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According to Section 7.5 of https://bookdown.org/jefftemplewebb/IS-6489/, overfit-
ting is a major hazard in predictive analytics, especially when using machine learning algorithms
like random forest (Topic 5) which, without proper tuning, can learn sample data almost per-
fectly, essentially fitting noise. When such a model is used to predict new data, with different
noises, model performance can be shockingly bad. Overfitting error can cause very funny result
as pointed out by Dr Kilian Q. Weinberger (http://kilian.cs.cornell.edu/) in his license
plate recognition example(?) Cornell CS4780 SP17 lecture (https://www.youtube.com/watch?
v=zj-5nkNKAow).

In this topic, we explore the difference between a predictive model and the true model
using the notion of bias-variance tradeoff and the generalisation error, which measures how
accurately a predictive model is able to predict outcome values for previously unseen data. The
generalisation error is related to overfitting issue. Since it is impossible to know the bias-variance
and the generalisation errors except for very rare special cases, we need resampling methods to
estimate them. Two of the most commonly used resampling methods are the cross-validation
(Section 6.4.1) and the bootstrap.

6.1 Training vs Testing Errors

The main purpose of supervised learning/predictive modelling is to find a model
with a minimum generalisation error.

The generalisation error can be theoretically estimated for very limited analytical for-
mulations.

In Topic 1 and Topic 2, the generalisation error K., is estimated either using (i) holdout
method’s testing error, (ii) k-fold CV error or (ili) LOOCYV (the extreme case of k-fold CV
with & = n).

There are two things that affects the learning of model from the data:
(a) the number of instances / training samples n
(b) the hyperparameter of the model

(a) Why are we not using the training error for the estimation of generalisation error? Ac-
cording to Lindholm et al. [2022], the training error and generalisation error has generalisation
gap which looks roughly like the following figures.
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Note that the generalisation error Eg., is usually larger than the training error Eirqin. SO Etrqin
may be too optimistic!
The curves are usually not smooth as is shown by our simulation below.

library (FNN) # Fast Nearest Neighbor Search Algorithms and Applications
k = 10 # Using kNN(k=10)

rmse = function(actual, predicted) { sqrt(mean((actual - predicted)~2)) 1}

make_knn_pred = function(k, training, predicting) {
pred = FNN::knn.reg(train = training["X"],
test = predicting["X"],
y = training$y, k = k)$pred
act = predicting$y
rmse (predicted = pred, actual = act)

# Simulated Data is based on the function f:
f = function(x) {x*sin(x*=2)}

set.seed (2025)

# Nlist = Number of data / instances
Nlist = seq(20,1000,20) Simulated Data with k=10-NN
knn_trn_rmse = rep(0,length(Nlist)) a R
knn_tst_rmse = rep(0,length(Nlist)) — Tt
sig = 0.3
NT = 1000 a7
X.test = runif (NT,min=0,max=2%*pi) o |
y.test = f(X.test) + rnorm(NT, 0, sig) w
data.test = data.frame(X=X.test, y=y.test) z w |
for(i in 1:length(Nlist)) { B
NS = Nlist[i] "
X = runif (NS,min=0,max=2%pi) <7
y = £(X) + rnorm(NS, 0, sig) s

data.train = data.frame (X=X, y=y) ‘ ‘ ‘ ‘ ‘
0 200 400 600 800 1000

knn_trn_rmse[i] = make_knn_pred(k, data.train, data.train) #data
knn_tst_rmse[i] = make_knn_pred(k, data.train, data.test)

}

plot(Nlist, knn_trn_rmse, type=’1l’, lty=2, lwd=3,
xlab="#data", ylab="RMSE", ylim=c(-0.1,3.5),
main=paste0("Simulated Data with k=" ,k,"-NN"))

lines (Nlist, knn_tst_rmse,lwd=3)

legend ("topright",c("Train","Test"), col=rep(1,2), 1lty=2:1, 1lwd=3)

We can conclude that [Lindholm et al., 2022]:

e The generalisation error Fge, will, on average, larger than the training error Epyqin.
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e The generalisation gap |Egen — Etrain typically decrease as n increases.

Some data may have bias causing the model h with the training error and the test error
which are bias with large number of training data as illustrated in Figure 6.1.
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Figure 6.1: Test and training error as the number of training instances increases.

In the first regime (on the left side of the graph), training error is below the desired error
threshold (denoted by €), but test error is significantly higher. The cause of the poor performance
of h is “high variance”.

Regime 1 (High Variance)

Symptoms Remedies

Training error is much lower than test error | Add more training data

Training error is lower than e Reduce model complexity — complex mod-
els are prone to high variance

Test error is above € Bagging (next topic)

In the second regime (on the right side of the graph), test error is remarkably close to
training error, but both are above the desired tolerance of e. This indicates “high bias”, i.e. the
model being used is not robust enough to produce an accurate prediction.

Regime 2 (High Bias)
Symptoms Remedies
Training error is higher than e e Use more complex model (e.g. kernelize,
use non-linear models)
o Add features
e Boosting (next topic)

The bias-variance analysis in the following sections will be useful in the understanding of
underfitting-overfitting problem as well as the development of ensemble methods in the next
topic.

6.2 Bias-Variance Tradeoff for a Predictive Model

If we have a predictive model h(x) and an true model f(x) + € (with Ex ¢[¢] = 0), the mean
square error (MSE) is usually used to measure their difference for the regression problem:

MSE =Ex [(M(X) = (f(X) +€))°]. (6.1)

Note that the true model f(x)+e€ have a range and we don’t just measure the difference between
the predictive model and the true model but we measure the average differences over the range
of x.
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Using probability theory, (6.1) can be expanded to
MSE =Ex [(h(X) = [(X))* + 2(h(X) = [(X))e + €]
= Ex[(A(X) — f(X))?] + 2Ex (M(X) — f(X))Exele] + Exe[¢’]
— Ex[(h(X) - F(X0)?]+ Varld

bias error error variance

The bias-variance for a predictive model can be applied to physics or chemistry experiments
where € is the measurement or physical noise and h(x) and f(x) may be the same. It can also
be applied to study the expected test error of a trained model hip.

6.3 Bias-Variance Tradeoff for Data Samples

In machine learning, the predictive model A(D, ) is usually a function of the training data D
and input features z, therefore, the bias-variance analysis in the previous section is insufficient.

According to Wikipedia, the bias-variance tradeoff of a predictive model is a property that
the variance of the parameter estimated across samples can be reduced by increasing the bias in
the estimated parameters. The bias-variance dilemma is the conflict in trying to similtaneously
minimise these two sources of error that prevent predictive models from generalising beyond
their training set:

e the bias error is an error from errorneous assumptions in the predictive model. High
bias can cause the predictive model to miss the relevant relations between features and
target outputs (underfitting).

e The variance is an error from sensitivity to small fluctuations in the training set. High
variance may result from the predictive model which models the random noise in the
training data (overfitting).

In comparison to the MSE in the previous section, the MSE for predictive models with
sampling can be decomposed into three terms — the bias, variance, and irreducible error.

Statiticians assume that the training set D, consisting of n inputs, are drawn i.i.d. from
some distribution P, which is denoted as D ~ P". The machine learning algorithm A learns on
the data set D a predictive model h(D,x) = A(D). The MSE can be extended to the Expected
Test Error:

ETE:]E(%%A(h(D,m)y)ﬂ - /D/m/y(h(D,w)y)Z]P(a:,y)P(D)dmdydD. (6.2)

Decomposition of Equation 6.2:
ETE =Eq,.p [[(A(D.) - K@) + (A(x) - y)]’]
2

~Eq,p [(1(D, @) ~ F(2))*] +2 Bayy,p [(H(D, @) ~ k(@) (h(@) ~ )] + Eay | (Blw) ~ )]
(6.3)
The middle term of the above equation is 0 as we show below

Exy,p [(M(D,z) = h(z)) (h(z) — y)] =Eay [Ep [M(D,z) - h(z)] (h(z) - y)]
=Eoy [(Ep[h(D,z)] — h(z)) (h(z) — y)]
=Eqy [(h(x) — h(x)) (h(x) — y)] = Eqy[0] =0
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Note that h is a weighted average of trained functions on various data D.

h(z) = Epwpn[h(D,x)] = fh(D,:v)P(D)dD
D

where P(D) is the probability of drawing D from P™.

Returning to the earlier expression (6.3), we're left with the variance and another term

Bap (WD) = 9| = Eap [(W(D,2) = 0(@))"| +Eay [ (M) = 0)"] (64

-

Variance

Let the expected label F(z) = E, | [y(x)] = [ yP(y|x)dy. We can break down the second
]

term in the equation (6.4) as follows:

Fay [ (1(@) = 1)°] = Fay [(h(=) - 5(2)) + (5(x) - )] (6.5)
= By [(5(@) — )] +Ea [(R() - 5(2))°] +2 Eay [(R(=) — 5(2)) (5(2) - p)]
b Noise T Bias? ’
(6.6)

The third term in the equation above is 0, as we show below

Eay [(h(®) - F(2)) @) - y)] Eypa [7(2) — y] (h(z) — 7(=))]

Eyj [7(z) — y] (h(z) — 7(=))]

(7(@) — Eyj [¥]) (h(2) - ()]

() — y(x)) (h(z) - §(x))] = Ez [0] = 0.

This gives us the decomposition of expected test error (6.2) as follows

Exp

-y
-y

x

E
Eqy
E

— o —

xr

By (D) = 9)*] = By [(W(D,2) = (@) ] +Bay [(5(2) = )°] +Ea | () -~ 7))

- - - J - -

ExpectedTestError Variance Noise Bias2

(6.7)

The “Variance” captures how much the classifier changes if we train on a different training
set. How “over-specialised” is the classifier to a particular training set (i.e. is it overfitting)?
If we have the best possible model for our training data, how far off are we from the average
classifier?

The data-intrinsic “noise” measures the ambiguity due to our data distribution and feature
representation. We can never beat this, it is an aspect of the data.

The inherent error that we obtain from the classifier even with infinite training data is
captured by the “bias”, which is due to the classifier being “biased” to a particular kind of
solution (e.g. linear classifier). In other words, “bias” is inherent to our model.

Remark 6.3.1. The reason to limit ourselves to regression problems is due to the many
shortcomings of bias-variance decomposition theory for 0-1 loss function according to http:
//rasbt.github.io/mlxtend/user_guide/evaluate/bias_variance_decomp/.

Example 6.3.2. Consider a similar problem to Example 1.7.6 below:

y=sin(z) + R, -7 <xz<2r, R~ Normal(0,0.3%).
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Figure 6.2: (a) Graphical illustration of bias and variance with the output y being a 2D vector.
(b) The variation of Bias and Variance with the model complexity. This is similar to the concept
of overfitting and underfitting. More complex models overfit while the simplest models underfit.
Source: http://scott.fortmann-roe.com/docs/BiasVariance.html

By using nine data with 20 samples D;, ¢+ = 1,...,9, we train the predictive models linear
regression to gradient boosting trees and we can see the less flexible models like linear regression,
quadratic regression, etc. have large bias while the flexible models like ANN, CART tree and
gradient boosting tree can have lower bias but have large variance.
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6.4 Resampling Methods

Resampling methods are statistical techniques for estimating statistics from samples. In par-
ticular, they can be used to estimate the generalisation error for predictive models. Two most
popular resampling methods are the cross-validation approach and the bootstrap approach.

6.4.1 Cross-Validation

Suppose the data D is used to train a supervised learning model /sz and suppose that we have

a new test data
(mnew, y?ew)’ (mnew’ yEE’UJ) ~ P- (6-8)
The general concept associated with “test error” is the loss function £ of individual test data

(xPe?, yiew) and the average of loss function — cost function|Lindholm et al., 2022], i.e.

fZe P hp (@) — E[(Y ™, hip (X)) 69

where the right is the theoretical test set error for a predictive model training on a particular
training set hp. The theoretical generalisation error is defined as the average of theoretical test
set error over all possible training sets, i.e.

ED [E(Xnew’yncw)[E(Ynew,?LD(Xnew))] . (610)

For classification problems, the usual form of test error (6.9) and ¢ is

L
1 new T new
ZZI(% # hp(@)).
i=1

For regression problems, the usual form of test error (6.9) and ¢ is

EZ new /}ZD(:E;LEU;))Z.

A true test data (6.8) is not available at the time we want to run and tune our supervised
learning algorithm. Therefore, we need artificial ways to construct training and testing datasets:

1. Holdout method/Split-test validation (Section 1.8.5): shuffle the data and split into two
sets (train-test) or three sets (train-validate-test for hyperparameter selection). The per-
formance measure obtained is dependent on the sampling/shuffling;

2. Random subsampling: average out multiple holdout method;

3. K-fold cross-validation (CV) and Leave-one-out cross-validation (LOOCV) (Section 2.9):
the shuffle data is splitted into k& equal partitions (when k& = n, the CV is called LOOCYV)
and use each partition as test data and the remainder as training data. From this, we
can get k performance metrics to estimate theoretical generalisation error which would
usually be less bias compare to the holdout method.

In holdout method, the estimation of the generalisation error (6.10) is
1 n
- E ’{'LEU} h ’I_'LEU) .
n ; (yz ) D("L-’L ))

To estimate a confidence interval for accuracy in holdout method, we apply the binomial
experiment and the normal distribution approximation. The confidence interval of accuracy,
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acc = X /n with mean p and variance p(1 — p)/n follows:

acc—p
P *Z@2S4 SZI—O!2 =l-a
( 2=/ -p)n / )

where —Z, /5 and Z1_, /o are the lower and upper bounds are related a standard normal
distribution at a confidence level 1 — a.

Consider a model with an accuracy of 80% when evaluated on 100 test records. For a
confidence level of o = 0.95, Z, /o = Z;_,/2 = 1.96 and the confidence interval is (Check
out the Wilson score interval in Wikipedia:Binomial proportional confidence interval):

2 X n xacc+ Zf!/ + Za/z\/Z2/2 + 4n (acc — acc?)
2(n—|—Z2/2)

2% 100 x 0.8+ 1.96* & 1.961/1.96% + 4 x 100 x (0.8 — 0.8?)
B 2(100 + 1.962)

= [0.7112,0.8666]

However, the caret’s confusionMatrix uses the Clopper-Pearson interval which is

n—x+1 -1 n-—=x -1
(1 T @FE @ 2t m) =P (” (e DFL - §:2(z 1 1),2<nx>1>

for x =n x acc is the number of success, ¢ # U and x # n. When x = 0, the interval is
(0,1—(5 ) ); When @ = n, the interval is ((5 )n 1).

To compare the performance of two models M; and M;, we suppose they are evaluated
on two independent test sets, [ and Dy. Suppose the error rate for My on D; is e; and the
error rate for My on Ds is es. If |Dy| and |Dy| are sufficiently large, e, eo follows normal
distributions. Then d = e; — e2 also follows normal distribution and the (1 — «) confidence

interval is
81(1*61) 62(1*62)
e1 — e + Z + .
ler = el a/z\/ | D1 | Dy

Random subsampling (or Monte Carlo crossvalidation according to R.R. Picard and R.D.
Cook, J. Am. Stat. Assoc., 79 (1984) 575-583) repeat the holdout method sevaral times
(with different random samples) to improve the estimation of the classifier’s performance.
In contrast to a full CV method, random subsampling has been shown to be asymptotically
consistent (J. Shao, J. Am. Stat. Assoc., 88 (1993) 486-494.) resulting in more pessimistic
predictions of the test data compared with CV.

In k-fold CV, suppose that the data D are randomly partition their indices {1,--- ,n} into
{By} such that J;_, By = {1,---,n} and B; N By = 0 (j # k). If a partition with By,

removed is used to produce a training model h- B‘ Bal’ The estimation of the generalisation

error (6.10) is

K
£ [ om0V T 0] 37 S et BT o)
€By

i:

—_

In LOOCYV, we used the ith sample point as test data and the remaining n — 1 sample

n__il). The estimation of the generalisa-

—

points as training data to train a predictive model h
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tion error (6.10) is
Ep []E(Xm_’ynew)[E(Y"”‘e“’,hf1 l%(X”“”’ } ZL’( rew ?L Z (7).

Since training sample D is close to n, the bias is small. The variance is usually high because
n training sets are similar to each other due to strong correlation:

( Zﬁ new7’}\l/ —i) new ) nQZZCOV( new’ glll( new)) f( new h( ( new)

113—

may be large due to correlation

Note that this is not true in general as P. Burman (1989)’s paper “A comparitive study of
ordinary cross-validation, v-fold cross-validation and the repeated learing-testing methods”
proved that for least squares linear regression, LOOCV has the smallest asymptotic bias
and variance.

6.4.2 Bootstrap Approach

According to https://en.wikipedia.org/wiki/Bootstrapping_(statistics), bootstrapping
is any test or metric that uses random sampling with replacement. The bootstrap is a
method for estimating the variance of an estimator and for finding approximate confidence
intervals for parameters.

Let X1,...,X,, ~ P. Recall that the empirical distribution P, is defined by

1 n
= R;I(XZ- € A).

In other words, P, puts mass 1/n at each X;. A parameter of the form 6 = T(P) is called a
statistical functionl and that the plug-in estimator is 0, = T(FP,).
An iid sample of size n drawn from P, is called a bootstrap sample, denoted by

X, X~ P

Bootstrap samples play an important role in what follows. Note that drawing an iid sample
X7, ..., X, from P, is equivalent to drawing n observations, with replacement, from the original
data {X1,..., X;,}. Thus, bootstrap sampling is often described as “resampling the data”.

Let 9n = g(Xy, ..., X;,) denote some estimator. We would like to find the variance of én Let

Varp(8,) = Varp(g(X1, ..., X)) =: Sp(P).
5(1)

Let s be the sample variance of 8,7, ..., 97(13). By law of large numbers,

2

2= 2309 (3209 | LB - B2 = Varp(d,).

J=1

Since we can take B as large as we want, we have that s2 ~ Var P(G’n) In other words, we can
approximate S,(P) by repeatedly simulating n observations from P.

But we don’t know P. So we estimate Sy (P) with S, (P,) where P, is the empirical distri-
bution. Since P, is a consistent estimator, we expect that S, (P,) =~ Sn(P). In other words,
bootstrap approximation of the variance,
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L —

Estimate S, (P) with S,(P,), i.e. Varp(6,) = Varp, (6,,).
The steps for the Bootstrap Variance Estimator algorithm are
1. Draw a bootstrap sample X7, ..., X;; ~ P,. Compute HA;"L =g(X7,..., X}).

2. Repeat the previous step, B times, yielding estimators 67;;_1, . é:‘B.

3. Compute (using population variance rather than sample variance as in James et al. [2013,

$85.2)):

1A
§ = EZ(QZJ*@)Q
j=1

_ B A
where 6 = J i1
4. Output 5.

A very simple illustration is given in Practical 2 to estimate the standard deviation of the
population.



