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When the data has no labels, supervised learning won’t work! For example, new viruses
or bacterias has no ‘labels’. There is no universally accepted mechanism for performing the
validation of results on an independent data set [James et al., 2013, Chapter 10], i.e. there is
no performance metrics for unsupervised learning methods.

The following are classes of unsupervised learnings where we may perform to discover the
patterns of data without labels:

¢ Dimensionality Reduction: transform p-dimensional (p > 2) data to 2D or 3D for
visual inspection of patterns or to a fraction of p dimensional data as a filter for predictive
models.

e Cluster Analysis: k-means, hierarchical clustering, mixture models, etc.
e Anomaly Detection: local outlier factor, isolation forest

¢ Latent Variable Models: expectation-maximisation algorithm, methods of moments,
blind source/signal separation.

PCA (principal component analysis, also known as latent semantic analysis in document
analysis literature) and t-SNE (t-Distributed Stochastic Neighbour Embedding) are the most
effective dimensionality reduction methods and they are discussed in this topic, other dimen-
sionality reduction methods will only be mentioned.

The PCA tries to find a global structure and this can lead to local inconsistencies, i.e.
far away point can become nearest neighbours (due to the projection). The t-SNE tries to
preserve local structure, i.e. the low dimensional neighbourhood “representation” should be
the same as original neighbourhood. Note that potential competitors to t-SNE appear since
2021 such as Ivis (based on Siamese Network and Triplet Loss) and UMAP (Uniform Manifold
Approximation Projection). If global structure preservation is required, Ivis is better. However,
Ivis requires Keras-tensorflow library and has a lot of dependencies (too large and inefficient
in many platforms) while UMAP has an implementation in R with little dependencies and an
implementation in Python depending on scipy and scikit-learn.

8.1 PCA

According to Ruppert [2011, Chapter 17|, Principal component analysis (PCA) finds
“factors” in the covariance matrix of the data X = [x,]:

n

Cov(X)=—— . (2 — pz) L (25 — pia) (8.1)
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and uses this structure to locate low-dimensional subspaces containing most of the variation
in the data. Mathematically, the projection of the centred data, (x; — pz)V7?, is chosen to
maximise the determinant of the transformed vectors [Belhumeur et al., 1997

Vopt = argmax |V Cov(X)VT| = [e1, ..., e,).
v

Note that the image data is stored as column in Belhumeur et al. [1997] while we store
image data as row.

The data X can then be “decomposed” into “principal components” (which are eigen-
vectors of the covariance matrix) [Deisenroth et al., 2019, Chapter 10].

PCA may smear the classes of high-dimensional data together until they are no longer
linearly separable in the projected space.

Given an n x p data set @;;, i = 1,--- ,n, j = 1,--- ,p. In PCA, we are interested in the
variance, therefore, we will centre the data x.; to have a mean of zero x.; — x.; — 7; and
denote the “zero mean” data as

X = [I.j*fj] = (Xl,-” ,Xp).

This is a standard operation in R and Python:

R : X = scale(X, scale=FALSE) # X = sweep(X, 2, colMeans (X))
Python: X = X - np.mean(X,axis=0)

We then look for the linear combination of the sample feature such that it is maximised, i.e.

2
n P p ~ o~
1 B . 9 e’ XTXe
max - E g €1;5Ti; subject to E el; =1=|e =argmax{ —————
e, ety | M J ele
y E] P . . .
=1 \j=1 7=1
where e; = (ej1, €19, - ,elp)T is a “normalised” column vector and its right-hand-side frac-

tion above is called the Rayleigh quotient (see https://en.wikipedia.org/wiki/Principal_
component_analysis). The vector e; is required to be “normalised” because a “unique” answer
may be obtained (with a difference of + sign).

A principal component is a linear combinations of the “featured” columns Xi,---, X, in X.
What is amazing is that the weighted vectors e;,7 =1, - -, is the eigenvectors corresponding
to the eigenvalues of the matrix (8.1).

The first principal component of a set of features X, Xo, -+, X,, is the normalised linear

combination of the features that has maximum variance (among all linear combinations):

p
Z1i=ennX1+enXo+ -+ €1po = Xey, Z ei’- =1. (82)
Jj=1

The kth principal component (k > 2), is the linear combination of features that accounts for
as much of the remaining variation as possible, with the constraint that the correlation between
the kth component and the previous s =1,--- , kK — 1 components are 0:

Zo=eqX1+enXo+ - +epX, = Xeg, e2. =1. (8.3)
j=1

The kth component is calculated by subtracting the first k£ — 1 principal components from X:

k—1 k—1
Xp=X-) Zie,=X-) (Xey)e,
s=1 s=1
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and then finding the weight vector e; which extracts the maximum variance from this new data

matrix:
eTXkTXke }

eTe

€, = argmax { (8.4)

The theory of linear algebra shows that ej corresponds to the remaining eigenvectors of X7 X
with the maximum values for the quantity in the fraction given by their corresponding eigen-
values.

In summary, when , PCA computes the eigenvalues Ay, Ag, ---, A, of the sample
variance-covariance matrix (8.1) and the corresponding eigenvectors e, es,--- ,e,. The prin-

cipal components of a data x is computed using

PCy(z) = ez — p1) + é12(x2 — pa) + -+ + E1p(xp — 1),

PCh(z) = éa1(z1 — 1) + €22(x2 — p2) + -+ + Eap(xp — 1p), 8.5
8.5

PCp(m) = épl(ml — 1) + ép2($2 — )+t épp(m;o - #p)-

When , the PCA is a bit more complex. Instead of dealing with the covariance matrix
(8.1) of the n x p data X where @ is p x 1 matrix:

XT'Xx =Xz, X=X-2X,
we work with the ‘transpose’ of the centred data X where v is n x 1 matrix:
XXTv = v (8.6)
From which we can derive
XT(xXxTv) = XT(2w) = (XTX)(XTv) = A(XT0)

which implies the eigenvectors of (8.6) to be XTw. More efficient methods for computing
partial SVD for n < p are (i) Lanczos algorithm; (ii) Nonlinear Iterative PArtial Least Square
(NIPALS).

The standard implementations of PCA in R are:

prcomp (x, retx = TRUE, center = TRUE, scale. = FALSE,
tol = NULL, rank. = NULL, ...)

# older PCA
princomp(x, cor = FALSE, scores = TRUE, covmat = NULL,
subset = rep_len(TRUE, nrow(as.matrix(x))), fix_sign = TRUE, ...)

The values of pca=prcomp(X) include

e pca$sdev is the standard deviations of the principal components obtained by SVD, v/A;,
i.e. the square roots of the eigenvalues of the covariance matrix (8.1);

e pca$rotation is the matrix of variable loadings [eq, ..., €y, i.e., a matrix whose columns
contain the normalised eigenvectors (8.4). The function ‘princomp’ returns this in the
element ‘loadings’;

e pca$x is PC;(x) for each row x, i.e. (8.5).

e pca$center: the column means f1;;

Zi(m] _‘LJ)Q

e pca$scale: NULL or the sample variance P

The standard implementation of PCA in Python is:
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sklearn.decomposition.PCA(n_components=None, *, copy=True, whiten=False,

svd_solver=’auto’, tol=0.0, iterated_power=’auto’, n_oversamples=10,
power_iteration_normalizer=’auto’, random_state=None)

# for large dataset:

sklearn.decomposition. IncrementalPCA(n_components=None, *, whiten=False,
copy=True, batch_size=None)

# for large and sparse dataset:
sklearn.decomposition.SparsePCA(n_components=None, *, alpha=1,
ridge_alpha=0.01, max_iter=1000, tol=1e-08, method=’lars’,
n_jobs=None, U_init=None, V_init=None, verbose=False,

random_state=None)

sklearn.decomposition.MiniBatchSparsePCA(n_components=None, *, alpha=1,
ridge_alpha=0.01, max_iter=None, callback=None, batch_size=3,
verbose=False, shuffle=True, n_jobs=None, method=’lars’,

random_state=None, to0l=0.001, max_no_improvement=10)

Example 8.1.1. Given an unlabelled data with 15 observations and feature columns (but
tabulate in horizontal form to save space). Find all the principal components.

1 2 3 4 5) 6 7 8 9 10

X; | 809 | 691 | 4.119 4.4 4.65 | 2.329 | 8.272 | 4.595 | 8.071 | 6.403

X9 | 4.104 | 5.272 | 4.063 | 5.366 | 5.238 | 4.711 | 2.46 | 0.581 | 5.883 | 3.624

X3 | 2.351 | -2.827 | -3.786 | -0.261 | -1.096 | -1.456 | -1.727 | -1.292 | 0.938 | 2.949

11 12 13 14 15

X; | 4136 | 7.283 | 2.744 | 4.939 | 4.924

Xo | 3.5614 | -1.301 | 3.584 | 3.024 | 2.754

X3 | 2918 | -0.738 | 3.866 | -0.803 | 5.154

Solution: By using R, it is easy to find the covariance matrix:
3.700046 —0.441594 —0.261248
cov(X) = o XTX = | -0.441594  3.63697  —0.097637
—0.261248 —0.097637  6.82242
and it is not difficult to find the eigenvalues of cov(X) using eigen(cov(X)):

eigen() decomposition
$values
[1] 6.845300 4.105652 3.208484

$vectors

[,1] [,2] [,3]
[1,] -0.08006773 0.72243802 0.6867841
[2,] -0.01930849 -0.68999103 0.7235603
[3,1] 0.99660240 0.04467307 0.0691952

from which we can obtain the eigenvalues:

Ai = 6.845301, 4.105652, 3.208484
and the corresponding normalised eigenvectors

—0.080068 0.722438 0.686784
e1 = |—0.019308|, e2= |—0.689991|, e3= |0.723560
0.996602 0.044673 0.069195
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We can compare them to R’s prcomp which prints the following summary:

Standard deviatiomns (1, .., p=3):
[1] 2.616353 2.026241 1.791224

Rotation (n x k) = (3 x 3):

PC1 PC2 PC3
X1 -0.08006773 0.72243802 -0.6867841
X2 -0.01930849 -0.68999103 -0.7235603
X3 0.99660240 0.04467307 -0.0691952

Note that 2.616353% ~ A; (theoretically they should be the same), etc. as well as the
possible opposite sign in the normalised eigenvectors.
The first, second and third principal components of X are:

PCy(x) = —0.080068(x1 — 5.458) — 0.019308(x2 — 3.525133) + 0.996602(x3 — 0.279333)
PCy(x) = 0.722438(x1 — 5.458) — 0.689991 (22 — 3.525133) 4 0.044673(x3 — 0.279333)
PCs(x) = 0.686784(x1 — 5.458) + 0.723560(x2 — 3.525133) + 0.069195(x3 — 0.279333)

Note that PC((8.095, 4.104, 2.351)) = (1.8423, 1.5982, 2.3732) which is different from
pca$x[1,] by a sign.

Example 8.1.2 (Final Exam Jan 2019, Q1(c)). You are given the following information:
e The data set consists of 3000 observations and 2 predictors, X1 and Xo.

e The covariance matrix, C of X and X5 is C' = [(2)2 82] .
(i) Compute the eigenvalues, A\; and A. For each of the eigenvalues computed, find the
eigenvectors, e; and es. (7 marks)
Solution:
C20-x 08 | B B
|C — A| = ‘ 0.8 0.6 — )\‘ = A 2.6\ 4 0.56 = 0= A = 2.363015, 0.236985
[2 marks|
A = A1 = 2.363015 (eigenvalue of PC1):
2.0 —2.363015 0.8 el — 0
0.8 0.6 — 2.363015] '
[2.5 marks]
ol 1 0.8 _10.910633
e /0.82 4 (0.363015)2 [0-363015] — |0.413217
A = A2 = 0.236985 (eigenvalue of PC2):
2.0 — 0.236985 0.8 e —
0.8 0.6 —0.236985| ~
(2.5 marks|
e 1 0.8 ] [0.413216
2 \/0.82‘+'C*1.763015)2 —1.763015| ~ |—0.910633

(ii) First principal component, PC1 is the linear combination of predictors that has the max-
imum variance among all principal components. Based on your answer in (i), write the
equation of first principal component for this data set. (2 marks)

Solution: PC1 is the linear combination of predictors with highest eigenvalue A\; =

2.363015, i.e. PCy(x) = 0.910633 (21 — 1) + 0.413217(z5 — p13).
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Example 8.1.3 (May 2022 Semester Final Exam, Q5(b)). Given the two-dimensional data in

Table 5.2.
T | T2
5.1] 9.8
4.1 9.6
3.2 | 8.2
6.2 | 10.4
5.7 | 11.0
3.8 9.5

Table 5.2: Two-dimensional data.

Find the eigenvalues and normalised eigenvectors of the covariance matrix of the two-
dimensional data and write down the principal components of the data in Table 5.2. (8 marks)




—_ =

O O WO Ok W

8.1. PCA 207

Under the PCA model and assuming the eigenvalues are in a descending order, the kth
eigenvalues for data X with can be regarded as the proportion of the total variation.
This allows us to define the proportion of variance explained, PV Ej;:

Ag
PVE:, = k=1,2,---. .
Vv k )\1+)\2+"'+Apj P (87)

The first k& principal components would explain the variances related to the cummulative
sum of the first k& proportion of variances explained, leading to the cumulative proportion
of variance explained:

ALt M
PVE, = k=1,2,-. .
PV = STy ' (8.8)

If we believe the data has 10% noise, we may choose the smallest k& such that
CPVEL>1-01=09

to ‘characterise’ the typical variation of the data.

If we plot the descending eigenvalues A; against the index i, we will obtain a https://en.
wikipedia.org/wiki/Scree_plot which may allow us to identify the ‘noise’ using the elbow
method which we will explore in the following example.

Example 8.1.4 (Places Rated Almanac Dataset). Use PCA to analyse the dataset (https://
www.openml.org/d/509) from the guide “Places Rated Almanac”, by Richard Boyer and David
Savageau, copyrighted and published by Rand McNally with nine rating criteria: (1) Climate
and Terrain, (2) Housing, (3) Health Care & Environment, (4) Crime, (5) Transportation, (6)
Education, (7) The Arts, (8) Recreation, (9) Economics.

Note that within the dataset, except for housing and crime, the higher the score the better.
For housing and crime, the lower the score the better. Where some communities might rate
better in the arts, other communities might rate better in other areas such as having a lower
crime rate and good educational opportunities.

Solution: By reading and processing the data with PCA in R as follows:

X = read.csv("places.arff", skip=91, header=F) # https://www.openml.org/d/509

X = X[,-10] # Remove last column ‘Place’

names (X) = c(
"Climate+Terrain", "Housing", "HealthCare+Environment",
"Crime", "Transportation", "Education",
"TheArts", "Recreation", "Economics")

print(data.frame(min=sapply(X,min) ,mean=sapply(X,mean),
stdev=sapply(X,sd) ,max=sapply(X,max)))

pca = prcomp (X)

print (pca)

print (summary (pca))

we obtain the following summary:
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min mean stdev max
Climate+Terrain 1056 538.7325 120.8083 910
Housing 5159 8346.5593 2385.2626 23640
HealthCare+Environment 43 1185.7386 1003.0020 7850
Crime 308 961.0547 357.1542 2498
Transportation 1145 4210.0821 1451.1792 8625
Education 1701 2814.8875 320.7930 3781
TheArts 52 3150.8845 4642.2837 56745
Recreation 300 1845.9574 807.8882 4800
Economics 3045 5525.3647 1084.4685 9980
Standard deviations (1, ., P=9):
[1] 4941.0190 2099.5249 1279.8592 1037.4757 691.6200 490.7665 304.6472
[8] 258.8357 104.7026
Rotation (n x k) = (9 x 9):
PC1 PC2 PC3 PC4
Climate+Terrain 0.006416346 0.015459527 0.006692298 -0.02631066
Housing 0.269142181 0.937207188 0.082641934 -0.177750567
HealthCare+Environment 0.178318724 -0.020539870 -0.027761041 -0.02656157
Crime 0.028134276 -0.010901921 -0.037610931 0.09903536
Transportation 0.149302463 0.018757344 -0.971531831 -0.03839697
Education 0.025190912 -0.001395877 -0.041507669 0.02163938
TheArts 0.930859522 -0.2822605687 0.151026851 0.02775471
Recreation 0.069824043 0.103848215 -0.149571984 0.06903276
Economics 0.025130829 0.173359958 -0.012743344 0.97453606
PC5 PC6 PC7 PC8
Climate+Terrain -0.016278231 0.001186617 -0.08140848 -0.04213801
Housing 0.083842278 0.048638182 -0.02668780 -0.01211847
HealthCare+Environment 0.159075722 -0.929492918 -0.13706121 0.24135975
Crime -0.116013534 0.053976191 -0.94477955 -0.26682693
Transportation 0.146649668 0.092235051 0.01354542 0.04150769
Education 0.106255968 -0.253188491 0.24115526 -0.92915944
TheArts -0.008673762 0.167554494 0.04296041 -0.01594931
Recreation -0.954262248 -0.173348306 0.12711706 -0.01878071
Economics 0.102240592 -0.005152175 0.07016097 0.05439799
PC9
Climate+Terrain 0.9951449417
Housing -0.0229330011
HealthCare+Environment 0.0013718748
Crime -0.0876894940
Transportation 0.0094188168
Education -0.0168655619
TheArts 0.0005985854
Recreation -0.0050315892
Economics 0.0327178331
Importance of components:
PC1 PC2 PC3 PC4 PC5
Standard deviation 4941.0190 2099.5249 1.280e+03 1.037e+03 691.62003
Proportion of Variance 0.7529 0.1359 5.052e-02 3.319e-02 0.01475
Cumulative Proportion 0.7529 0.8888 9.394e-01 9.726e-01 0.98731
PC6 PC7 PC8 PC9
Standard deviation 490.76654 304.64724 258.83567 104.70256
Proportion of Variance 0.00743 0.00286 0.00207 0.00034
Cumulative Proportion 0.99473 0.99760 0.99966 1.00000

The first two principle components already explain more than 88% of the variation in the
data and this can be ‘confirm’ with the “scree plot” in either “bar chart” form or the “line plot”
form:

Places Rated i « Places Rated Almanac Eigenvalues (Line plot)

0

Varaness
Vaianes

D:I:h:.l:.__i

0000 50406 1027 15407 20ed?
0000 50608 1027 1507 208407 25807
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At the end of an analysis, we usually need to provide some sort of interpretation. The
interpretation of the principal components is based on finding which variables are most
strongly correlated with each component, i.e., which of these correlations are large in
magnitude, the farthest from zero in either direction. The consideration of a strong correlation
is rather subjective, and is determined at what level the correlation is important. As a rule of
thumb, a correlation above 0.5 is deemed important.

First Principal Component - PC1

The PC1 is strongly correlated with the original variable TheArts. Based on the corre-
lation of 0.93086, the first principal component is primarily a measure of TheArts and it has
0.93086 x PV E; = 70% influence. The next significant feature in PC1 is the Housing which
has the same sign as TheArts. This may mean that TheArts can help boost the Housing price.

Second Principal Component - PC2

The PC2 is dominated by Housing with 12.7% (0.93721 x PV Es) significance. However,
in PC2, Housing and TheArts have opposite signs which may mean that when the Housing
price is high, the TheArts may be negatively affected.

Third Principal Component - PC3

The PC3 is dominated by Transportation. This may suggests that Transportation has
4.9% (0.97153 x PV FE3) significance in the influence on people about the places.

Example 8.1.5 (Final Exam May 2019, Q1(c)). An investigation is carried out to examine
the eating habit of citizens in each state in Malaysia. A total of 8 types of food had been
investigated — the average consumption of each type of food (grams) per person per week in
each state in Malaysia was recorded. The 8 types of food are listed below:

e x1 = Fish e x5 = Beans

e 9 = Meat e 5 = Egg

e r3 = Grain e 7 = Vegetables
e 4 = Dairy e rg = Fruit

For advanced analysis on the eating habit, the analyst would like to reduce the dimension of
the data. Therefore, principal component analysis has been performed. Eigenvalues computed
from the principal component analysis are

A = [0.0342,0.6432, 2.3664, 0.5869, 1.1894, 0.0032, 5.6379, 0.0179]T

(i) State the variance explained by each principal component. With a targeted cumulative
proportion of variance explained (CPVE) of 85%, state the number of principal compo-
nents to be considered. (4 marks)

Solution: Variance explained = eigenvalue (Highest for PC1 in descending order)

PC A PVE | CPVE
1 5.6379 | 0.5380 | 0.5380
2 2.3664 | 0.2258 | 0.7638
3 1.1894 | 0.1135 | 0.8773
4 0.6432 | 0.0614 | 0.9387
5 0.5869 | 0.0560 | 0.9947
6 0.0342 | 0.0033 | 0.9980
7 0.0179 | 0.0017 | 0.9997
8 0.0032 | 0.0003 | 1.0000

Total | 10.4791
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With targeted CPVE of 85%, 3 principal components (PC1, PC2 and PC3), with
CPVE of 87.73%, should be considered.

(ii) Given that the eigenvector for PC1 is
e; = (0174 —0.626 —0.146 0.667 —0.249 0.743 0.598 0.484].

Interpret the principal component results with respect to the types of food. You should
provide explanation on which types of food are the most and the least contributed to PC1,
as well as the correlation between PC1 and that variable. (5 marks)

Solution: Note that the eigenvector may have some problem with the values or the
lecturer set the exam question did not normalise the eigenvector.

Based on the given values in tabular form:

Variable, z; | Type of Food €14
T Fish 0.174
x9 Meat -0.626
T3 Grain -0.146
x4 Dairy 0.667
x5 Beans -0.249
6 Feg 0.743
x7 Vegetables 0.598
rs Fruit 0.484

we find that Egg and Dairy dominate PC1. This may indicate that for 53.80%
of Malaysians has the Egg and Dairy consumptions as an important part of food
consumption while the opposite sign for Meat (third dominating feature) may indicate
that they have low meat consumption.

When n > p, PVE is useful and PCA is a dimensional reduction because PC1, PC2 (and
occassionally PC3) can explain the main variations in the data and we can use them to “visually
inspect” the data. A biplot is a 2D “scatter plot” of PC1 and PC2 for a data X.

When , the PVEs no longer explain the variation of the data but the biplot provides

a purely feature dimension reduction from a mathematical point of view. Let X be the centred
data of the original n x p (n < p) data X. Then eigenvalues and the eigenvectors are calculated
as follows:

¢ Instead of working with XTXe = \e carlier since p is large, we work with an n x n matrix:

XXTF=Af=X"(XXTH)=X"(\f) & (XTX)(XTfF)=MNXT7).

e The above equation indicates that the eigenvalues of the covariance matrix XTX and
the complement-covariance matrix X X7 are the same for \;, i = 1,--- ,n for n < p.
Therefore, we find the eigenvalues and corresponding eigenvectors of the complement-
covariance matrix

XXTf=\f
and obtain the eigenvalues and corresponding eigenvectors for the PCA of X as
N XTf o i=1,--

7 7n

Example 8.1.6 (EATING IN THE UK dataset). Given the table of the average consumption
of 17 types of food in grams per person per week for every country in the UK from http:
//setosa.io/ev/principal-component-analysis/.
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England Wales Scotland N.Ireland
Cheese 105 103 103 66
Carcass meat 245 227 242 267
Other meat 685 803 750 586
Fish 147 160 122 93
Fresh potatoes 720 874 566 1033
Processed potatoes 198 203 220 187
Fats and oils 193 235 184 209
Sugars 156 175 147 139
Fresh Veg 253 265 171 143
Other Veg 488 570 418 355
Processed Veg 360 365 337 334
Fresh fruit 1102 1137 957 674
Cereals 1472 1582 1462 1494
Beverages 57 73 53 47
Soft drinks 1374 1256 1572 1506
Alcoholic drinks 375 475 458 135
Confectionery 54 64 62 41

Analyse the given tabular data with PCA and biplot.

Solution: A script to analyse the data using PCA and produce a biplot is listed below.

# From https://bioboot.github.io/bggn213_f17/class-material/UK_food_pc
X = t(read.csv("UK_foods.csv", row.names=1))
### Print x as a nice table (an alternative is R’s View() function)
#knitr::kable(x, caption="The full UK foods data table")
pca = prcomp (X)
print (pca)
print (eigen(cov(X)))
plot(pca$x[,1], pca$x[,2], xlab="PCl", ylab="PC2",
x1im=c(-300,550), ylim=c(-250,350), pch=16, cex=2)
text (pca$x[,1], pca$x[,2]+19, rownames (X))
# biplot(pca)
The eigenvalues are shown below and it is used in the biplot to find PC1 and PC2.

Standard deviatiomns (1, ., p=4):
[1] 3.241502e+02 2.127478e+02 7.387622e+01 3.175833e-14
Rotation (n x k) = (17 x 4):

PC1 PC2 PC3 PC4
Cheese -0.056955380 0.016012850 0.02394295 -0.694538519
Carcass_meat 0.047927628 0.013915823 0.06367111 0.489884628
Other_meat -0.258916658 -0.015331138 -0.55384854 0.279023718
Fish -0.084414983 -0.050754947 0.03906481 -0.008483145
Fats_and_oils -0.005193623 -0.095388656 -0.12522257 0.076097502
Sugars -0.037620983 -0.043021699 -0.03605745 0.034101334
Fresh_potatoes 0.401402060 -0.715017078 -0.20668248 -0.090972715
Fresh_Veg -0.151849942 -0.144900268 0.21382237 -0.039901917
Other_Veg -0.243593729 -0.225450923 -0.05332841 0.016719075
Processed_potatoes -0.026886233 0.042850761 -0.07364902 0.030125166
Processed_Veg -0.036488269 -0.045451802 0.05289191 -0.013969507
Fresh_fruit -0.632640898 -0.177740743 0.40012865 0.184072217
Cereals -0.047702858 -0.212599678 -0.35884921 0.191926714
Beverages -0.026187756 -0.030560542 -0.04135860 0.004831876
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44140 0.555124311
68168 0.113536523
50201 0.005949921

-0.16942648 0.103508492
-0.49858320 -0.316290619
-0.05232164 0.001847469
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From the biplot, we detect that Northern Ireland
is a major outlier. Once we go back and look at
the data in the table, this makes sense: the North-
ern Irish eat way more grams of fresh potatoes and
way fewer of fresh fruits, cheese, fish and alcoholic
drinks. It’s a good sign that structure we’ve visu-
alised reflects a major fact of real-world geography:
Northern Ireland is the only of the four countries
not on the island of Great Britain.

Example 8.1.7 (https://en.wikipedia.org/wiki/Eigenface). Face image are extremely
high-dimensional when they are viewed as vectors of pixel values. For example, a 300x200
image has 60,000 dimensions. (Higher resolution images will be very slow and will take up lots

of storage.

The idea behind eigenface is to construct a low-dimensional linear subspace that contains
most of the face images possible (possibly with small errors) — dimensional reduction.

The recognition process with the eigenface method is to project query images into the
face-space spanned by eigenfaces calculated, and to find the closest match to a face class in that

face-space.

1. Given input image vector & € RP, the mean image vector from the database M, calculate
the weight of the kth eigenface as:

wy = Vil (& — M)

Then form a weight vector W = [wy, wa, ..., Wk, ..., wy].
2. Compare W with weight vectors W,, of images in the database. Find the Euclidean

distance.

a=|w-

W2

3. If d < €1, then the mth entry in the database is a candidate of recognition.
4. If 1 < d < €2, then x may be an unknown face and can be added to the database.

5. If d > €9, @ is not a face image.

Example 8.1.8 (Final Exam Jan 2024 Sem, Q5(b)). Given the unlabelled iris flower data in

Table 5.2.
Table 5.2: Unlabelled iris lower data.
Obs. | Sepal.Length | Sepal.Width | Petal.Length | Petal. Width
A 4.4 3.0 1.3 0.2
B 5.5 2.6 4.4 1.2
C 7.7 2.8 6.7 2.0
D 4.6 3.1 1.5 0.2
E 5.6 2.5 3.9 1.1
F 6.2 3.4 5.4 2.3

Suppose the results of the principal component analysis from R are listed below:

Standard deviations (1, .., p=4):
[1] 2.56885138 0.42639622 0.32438097 0.07723882
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Rotation (n x k) = (4 x 4):

PC1 PC2 PC3 PC4
Sepal.Length 0.45219359 0.42363786 0.7307630 0.2864216
Sepal.Width -0.01145146 -0.64043843 0.5769823 -0.5067533
Petal.Length 0.83095985 0.01028704 -0.3510437 -0.4314721
Petal.Width 0.32387581 -0.64051835 =-0.0992227 0.6891992

(i) State the proportions of variance explained (PVE) and state the number of principal
components to be considered if a targeted cumulative PVE (CPVE) of 90% is set. You
may round all your calculations to 2 decimal places. (5 marks)

Solution: The PVE (rounded to 2 decimal places) are

(2.57%,2.572,0.322,0.08%)
2.57% 4 0.43% + 0.32% + 0.08° [4 marks]

6.6,0.18,0.1,0.01
_ (66 T ) _ (0.96, 0.03, 0.01, 0.00)

Since the first principal component explains 96% of the variation of the data, only 1
principal component should be considered. ............. ... ... ... L [1 mark]

Average: 3.27 / 5 marks in Jan 2024; 28.57% below 2.5 marks.

(ii) Write down the first two principal components of the data in Table 5.2 and then perform
appropriate calculations to sketch the biplot of the data in Table 5.2 with proper labels.
You may round all the numbers to 2 decimal places. (9 marks)

Solution: To find the principal components, we first calculate the column means of
the data in Table 5.2:
(5.67, 2.9, 3.87, 1.17). [2 marks]

Next we write down the first two principal components:

PCy = 0.45(z1 — 5.67) — 0.01(x5 — 2.9) + 0.83(z3 — 3.87) 4 0.32(z4 — 1.17)
PCy = 0.42(z1 — 5.67) — 0.64(x — 2.9) + 0.01(z3 — 3.87) — 0.64 (24 — 1.17)

[2 marks|
Using the above formulas, we can obtain the first two principal components and the
biplot:
Obs. | PC1 PC2 ol .

A | -3.016 | -0.0023 .-

B | 0376 | 01067 7"

C 3.529 | 04137 ¥ %

D | -2.761 | 0.0197 .

E |-0.025 | 0.2717 o

F | 1.865 | -0.8053

[3 marks] S0F 0 o s s .

(2 marks|

Average: 2.25 / 9 marks in Jan 2024; 82.14% below 4.5 marks.
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PCA has been very successful in a lot of dimensional reduction tasks. For example latent
semantic analysis uses PCA, population structure in the genetic data from different geographical
locations can be inferred using PCA etc. For image data, PCA may be used to reduce the
dimension of the images (we can think of them as the generalisation of eigenfaces) and then
supervised learning (e.g. kNN) may be applied.

8.1.1 Application of PCA to Linear Regression

It is possible to integrate PCA with Linear Regression which leads to Principal components
regression (PCR). PCR calculates the principal components and then use some of these compo-
nents as predictors in a linear regression model fitted using the typical least squares procedure.
PCR can handle the multicollinearity problem rather well but we are restricted to ‘inputs and
output must all be numeric’ and we will no longer have the information on how each input
influences the output.

Let’s perform PCA on the datarium’s marketing.

> library(datarium) # ‘marketing’ data, shape = 200x4
> pc = prcomp(marketing)
> print (pc)
Standard deviatiomns (1, .., p=4):
[1] 103.158439 27.320469 16.181302 1.970086
Rotation (n x k) = (4 x 4):

PC1 PC2 PC3 PC4
youtube -0.99868896 -0.02146940 0.01195397 0.044905669
facebook -0.01027793 0.36218368 -0.91297170 0.187616706
newspaper -0.01564452 0.92946960 0.36856309 -0.001662117

sales -0.04764415 0.06669568 -0.17464545 -0.981213886
> pc2 = prcomp(marketing[,1:3]) # exclude output
> print (pc2)

Standard deviations (1, .., p=3):
[1] 103.04146 27 .26078 15.93408
Rotation (n x k) = (3 x 3):

PC1 PC2 PC3
youtube -0.99982947 -0.01807077 -0.003805766
facebook -0.01001377 0.35736234 0.933912137
newspaper -0.01551648 0.93379098 -0.357482357

Using R’s pls package to perform PCR, we obtain a combined unsupervised and supervised
learning.

> library(pls) # for principal components regression, PCR
> pcr_model = pcr(sales”., data=marketing)
> print (summary (pcr_model))
Data: X dimension: 200 3

Y dimension: 200 1
Fit method: svdpc
Number of components considered: 3
TRAINING: % variance explained

1 comps 2 comps 3 comps

X 91.42 97.81 100.00
sales 61.44 69.60 89.72
> pcr_model$projection # same as prcomp(marketingl([,1:3])

Note that the following are sort of supervised learning with PCA:
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e partial least square (PLS): PLS applies PCA to both input and output while PCR only
applies PCA to the input.

e linear discriminant analysis (Topic 4)

8.2 Methods Closely Related to PCA

In contrast to PCA which requires all features to numeric, Multiple Correspondence anal-
ysis (MCA) requires all features to be categorical. According to Wikipedia, when all features
are categorical, one is able to build the corresponding so called completely disjunctive table X
(each row is like a record of the answers of multiple choice questions (MCQ).

Assume X is the completely disjunctive table of I observations of K categorical variables.
K

Assume also that the k-th variable have Ji different levels (categories) and set J = Z Ji. The

k=1
table X is then a I x J matrix with all coefficient being 0 or 1. Set the sum of all entries of X to

be N and introduce Z = X/N. In an MCA, there are also two special vectors: r=rowSums (7),
and c=colSums (Z) (using R’s commands). Let D, = diag(r) and D, = diag(c). With these
notations, the steps in MCA are

1. to find the SVD of
M =D;V?3(z —r"YDIV2 = UsvT
N, e’
SVD

with U, V two unitary matrices and ¥ is the generalised diagonal matrix of the singular
values with the same shape as Z. Note that the diagonal of ¥? are the eigenvalues of Z.

2. The coordinates of the observations in the factor space are given by
F =D YU,

The i-th rows of F' represent the i-th observation in the factor space.

3. The coordinates of the variables (in the same factor space as observations!) are given by
G =DV,

The above steps are integrated into R’s MASS function mca. The are other implementations
such as FactorMineR: :MCA (it has too many dependencies), ade4: : dudi.mca and ExPosition: : epMCA.

0.10

Temperatu

outlook.Overcast
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> library (MASS)

> d.f = read.csv("playtennis.csv",row.names=1,stringsAsFactors=T)
>m = mca(d.f[,1:4])

> print (m)

Multiple correspondence analysis of 14 cases of 4 factors

Correlations 0.668 0.584 cumulative % explained 22.27 41.75
> plot(m) # it will plot the MCA for playtennis.csv’s input
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Factor analysis (FA) is a simple linear generative model with Gaussian latent variables:
X — M = FL+ e ~ Normal(u, WW7T + )

where X is the n x p data, M is the n X p column mean matrix, L is the k& X p loading matrix,
I is the n x k factor matrix and ¢ is the n X p error term matrix.
When W = 0, we have the PCA, X ~ Normal(u, V).

# R
Rdimtools::do.fa(X, ndim = 2, maxiter=10, tolerance=1e-8)

# Python

sklearn.decomposition.FactorAnalysis(n_components=None, *, tol=0.01,
copy=True, max_iter=1000, noise_variance_init=None, random_state=0,
svd_method=’randomized’, iterated_power=3, rotation=None)

Kernel PCA is an extension of PCA using techniques of kernel methods, i.e. generalising
=1 Cov(X) = 130 (25 — p) (i — p) to 230 @(x; — pu)®(x; — )" Using a kernel @, the

~n
originally linear operations of PCA are performed in a reproducing kernel Hilbert space.

Rdimtools::do.kpca(X, ndim = 2, preprocess = c("null", "center",
"scale", "cscale", "whiten", "decorrelate"),
kernel = c("gaussian", 1)) # aux.kernelcov
# do.kpca may depend on
kernlab::kpca(x, kernel = "rbfdot", kpar = list(sigma = 0.1),
features = 0, th = 1le-4, na.action = na.omit, ...)

The kpca’s kernel can take values from rbfdot (gaussian), vanilladot (linear kernel), polydot
(polynomial), laplacedot (laplacian), anovadot (anova), splinedot (spline), tanhdot (sig-
moid), besseldot. To use some of the kernels, we need to set the kpar appropriately.

# Python

sklearn.decomposition.KernelPCA(n_components=None, ¥, kernel=’linear’,
gamma=None, degree=3, coefO=1, kernel_params=None, alpha=1.0,
fit_inverse_transform=False, eigen_solver=’auto’, tol=0,
max_iter=None, iterated_power=’auto’, remove_zero_eig=False,
random_state=None, copy_X=True, n_jobs=None)

When kernel is linear, it is the same as PCA. When kernel is poly, rbf, sigmoid, cosine,
precomputed, they are nonlinear.

Independent component analysis (ICA) is a computational method for separating a
multivariate signal into additive subcomponents by assuming that at most one subcomponent
is Gaussian and that the subcomponents are statistically independent from each other. ICA is
a special case of blind source separation (BSS).

ICA finds the independent components (also called factors, latent variables or sources) by
maximising the statistical independence of the estimated components. We may choose one of
many ways to define a proxy for independence, and this choice governs the form of the ICA
algorithm. The two broadest definitions of independence for ICA are

1. The Minimisation-of-Mutual information (MMI) family of ICA algorithms uses measures

like Kullback-Leibler Divergence and maximum entropy.

2. The non-Gaussianity family of ICA algorithms, motivated by the central limit theorem,

uses kurtosis and negentropy.

Typical algorithms for ICA use centring (subtract the mean to create a zero mean signal),
whitening (usually with the eigenvalue decomposition), and dimensionality reduction as pre-
processing steps in order to simplify and reduce the complexity of the problem for the actual
iterative algorithm. Whitening and dimension reduction can be achieved with PCA or SVD.
Whitening ensures that all dimensions are treated equally a priori before the algorithm is run.
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Well-known algorithms for ICA include ica::infomax, icafast::FastICA, icajade: :JADE,
and KernelICA: :kernel_ica, etc. In general, ICA cannot identify the actual number of source
signals, a uniquely correct ordering of the source signals, nor the proper scaling (including sign)
of the source signals.

Apart from BSS, ICA has other practical applications such as searching for a factorial code
of the data, i.e., a new vector-valued representation of each data vector such that it gets uniquely
encoded by the resulting code vector (loss-free coding), but the code components are statistically
independent.

The implementations in R and Python are respectively shown below.

# R: Call FastICA
Rdimtools::do.ica(X, ndim = 2, type = "logcosh", tpar = 1,
sym = FALSE, tol = 1e-06, redundancy = TRUE, maxiter = 100)

# type = "logcosh", "exp", "poly"

# Python

sklearn.decomposition.FastICA(n_components=None, *, algorithm=’parallel’
whiten=’warn’, fun=’logcosh’, fun_args=None, max_iter=200,
t0l1=0.0001, w_init=None, whiten_solver=’svd’, random_state=None)

8.3 Other Classical Dimensional Recreation Methods

Multidimensional Scaling (MDS), also known as Principal Coordinates Analysis, PCoA),
is an algorithm that given a distance matrix with the distances between each pair of objects in
a set, and a chosen number of dimensions, k, places each object into k-dimensional space such
that the between-object distances are preserved as well as possible.

MDS is most often used as a visualization tool. It is best suited to the problem that involve
real distances, i.e. Manhattan distances or geometry. It yields the same result as PCA when
Fuclidean distances are used.

The classical (metric) MDS is linear and the R implementation is given below. The non-
metric MDS is implemented in R’s MASS: : isoMDS, vegan: :metaMDS, smacof: :mds and is im-
plemented in Python’s sklearn.manifold.MDS.

cmdscale(d, k = 2, eig = FALSE, add = FALSE, x.ret = FALSE,
list. = eig || add || x.ret)

# Kruskal’s Nonmetric MDS (calls cmdscale). Slow for large dataset
MASS::isoMDS(d, y = cmdscale(d, k), k = 2, maxit = 50,
trace = TRUE, tol = 1le-3, p = 2)

Rdimtools::do.mds (X, ndim=2)

# X = unique(iris[,1:4])

# X.dist dist(X) # X : n x p unlabelled data

# X.mds isoMDS(X.dist)

# plot (X.mds$points, type="n"

# text (X.mds$points, labels=as.character (l:nrow(X)),
col=as.integer (iris[,5]))

sklearn.manifold.MDS(n_components=2, *, metric=True, n_init=4,
max_iter=300, verbose=0, eps=0.001, n_jobs=None, random_state=None,
dissimilarity=’euclidean’, normalized_stress=’warn’)

If metric is True, MDS performs metric MDS; otherwise, it perform nonmetric MDS (dissimi-
larities with 0 are considered as missing values).
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Example 8.3.1. The following are the biplots for PCA and MDS of iris flower dataset.

PCA MDS(Euclidean) MDS(Canberra)
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pcasx], 1] mds_dmES$points[, 1] mds_dmC$points|, 1]

From the example, we find the advantages of MDS to be (i) flexible as any distance metric
can be used; (ii) preserves global structures.

Howver, the disadvantages of MDS are clearly (i) computationally demanding and extremely
inefficient for large numbers of observations; and (ii) suffers from crowding in the presence of
large number of observations.

Self-Organising Map (SOM) is a type of ANN that is trained using unsupervised learning
to produce a low-dimensional (typically 2D), discretized representation of the input space of
the training samples, called a map, and is therefore a method to do dimensionality reduction.

SOM differ from other ANNs as they apply competitive learning as opposed to error-
correction learning (such as backpropagation with gradient descent), and in the sense that
they use a neighbourhood function to preserve the topological properties of the input space.

It is available in R but the diagram is difficult to use and interpret.

library(class)
SOM (data, grid
alpha, radii,

somgrid(), rlen 10000,

init)

The algorithm depends on somgrid and returns an object with code (containing the column
names) and grid which is the SOM 2D representation.

somgrid (xdim 8, ydim = 6,
topo c("rectangular"

"hexagonal"))

A slightly easier to use SOM is provided by kohonen.

som (X, ...)

xyf (X, Y, ...)

supersom(data, grid=somgrid(), rlemn = 100, alpha = c(0.05, 0.01),
radius = quantile(nhbrdist, 2/3), whatmap = NULL, user.weights = 1,
maxNA.fraction = OL, keep.data = TRUE, dist.fcts = NULL,
mode = c("online", "batch", "pbatch"), cores = -1, init,
normalizeDatalayers = TRUE)

Example 8.3.2. The SOM analysis of the iris flower data is given below.

# https://rpubs.com/inayatus/son

# https://rstudio-pubs-static.s3.amazonaws.com/492825_4742a19ab5464d37bd
library (kohonen)
d.grid somgrid (xdim
set.seed (100)

10, ydim 10, topo "hexagonal")

b72af3792d4!
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model = som(as.matrix(iris[,1:4]), d.grid, rlen = 500,
radius = 2.5, keep.data = TRUE,

dist.fcts = "euclidean")
#plot (model, type="mapping", pchs=19, shape="round")
#plot (model, type="codes", main="Codes Plot", palette.name=rainbow)

#plot (model, type="changes")

# split data
set.seed (100)

idx = sample(nrow(iris), nrow(iris)=*0.8)

train = iris[ idx,]

test = iris[-idx,]

# scaling data

trainX = scale(trainl[,-5])

testX = scale(test[,-5], center = attr(trainX, "scaled:center'"))

# make label
train.label
test.label

factor (train[,5])
factor (test[,5])

cl = xyf(trainX, classvec2classmat(train.label), d.grid, rlen=500)

pred = predict(cl, newdata=list(independent=testX,
dependent=test.label))

table (Predict = pred$predictions[[2]], Actual = test.label)

pdf ("s11l_pca_som.pdf", width=10,height=5)

clust = kmeans (cl$codes[[2]], 3)

par (mfrow = c(1,2))

plot(cl, type = "codes", main = c("Unsupervised S0M\nCodes Plot",
"Supervised SOM"), bgcol = rainbow(3)[clust$cluster])

add.cluster.boundaries(cl, clust$cluster)

Unsupervised SOM

Codes Plot Supervised SOM

E Sepallength O Petal.Length
O Sepal.Width O Petal.Width ‘ B setosa O versicolor O virginica ‘

8.4 Manifold Dimensionality Reduction Methods

Sammon mapping or Sammon projection is an algorithm that maps a high-dimensional space
to a space of lower dimensionality by trying to preserve the structure of inter-point distances in
high-dimensional space in the lower-dimension projection. The method was proposed by John
W. Sammon in 1969.

Denote the distance between ith and jth objects in the original space by d7;, and the
distance between their projections by d;;. Sammon’s mapping aims to minimise the following
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error function, which is often referred to as Sammon’s stress or Sammon’s error:

1 d:*dZZ
po oty Y )
Yicj d;;

i<j

The minimisation can be performed either by gradient descent or other iterative methods. The
number of iterations needs to be experimentally determined and convergent solutions are not
always guaranteed.

# R
Rdimtools::do.sammon (X, ndim=2,
preprocess = c("null", "center", "scale", "cscale", "decorrelate",

"whiten"), initialize = c("pca", "random"))

Isometric Mapping Embedding (Isomap), an extension of MDS or Kernel PCA, is a
nonlinear dimensionality reduction through isometric mapping. It guarantees to asymptotically
recover the true dimensionality and geometric structure of a strictly larger class of nonlinear
manifolds. Isomap is a combination of the Floyd—Warshall algorithm with classic Multidi-
mensional Scaling MDS. Classic MDS takes a matrix of pair-wise distances between all points
and computes a position for each point. Isomap assumes that the pair-wise distances are only
known between neighbouring points, and uses the Floyd-Warshall algorithm to compute the
pair-wise distances between all other points. This effectively estimates the full matrix of pair-
wise geodesic distances between all of the points. Isomap then uses classic MDS to compute the
reduced-dimensional positions of all the points. Landmark-Isomap is a variant of this algorithm
that uses landmarks to increase speed, at the cost of some accuracy.

In manifold learning, the input data is assumed to be sampled from a low dimensional
manifold that is embedded inside of a higher-dimensional vector space. The main intuition
behind MVU is to exploit the local linearity of manifolds and create a mapping that preserves
local neighbourhoods at every point of the underlying manifold.

It is implemented in R’s Rdimtools library and in Python as sklearn.manifold.Isomap.

# R

Rdimtools::do.isomap (X, ndim=2, type=c("proportion", 0.1),
symmetric = c("union", "intersect", “asymmetric”), weight = FALSE,
preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"))

# Python

sklearn.manifold.Isomap(*, n_neighbors=5, radius=None, n_components=2,
eigen_solver=’auto’, tol=0, max_iter=None, path_method=’auto’,
neighbors_algorithm=’auto’, n_jobs=None, metric=’minkowski’,

p=2, metric_params=None)

Local linear embedding (LLE) is a nonlinear learning approach for generating low-
dimensional neighbour-preserving representations from (unlabeled) high-dimension input. The
approach was proposed by Roweis and Saul (2000). The general idea of LLE is to reconstruct the
original high-dimensional data using lower-dimensional points while maintaining some geometric
properties of the neighbourhoods in the original data set.

LLE consists of two major steps. The first step is for “neighbour-preserving”, where each
input data point x; is reconstructed as a weighted sum of K nearest neighbour data points,
and the optimal weights are found by minimising the average squared reconstruction error (i.e.,
difference between an input point and its reconstruction) under the constraint that the weights
associated with each point sum up to one. The second step is for “dimension reduction”, by
looking for vectors in a lower-dimensional space that minimises the representation error using
the optimized weights in the first step. Note that in the first step, the weights are optimised
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with fixed data, which can be solved as a least squares problem. In the second step, lower-
dimensional points are optimised with fixed weights, which can be solved via sparse eigenvalue
decomposition.

The reconstruction weights obtained in the first step capture the “intrinsic geometric prop-
erties” of a neighbourhood in the input data. It is assumed that original data lie on a smooth
lower-dimensional manifold, and the “intrinsic geometric properties” captured by the weights
of the original data are also expected to be on the manifold. This is why the same weights are
used in the second step of LLE. Compared with PCA, LLE is more powerful in exploiting the
underlying data structure.

# R

Rdimtools::do.1lle (X, ndim=2, type = c("proportion", 0.1),
symmetric="union", weight = TRUE, regtype = FALSE, regparam = 1,
preprocess=c(”nu11”,“center”,”scale”,"cscale","decorrelate”,"whiten"))

# Python

sklearn.manifold.LocallyLinearEmbedding (*, n_neighbors=5,
n_components=2, reg=0.001, eigen_solver=’auto’, tol=1e-06,
max_iter=100, method=’standard’, hessian_t0l=0.0001,
modified_tol=1e-12, neighbors_algorithm=’auto’,
random_state=None, n_jobs=None)

When method=’standard’, it uses the standard locally linear embedding algorithm; When
method=’standard’, it uses the Hessian eigenmap method and it requires n neighbors >
n_components * (1 + (n_components + 1) / 2; Whenmethod="modified’, it uses the mod-
ified locally linear embedding algorithm; When method=’1tsa’, it uses local tangent space
alignment algorithm.

Laplacian eigenmaps uses spectral techniques to perform dimensionality reduction. This
technique relies on the basic assumption that the data lies in a low-dimensional manifold in
a high-dimensional space. This algorithm cannot embed out-of-sample points, but techniques
based on Reproducing kernel Hilbert space regularisation exist for adding this capability. Such
techniques can be applied to other nonlinear dimensionality reduction algorithms as well.

Traditional techniques like PCA do not consider the intrinsic geometry of the data. Lapla-
cian eigenmaps builds a graph from neighbourhood information of the data set. Each data
point serves as a node on the graph and connectivity between nodes is governed by the prox-
imity of neighbouring points (using e.g. the kNN algorithm). The graph thus generated can be
considered as a discrete approximation of the low-dimensional manifold in the high-dimensional
space. Minimisation of a cost function based on the graph ensures that points close to each
other on the manifold are mapped close to each other in the low-dimensional space, preserving
local distances. The eigenfunctions of the Laplace-Beltrami operator on the manifold serve as
the embedding dimensions, since under mild conditions this operator has a countable spectrum
that is a basis for square integrable functions on the manifold (compare to Fourier series on
the unit circle manifold). Attempts to place Laplacian eigenmaps on solid theoretical ground
have met with some success, as under certain nonrestrictive assumptions, the graph Laplacian
matrix has been shown to converge to the Laplace-Beltrami operator as the number of points
goes to infinity.

# R
Rdimtools::do.lapeig (X, ndim=2)

# Python
sklearn.manifold.SpectralEmbedding (n_components=2, *,
affinity=’nearest_neighbors’, gamma=None, random_state=None,

eigen_solver=None, eigen_tol=’auto’, n_neighbors=None, n_jobs=None)
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Despite it’s popularity, PCA has some obvious shortcomings, most notably is the assumption
that data lie on a linear subspace. If the data lie along a curled plane, e.g. a swiss roll embedded
in 3D Euclidean space, PCA wouldn’t be able to find the 2-dimensional representation even
though the data is obviously 2d.

Example 8.4.1 (3D swiss roll data). We generate the swiss roll data

Figure 1: A curled plane: the swiss roll.

and the try to see if dimensional reduction methods can unfold our data to 2D.

library(Rdimtools) # too many dependencies due to ’maotai’ & ’CVXR’
set.seed (2023)
X = aux.gensamples (500, dname="swiss" # 500 random 3D data

#library(rgl)
#plot3d (X)

y = cut(X[,2], c(-20,-5,8,15),label=c("*" ,"0","x"))

# dr = Dimension Reduction
dr.pca = do.pca(X)

dr.ica = do.ica(X)

dr.fa = do.fa(X)

dr.kpc = do.kpca(X)

dr.sam = do.sammon (X)
dr.mds = do.mds (X)

dr.ism = do.isomap (X)

dr.1lle = do.1lle(X)
dr.lem = do.lapeig(X)

pdf ("rdimtools_egl.pdf", width=12,height=4)

par (mfrow=c(1,3))

plot(X[,1]1, X[,2], main="Swiss Roll (X-Y)", pch=as.character(y), cex=1.6
plot (dr.pca$Y, main="PCA", pch=as.character(y), cex=1.6)

plot(dr.ica$Y, main="ICA", pch=as.character(y), cex=1.6)

pdf ("rdimtools_eg2.pdf", width=12,height=4)

par (mfrow=c(1,3))

plot(dr.fa$Y, main="FA", pch=as.character(y), cex=1.6)
plot (dr .kpc$Y, main="KPCA(Gaussian)", pch=as.character(y), cex=1.6)
plot(dr.sam$Y, main="Sammon Mapping", pch=as.character(y), cex=1.6)

pdf ("rdimtools_eg3.pdf", width=12,height=4)
par (mfrow=c(1,3))

plot(dr.ism$Y, main="Isomap", pch=as.character(y), cex=1.6)
plot(dr.1le$Y, main="LLE", pch=as.character(y), cex=1.6)
plot(dr.lem$Y, main="Laplacian Eigenmap", pch=as.character(y), cex=1.6)

However, none of the dimensional reduction methods work well.
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8.5 SNE and t-SNE

PCA is a linear algorithm and it cannot “project” the nonlinear relationship between features
to low dimensional space well. On the other hand, SNE (Stochastic Neighbour Embedding) and
t-SNE (t-Distributed SNE) use probability distributions with random walk on neighbourhood
graphs to identify and try to preserve the “nonlinear” structure of the data.

SNE converts the high-dimensional Euclidean distances between data points into conditional
probabilities that represent similarities, i.e.

M)

exp(—

PX =x;| X =x;) = — .
( ',L.Jl ',L.l) Zk# exp( [Jaz; — mkHﬁ) p.]|7,
1
where o; is the variance of the Gaussian that is centred on the data point ;.
Assume that the “projected” high-dimensional points x; and x; to a low-dimension “space”

is y; and y; respectively. The conditional probability of y; and y; is

exp(—|lyi — %)
>onzi exp(=llyi — yxll?)

P(Y = yj|Y =Y;) = = qjli- (8.9)

Note that, we define
P(Y =y|Y =y;) =0, forall
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since we only want to model pair-wise similarity.
To measure the minimisation of sum of difference of conditional probability, SNE minimises
the sum of Kullback-Leibler divergences (mentioned in Section 5.2.2) overall data points using

a gradient descent method:
Dil;
c=3"3pyln qj: (8.10)
i I

In other words, the SNE cost function (8.10) focuses on retaining the local structure of the
data in the map (for reasonable values of the variance of the Gaussian in the high-dimensional
space, 0;).

In contrast, t-SNE tries to minimise the sum of the difference in conditional probabilities
by using a symmetric version of the SNE cost function:

_ Pij . Pili TPyl Gl T )
C —Zzpij In qu, pij = m s q,;j = m (811)
i J

with simple gradients. Also, t-SNE employs a heavy-tailed distribution in the low-
dimensional space:

R T
S+ i — s

P(Y =y,|Y =) =: qjli (8.12)

to alleviate both the crowding problem (the area of the two-dimensional map that is available
to accommodate moderately distant data points will not be nearly large enough compared with
the area available to accommodate nearby data points) and the optimisation problems of SNE.

The gradient of the t-SNE cost function can be interpreted as a simulation of N-body system:

oC -
ox, :4Z(pij*q%'j)(1+ ;= i |*) 7" (@ — ;) (8.13)
i - o N e’
J# exertion / compression spring

To simplify this, Barnes-Hut approximation is introduced, i.e. approximate similar interactions
by a single interaction.
In R, t-SNE is implemented in Rtsne: :Rtsne (based on C++, much faster) and tsne: : tsne.

Rtsne (X, dims = 2, initial_dims = 50, perplexity = 30,
theta = 0.5, check_duplicates = TRUE, pca = TRUE, partial_pca = FALSE,
max_iter = 1000, verbose = getOption("verbose", FALSE),
is_distance = FALSE, Y_init = NULL, pca_center = TRUE,
pca_scale = FALSE, normalize = TRUE,
stop_lying_iter = ifelse(is.null(Y_init), 250L, OL),
mom_switch_iter = ifelse(is.null(Y_init), 250L, OL),
momentum = 0.5, final_momentum = 0.8, eta = 200,
exaggeration_factor = 12, num_threads = 1, ...)

In Python, t-SNE is implemented in scikit-learn. sklearn.manifold.TSNE.

sklearn.manifold.TSNE(n_components=2, *, perplexity=30.0,
early_exaggeration=12.0, learning rate=’auto’, n_iter=1000,
n_iter_without_progress=300, min_grad_norm=1e-07,
metric=’euclidean’, metric_params=None, init=’pca’, verbose=0,
random_state=None, method=’barnes_hut’, angle=0.5, n_jobs=None)

Example 8.5.1. An R script to compare PCA and t-SNE on the MNIST data is listed below.
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# https://www.analyticsvidhya.com/blog/2017/01/t-sne-implementation-r-python/
library(Rtsne) # Uses Barnes-Hut-TSNE algorithm instead of the slower t-SNE
train = read.csv("mnist_train.csv")

X = trainl[, -1]

train$label = as.factor(train$label)

colours = rainbow(length(unique(train$label)))

names (colours) = unique(train$label)

# https://www.youtube.com/watch?v=xPBO-MMxIoQ[R Tutorial: PCA and t-SNE]

pca = prcomp(train[,-1], rank=2) # project data to first two PCs only

plot(pca$x[,1:2], pch=as.character(train$label),
col=colours[train$label], main="Biplot")

# Takes a long time to calculate: dim(X) = 10000 x 784

tsne = Rtsne (X, dims=2, perplexity=30, verbose=TRUE, max_iter=500)

time.taken = system.time(Rtsne(X, dims=2, perplexity=30,
verbose=TRUE, max_iter=500))

plot(tsne$Y, t=’n’, main="tsne")

text (tsne$Y, labels=train$label, col=colours[train$labell)

Biplot tsne
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