information about the city services;

� housecost: the cost of housing;

� schoolquality: the overall quality of public schools.

The response, happy, has the values 0 (unhappy) and 1 (happy).
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Obs. infoavail housecost schoolquality happy

1 5 3 3 0
2 4 5 5 0
3 4 3 3 0
4 5 2 4 0
5 1 1 1 0
6 5 2 4 1
7 5 2 4 1
8 4 2 3 1
9 3 1 2 1
10 5 5 5 1

Table 4.1: Happiness Dataset.

(i) Write down the mathematical formulation of the posterior probability and find the pa-
rameters of the Gaussian naive Bayes model based on the Happiness Dataset from
Table 4.1. (10 marks)

Solution. Let Y denote the response happy and X1, X2, X3 denote infoavail,

housecost, schoolquality respectively. The mathematical formulation of posterior
probability the Gaussian naive Bayes model for the Happiness Dataset from Table 4.1
is

P (Y = k|X1, X2, X3) ∝ P (Y = k) · PG(X1|Y = k) · PG(X2|Y = k) · PG(X3|Y = k).
[1 mark]

where k = 0 or k = 1 and

PG(Xi|Y = k) =
1√

2πσi,k
exp(−

(x− µi,k)
2

2σ2
i,k

) [0.5 mark]

The probabilities and parameters are summarised in the tables below.

infoavail, P (X1|Y ) housecost, P (X2|Y ) schoolquality, P (X3|Y )
k P (Y = k) µ1,k σ1,k µ2,k σ2,k µ3,k σ3,k
0 0.5 3.8 1.6431677 2.8 1.483240 3.2 1.483240

1 0.5 4.4 0.8944272 2.4 1.516575 3.6 1.140175

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [1+3+4.5=8.5 marks]

Here

σ1,0 =

√
(5− 3.8)2 + (4− 3.8)2 + (4− 3.8)2 + (5− 3.8)2 + (1− 3.8)2

5− 1
=

√
10.8

4
= 1.6431677 . . .

(ii) Based on the Gaussian naive Bayes model from part (i), find the posterior probabilities
for k = 0 and k = 1 given infoavail is 5, housecost is 4 and schoolquality is 4. You
should round your calculations to six decimal places. (4 marks)

Solution. The products are computed as follows:
k P (Y = k) PG(X1 = 5|Y = k) PG(X2 = 4|Y = k) PG(X3 = 4|Y = k) product posterior prob.

0 0.5 0.185959 0.193895 0.232557 0.004193 0.321845
1 0.5 0.356163 0.150783 0.329013 0.008835 0.678155

[2 marks] [1 mark] [1 mark]

(iii) State the problem of Naive Bayes with the product of probabilities for a data of large
feature space and how can we resolve this issue. (2 marks)
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Solution. The problem of Naive Bayes with the product of probabilities is the product
will be rounded to when the feature space is large. As can be observed from part (ii)’s
calculation, with a feature space of 4 dimension, the product of probabilities get small
very quickly. [1 mark]

By taking logarithm of the product of probabilities, we reduce product to sum of
(negative value) exponents and avoid rounding to zero problem. [1 mark]

7. (Final Exam Jan 2024 Sem, Q2) When a bank receives a loan application, the bank has to make
a decision whether to go ahead with the loan approval or not based on the applicant’s profile.
Two types of risks are associated with the bank’s decision:

� If the applicant is a good credit risk, i.e. is likely to repay the loan, then not approving the
loan to the person results in a loss of business to the bank;

� If the applicant is a bad credit risk, i.e. is not likely to repay the loan, then approving the
loan to the person results in a financial loss to the bank.

To minimise loss from the bank’s perspective, the bank needs a predictive model regarding
who to give approval of the loan and who not to based on an applicant’s demographic and
socio-economic profiles.

Suppose the response variable Y is 0 when the loan is approved and is 1 when the loan is not
approved. Suppose the features of the data are listed below:

� X1 (categorical): Status of existing checking account (A11, A12, A13, A14);

� X2 (integer): Duration in months

� X3 (integer): Credit amount

� X4 (integer): Instalment rate in percentage of disposable income

� X5 (binary): foreign worker (yes, no)

(b) When the data is trained with a naive Bayes model with Laplace smoothing, the statistical
estimates below are obtained:

A priori probabilities:

0 1

0.625 0.375

Tables:

X1 0 1

A11 0.18518519 0.41176471

A12 0.18518519 0.35294118

A13 0.05555556 0.02941176

A14 0.57407407 0.20588235

X2 0 1

mean 18.86000 25.30000

sd 11.29206 15.33117

X3 0 1

mean 2940.040 3490.167

sd 2254.614 3213.598

X4 0 1

mean 3.060000 3.033333

sd 1.095631 1.098065

X5 0 1

yes 0.92307692 0.96875000

no 0.07692308 0.03125000

10



State the naive Bayes model for this problem using conditional probabilities and estimate
the posterior probabilities for Y = 0 and Y = 1 for a foreign worker when the status
of existing checking account of the customer is A11, the duration is 6 months, the credit
amount is 1169 and the instalment rate of disposable income is 4%. (8 marks)

Solution. The naive Bayes model for the problem with Y = j, where j = 0, 1 is [1 mark]

P (Y = j|X1, X2, X3, X4, X5) ∝ P (Y = j)P (X1|Y = j)P (X2|Y = j)P (X3|Y = j)×
P (X4|Y = j)P (X5|Y = j).

From this model, we can build a table for the computation:

j P (Y = j) X1 = A11|Y = j X2 = 6|Y = j X3 = 1169|Y = j X4 = 4|Y = j X5 = yes|Y = j

0 0.625 0.18518519 0.0184714 12.9972× 10−5 0.2520039 0.92307692

1 0.375 0.41176471 0.0117817 9.5638× 10−5 0.2466008 0.96875000

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [5 marks]

P (X2 = 6|Y = 0) =
1√

2π(11.29206)
exp(−1

2
(
6− 18.86

11.29206
)2) = 0.0184714, . . .

The products are

P (Y = 0|X) ∝ 6.463698× 10−8, P (Y = 1|X) ∝ 4.156474× 10−8. [1 mark]

and the posterior probabilities are

P (Y = 0|X) = 0.6086246, P (Y = 1|X) = 0.3913754 [1 mark]

Average: 5.24 / 8 marks in Jan 2024; 29.09% below 4 marks.

8. (Final Exam May 2024 Sem, Q4(a)) The data in Table 4.1 describes factors influencing defect
status in a manufacturing environment.

Table 4.1: Factors influencing defect status.

Obs. EnergySupply ProductionVolume DefectRate MaintenanceHours Y
1 F 600 1.915457 4 0
2 F 659 1.841888 4 0
3 F 299 2.838841 3 0
4 F 568 1.728867 2 0
5 F 276 1.590484 23 1
6 F 492 4.670184 22 1
7 F 803 2.293886 15 1
8 F 319 4.187002 18 1
9 F 277 4.400931 1 1

The target variable in Table 4.1 is Y , the DefectStatus (0 indicates low defects while 1 indicates
high defects) and the four features are

� EnergySupply: A binary feature indicating whether Green Energy (denoted by G) or Fossil-
Fuel Based Energy (denoted by F) is used in the manufacturing;

� ProductionVolume: Number of units produced per day;

� DefectRate: Defects per thousand units produced;

� MaintenanceHours: Hours spent on maintenance per week.

(i) Find the parameters of the naive Bayes model with Laplace smoothing the data
in Table 4.1 and then state the mathematical expressions of the naive Bayes model with
Laplace smoothing with the information on DefectRate listed below.
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DefectRate 0 1

mean 2.0812632 3.4284974

sd 0.5108489 1.3899979

(6 marks)

Solution. By using calculators, the following parameters can be obtained:

Y 0 1

Prior, P (Y ) 4/9 5/9
EnergySupply=F (4+1)/(4+2) (5+1)/(5+2)
EnergySupply=G (0+1)/(4+2) (0+1)/(5+2)

ProductionVolume.mean 531.5 433.4
ProductionVolume.sd 159.5170 224.9229

MaintenanceHours.mean 3.25 15.8
MaintenanceHours.sd 0.957427 8.871302

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [4 marks]

Let the four features be x1 to x4 in the order in Table 4.1. The mathematical expres-
sions are

P (Y = 0|x1, ..., x4) ∝
4

9
P (x1|Y = 0)(

1√
2π(159.5170)

exp(−(x2 − 531.5)2

2(159.51702)
))

(
1√

2π(0.5108489)
exp(−(x3 − 2.0812632)2

2(0.51084892)
))

(
1√

2π(0.957427)
exp(− (x3 − 3.25)2

2(0.9574272)
))

P (Y = 1|x1, ..., x4) ∝
5

9
P (x1|Y = 1)(

1√
2π(224.9229)

exp(−(x2 − 433.4)2

2(224.92292)
))

(
1√

2π(1.3899979)
exp(−(x3 − 3.4284974)2

2(1.38999792)
))

(
1√

2π(8.871302)
exp(− (x3 − 15.8)2

2(8.8713022)
))

[2 marks]

(ii) Use the naive Bayes model with Laplace smoothing from part (i) to predict the posterior
probability of DefectStatus to be high (i.e. Y = 1) for the EnergySupply of F (fossil-fuel
based energy), the ProductionVolume of 260, the DefectRate of 3.239412, Maintenance-
Hours of 2. (5 marks)

Solution. By using appropriate scientific calculator, the following table can be con-
structed.

Y P (Y ) P (x1 = F |Y ) P (x2 = 260|Y ) P (x2 = 3.239412|Y ) P (x3 = 2|Y ) Product

0 4/9 5/6 0.0005876 0.059776 0.177692 2.3116 ×10−6

1 5/9 6/7 0.0013177 0.284366 0.013411 2.3930 ×10−6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [4 marks]

The posterior probability when Y = 1 given the input is

2.3930× 10−6

2.3116× 10−6 + 2.3930× 10−6
= 0.5086511 [1 mark]

(iii) Evaluate the relevance of the feature EnergySupply to the naive Bayes model with Laplace
smoothing with justification. (2 marks)

12



Solution. The feature EnergySupply is relevant to the naive Bayes model despite no
G appears. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [1 mark]

This is because in formula to obtain posterior probability

...P (x1 = F |Y = 1)...

...P (x1 = F |Y = 0)...+ ...P (x1 = F |Y = 1)...

P (x1 = F |Y = 0) and P (x1 = F |Y = 1) have different values and cancellations cannot
be obtained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [1 mark]
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