Topic 2: k-Nearest Neighbours (kINN)

2.1 Dissimilarity/Distance Measure oot v 44
2.1.1 Manhattan Distance o L o 45
2.1.2 Cosine Similarity 45
2.1.3 Other Dissimilarities L oo 46
2.1.4 Application in Recommender System 48

2.2 Bayes Optimal Classifier Theory 49

2.3 Algorithms of kNN Classifier 50

2.4 Algorithms of KNN Regressor 53

2.5 Classifier Boundary 0 i i i i i e e e e e e e e 55

2.6 Feature Scaling L e e e e e 57

2.7 Weighted kNN Models, 58

2.8 Optimal: Data Partitioning Algorithms 59

2.9 More Performance Evaluation — k-fold cross validation (CV) ... 60

The k-nearest neighbours (kNN) algorithm is a non-parametric method used for classifi-
cation and regression (https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm).
When k = 1, it is called the nearest neighbour (NN) algorithm. The strengths of kNN are
simple, effective, makes no assumptions about the underlying data distribution and has a fast
training phase; The weaknesses of kNN are having slow classification phase and the inability
to provide mathematical reasoning on how the features are related to the class [Lantz, 2015,
Chapter 3].

The kNN algorithm will not work for data which are uniformly distributed in very high
dimensional feature space, i.e. when p > 1. This is because the points in p dimensional spaces
will be distributed “close” to the boundary and approximately equal distance from each other
due to the volume (1 — 2¢)¢ < 1 (curse of dimensionality). So kNN only works for data of
“Intrinsicly” low dimension.

The assumption of KNN is “similar inputs have similar outputs”. Based on this assumption,
a test input « should be assigned the most common label amongst its k£ most similar training
inputs.

Application: Use in classical recommender system such as online bookshop, online movie
recommendation, etc.

Given a positive integer k (must be smaller than the number of data, n) and an input «,
the kNN algorithm first identifies the k points in the training data (x;, y;) that are “similar”
to @ , represented by N(x).

Definition 2.0.1. N(x) C D satisfies |[N(z)| = k and V(x',3) € D\ N(z),

dxz,z') > max d(z,z"),
(=" y")EN ()

(i.e. every point in D but not in N(x) is at least as far away from x as the furthest point
in N(x)).

We can then define

43

44 TOPIC 2. k-NEAREST NEIGHBOURS (KNN)

e kNN classifier:

Y = h(x) = mode({y" : (x",9") € N(z)}), (2.1)
PY =jIX=2) =7 3 Ini=j) (22)
x;eN(x)

where mode(-) means to select the label of the highest occurrence.

e kNN regressor:

ho)=—= > . (2.3)

(" y")EN ()

In case of a draw, a good solution is to return the result of k-NN with smaller k.

2.1 Dissimilarity /Distance Measure

The kNN algorithm, clustering algorithms, recommender systems fundamentally relies on the
dissimilarity metric — a function which takes two “vectors” and returns a non-negative num-
ber defined below.

Definition 2.1.1. A dissimilarity function d(x;, x;) is a function which satisfies the follow-
ing conditions: For any x;, x;, o,

(1) d(xi,x;) > 0 and d(x;, x;) = 0 iff ; = x; (nonnegativity);
(ii) d(zx;, x;) = d(xj, x;) (symmetry); and
When the dissimilarity function satisfies
(ili) d(x;, x;) < d(xi, @) + d(xg, ;) (triangle inequality).
it is called a distance/metric function.

For a kNN classifier, the better that metric reflects label similarity, the better the classifi-
cation will be.
The most common choice is the Minkowski distance:

1
4 T
dz,z) = |z —z|, = (Z |lz; — zi|T) . x, z€RP (2.4)
i=1

Note that || - ||" is called the ¢" norm.
When r = 1, we have the Manhattan distance:
lz — z|li = [x1 — 21| + @2 — 22| + -+ + [3p — 2. (2.5)

When r = 2, we have the Fuclidean distance:

[= 2lla = /(21— 21)2 + (22 — 22)2 4+ + (1 — 2,)2 (2.6)
When r = oo, we have the Chebyshev distance:
& — #llo = max{las — 2, a2 — 22l -+ |y — 2]} (2.7)

Note that the Euclidean distance is more sensitive to outliers than the Manhattan distance.
When outliers are rare, the Euclidean distance performs very well and is generally preferred.
When the outliers are significant, the Manhattan distance is more stable.

The three most common metrics in user-based recommender system are

2.1. DISSIMILARITY/DISTANCE MEASURE 45

e Pearson correlation coefficient (PC):
Z (x5 —¢)(z5 — ¢j)
Vi =) zjozj -7)’

PC : RP xRV — [-1,1], (x,2)—

where the vector € = (€1, ...,¢p) is a constant vector (usually the mean vector of a set of
data).

e Cosine measure or cosine similarity:
Z 257 . (=2)

\/ \/z 2 Mzl izl

e Mean square difference (similar to MSE except that it compares common rating items
only):

COS : [0,00)P x [0,00)P = [0,1], (x,2)—

> icRanr. (T — 7))
R N R,

MSD : RP xRP — [0,00|, (x,z)—

2.1.1 Manhattan Distance

The Manhattan distance (2.5) is measured along axes at right angles and in R programming,
we need to specify its usage by the expression dist(x,method=’manhattan’). In Python,
it is implemented as cityblock in scipy.spatial.distance and manhattan_distances in
sklearn.metrics.pairwise.

Example 2.1.2 (Final Exam Jan 2019, Q1(a)). State and explain any two types of distance
measures. (4 marks)

Solution: Consider two n-dimensional points be @ = (z1,- -+ ,Zp), ¥y = (Y1, , Yn)-
Euclidean distance: \/(z1 — y1)% + - + (5 — yn)?
Manhattan distance: |zy — y1| + |22 — y2| + -+ + |20 — Yy

2.1.2 Cosine Similarity

The cosine similarity is generally used as a metric for measuring distance when the magnitude
of the vectors does not matter.
The cosine distance is a complement of cosine similarity and it is the angular distance
between two points, i.e.
cos-dist(x,y) = 1 — COS(z, y).

It is not implemented in R by default. It is implemented in additional R packages such as
proxy: :dist(x, method="cosine"), text2vec: :sim2(x,method="cosine"), lsa::cosine(),
clv::dot _product(), rules:: dissimilarity(). scipy.spatial.distance.cosine and sklearn.
metrics.pairwise.cosine_distances are the implementations in Python.

Cosine distance is a dissimilarity function but not a distance function. Consider A =
(1,0), B = (‘/_ ‘/_> C = (0,1). Note that vectors A and C are orthogonal, so we would get
simply 0:

0
COS(A,C) = ——==0.
(4,C) Vi

Each pair of vectors A and B as well as B and C would give the same value:

V240 2 0+% v

COS(4, B) = 2—= = 3=, COS(B,C) =

VIV 2

46 TOPIC 2. k-NEAREST NEIGHBOURS (KNN)

Since the cosine distance does not satisfy the triangle inequality and it is therefore not a distance
function:
2 2
cos-dist(A,C') =1 — 0 £ cos-dist(A, B) + cos-dist(B,C) = (1 — g) +(1- g) =2 -2

Despite the cosine distance is not a distance function, it is used in the construction of
distance matrix for text data represented by word counts. We could assume that when a word
(e.g. science) occurs more frequent in document A than document B, then document A is more
related to the topic of science (shorter distance). However, it could also be the case that we are
working with documents of uneven lengths. Then, the word ‘science’ probably occurred more
in document A just because it was way longer than document B. Cosine similarity corrects for
this.

Example 2.1.3. Consider two ‘naive word counts’ for Calculus 1 and Calculus 2 texts with six
‘popular common words’:

. = + | the f b'e
Calculus 1 | 3626 | 1446 | 915 | 798 | 552 | 556
Calculus 2 | 926 476 | 317 | 356 | 283 | 146

Calculate the cosine dissimilarity.

Solution:

B 4857507
V17326661/1412682

cos-dist(Calculus 1, Calculus 2) =1 =1-0.981824 = 0.018176

So calculus 1 and calculus 2 text are ‘similar’ based on the 6 words. However, if we include
the technical words and remove common words, it may not be the case. Therefore, for text
comparison, choosing the right ‘dictionary’ (i.e. the ‘headers’ of the table) is essential.

2.1.3 Other Dissimilarities
Mahalanobis distance (knnGarden:: knnMCN):
Mahalanobis(z,y) = (x — y) ' (x — y)T

where x and y are row vectors and X is the covariance of the data.
The Mahalanobis distance is useful when attributes are correlated, but having different
ranges of values and the distribution of the data is approximately Gaussian/normal.
Similarity Measures for Binary Data: Let o and y be two objects with binary attributes
and p be the number of attributes.

number of matching attribute values

1. Simple Matching Coefficients: SMC'(x,y) =
p

2. Jaccard index / similarity coefficient / Kumar hassebrook distance:

number of matching attribute values

J(.’E,’y) =

number of attribute not involved in 00 matches
3. Jaccard distance: dj(x,y) =1— J(z,y)
Example 2.1.4. Let 2 =(1,0,1,1,0,0,0,0,0,0), y = (0,0,1,1,0,0,1,0,0,1).

7 matches

2 ‘11’ pair

- =1-04=06
5 not ‘00" pair

dj(z,y) =1

2.1. DISSIMILARITY/DISTANCE MEASURE 47

Tanimoto / Soergel score: It is used for data that can take on continuous values. It
and Jaccard score are used in Chemoinformatics, plagiarism detection, thesauras extration,
market-basket transactional data, anomalies detection in spatio-temporal data:

> (max{z;, y;} — min{z;, y;})
> max{z;, yi} '

For binary data, Tanimoto score is the same as Jaccard distance.
Gower distance: It can be used to process mixed numeric and categorical data:

Tanimoto(x, y) =

e The “sub” Gower distance from a number x to the ith row of a numeric column ;,
1=1,..,nis
|z — wil
max{y;} — min{y;}

e The “sub” Gower distance from a factor x to the ith row of a categorical column ;,
t=1,...,nis 0 if the same, else 1:

as.integer(x != y;).

e The Gower distance is the average of all “sub” Gower distance for each column.

Example 2.1.5. Consider the fraud data used in the Practical class.

n | gender | age | status | employment | acclink | supplement | base
1 1 32 2 3 0 1 729.3
2 1 o7 1 3 0 0 384.1
3 1 21 3 1 0 0 683.8
4 1 27 1 3 0 0 143.0

Solution: The Gower distance between row 1 to rows 2 to 4 can be calculated in R as
follows:

1 library(gower)
gower _dist (fraud[1,1:7], fraud[2:4,1:7])
3 # => 0.4690316 0.4833087 0.4484127

\)

The calculations are shown below:

e Gower distance(row 1, row 2):

32-57 729.3—384.
(D) + 0+ 4D+ B£3)+(0£0) +(1#£0)+ T2l
- = 0.4690316
e Gower distance(row 1, row 3):
(L#£ 1)+ B2220 4 (22£3) 4 (3£ 1) + (0 £ 0) + (1 £ 0) 4 I23-6884
- = 0.4833087
e Gower distance(row 1, row 4):
1£1) 4 3222710 0 21y | (3£3) 4 (0 0) 4+ (1 0) 4 [1223-1430]
(7&) 57-21 (7&) (7&) (7é) (7&) 729.3—-143.0 _ 0.4484127

7

48 TOPIC 2. k-NEAREST NEIGHBOURS (KNN)

2.1.4 Application in Recommender System

A simple movie database with just 30 entries, seven genres and their IMDB ratings can be found
on the Internet (e.g. https://github.com/Lozadaa/movie-recommender). The label column
values are all zeroes because this dataset is not used for classification (Section 2.3) or regression
(Section 2.4).

There are items (e.g. actors, directors, and themes) among the movies that are not accounted
because they are missing from the dataset. So, a simple implementation of the ‘k-nearest
neighbour’ (kNN) algorithm will solely be based on the similiarity on the movies’ genres and
the IMDB ratings.

Consider a case study: You are building your own movie recommendation website which
uses your kNN (with the Euclidean distance) Recommendation Engine at the back-end. You
are going to build this back-end Recommendation Engine. Imagine a user is navigating your
recommendation website, and he/she encounters a movie named ‘The Post’. The user is not sure
if he/she wants to watch it, but its genres intrigue the user; he/she is curious about other similar
movies. The user scrolls down to the “More Like This” section to see what recommendations
your recommendation website will make, and the back-end algorithmic gears begin to turn.

Your website sends a request to the back-end for the 5 movies that are most similar to ‘The
Post’ with the following information (usually in JSON format these days):

IMDB Rating = 7.2, Biography = Yes, Drama = Yes, Thriller = No, Comedy =
No, Crime = No, Mystery = No, History = Yes

The back-end has a recommendation data set exactly like ours. It begins by creating the row
representation (better known as a feature vector) for ‘The Post’, then it runs a program similar
to the one below to search for the 5 movies that are most similar to ‘The Post’, and finally
sends the results back to the user at your website.

An implementation in Python is given at https://github.com/jisilvia/kNN_Recommender_
System/blob/main/kNN_Recommender_System.ipynb

Similar implementation in R is listed below.

duplicate entries in movies$Movie.ID, row.names=1 is not allowed.

movies = read.csv(’movies_recommendation_data.csv’)
1 = Movie.ID, 2 = Movie.Name, 11 = Label
X = as.matrix(movies[,-c(1,2,11)])

the_post = data.frame (IMDB.Rating=7.2, Biography=1, Drama=1,
Thriller=0, Comedy=0, Crime=0, Mystery=0, History=1)

Find similarities of the movie ‘the_post’ to ‘movies’ database
euclid.dist = function(x){sqrt(sum(x**2))}

You need to practise with Practicals 1 and 2 to understand this:
dst = apply(t(t(X) - unlist(the_post)), 1, euclid.dist)

print (cbind (movies [order(dst), 2:10], dist=dst[order(dst)])[1:5,])

After calculating the Euclidean distances to the movie ‘The Post’:

Movie.Name | Rating | Biography | Drama | Thriller | Comedy | Crime | Mystery | History
The Post 7.2 1 1 0 0 0 0 1

we obtain the 5 most similar movies below by ranking:

Movie.Name Rating | Biography | Drama | Thriller | Comedy | Crime | Mystery | History dist

12 Years a Slave 8.1 1 1 0 0 0 0 1 0.900000
Hacksaw Ridge 8.2 1 1 0 0 0 0 1 1.000000
Queen of Katwe 7.4 1 1 0 0 0 0 0 1.019804
The Wind Rises 7.8 1 1 0 0 0 0 0 1.166190
A Beautiful Mind 8.2 1 1 0 0 0 0 0 1.414214

2.2. BAYES OPTIMAL CLASSIFIER THEORY 49

2.2 Bayes Optimal Classifier Theory

The best classifier that minimises the misclassification rate or the Bayes error rate /| Bayes
risk [Devroye et al., 1996, Chapter 3],

L(f) =P({w:Y # f(X)})
is called the Bayes (optimal) classifier [Mitchell, 1997, Chapter 6]:

hopt(x) = argmax P(Y =y | X = x). (2.8)
ye{1,2,....K}

The error rate of hop(x) is
€BayesOpt — 11— P(yﬂﬂ'))
It is the theoretical lower bound of the error rate for any classifier.

Example 2.2.1. Assume an email @ can either be classified as spam (41) or ham (—1).
For the same email x the conditional class probabilities are:

P(+1|z) = 0.8, P(—1|z)=0.2.

In this case the Bayes optimal classifier would predict the label y* = +1 as it is most likely,
and its error rate would be epgyesopt = 0.2.

The upper bound on the error is given by the constant classifier.

In practise, the distribution of the random variables X is unknown and so the classifier
has to be determined from the observations {(x;,y;)} by minimising the expected 0-1 loss:

L(f)=E [% > (i # yi)] : (2.9)

i=1

The kNN Classifier’s ‘ability to predict’ is characterised by the following theory.

Theorem 2.2.2. Asn — oo, the 1-NN error is no more than twice the error of the Bayes
Optimal classifier:

€BayesOpt <enn < 26BayesO]:vt

Similar guarantees hold for k > 1.

According to Thomas Cover and Peter Hart, “Nearest neighbor pattern classification”,
IEEE Transactions on Information Theory, 1967, 13(1):21-27, a Proof goes like:

Let n be the nearest neighbour of our test point ;. As n — oo, d(zyn,x:) — 0,
i.e. xyny — x¢. This means the nearest neighbour is identical to x;. You return the label
of xy. What is the probability that this is not the label of x:7 It is the probability of
drawing two different label of x:

ex = P(y°[xe)(1 — P(y*[xnn)) + P(y*) (1 — P(y*xe)
< (1= P(y" Pevn)) + (1= P(y*[xe)) = 2(1 — P(y7[x0)) = 2eBayespr

where the inequality follows from P(y*|x;) < 1 and P(y*|xyn) < 1. We also used that
P(y*|x) = P(y*[xnn)-

WO G W~

50 TOPIC 2. k-NEAREST NEIGHBOURS (KNN)

2.3 Algorithms of kNN Classifier

A pure Python implementation of kNN is given in Grus [2015, Chapter 12]. If numpy library
is used, a simple implementation (involving brute force search) can be stated below.

https://github.com/joelgrus/data-science-from-scratch
from scipy.spatial.distance import euclidean

import logging

logging.basicConfig(level=logging.DEBUG)

def knn_classify(k: int, X, y, x_new, distance=euclidean) -> str:
import numpy as np, collections

dist_list = [distance(x, x_new) for x in X]
logging.debug(’distances={}’.format ([round(d,4) for d in dist_1list]))
order = np.argsort(dist_list)

k_nearest_labels = y[order[:k]]
logging.debug(’knn={}’.format(k_nearest_labels))
vote_counts = collections.Counter (k_nearest_labels)
winner, winner_count = vote_counts.most_common (1) [0]
return winner, winner_count/k

if __name__==’__main__":
from sklearn import datasets
iris_df = datasets.load_iris ()

X = iris_df[’data’]; y = iris_df[’target’]
knn_classify(1,X,y,[6,3,5,2]); knn_classify(1,X,y,[5,3,1,0])

Python’s sklearn.neighbors.KNeighborsClassifier implements a more sophisticated algo-
rithm involving KD tree and ball tree.

In R, the knn classifier is available in the class library which only supports Euclidean
distance and has the following form.

knn (train, test, cl, k = 1, 1 = 0, prob = FALSE, use.all = TRUE)

Here,

e train: matrix or data frame of training set cases.
e test: matrix or data frame of test set cases.

e c1: factor of true classifications of training set

e k: number of neighbours considered.

Let us practise the algorithm with an example. More examples are found in the tutorial.

Example 2.3.1. A sport school would like to group their new enrolled students into 2 groups,
as according to the existing students’ weight and height. The weight and height of 7 existing
students with group are shown in the table below.

Student | Weight (kg) | Height (cm) | Group
A 29 118 A
B 53 137 B
C 38 127 B
D 49 135 B
E 28 111 A
F 24 111 A
G 30 121 A

(a) Perform and use k& = 3-NN method (with Euclidean distance) to predict which group the
following students will be grouped into, based on a cut-off of 0.7 and a default cut-off
on group A.

2.3. ALGORITHMS OF KNN CLASSIFIER

51

Student | Weight (kg) | Height (cm)
H 35 120
I 47 131
J 22 115
K 38 119
L 31 136

Solution: First, we construct a distance table from the testing data to the training
data and take note that k = 3:

The rest is similar.

H I J K L

Student Group | Distance | Distance | Distance | Distance | Distance

A A 6.3246 22.2036 7.6158 9.0554 18.1108

B B 24.7588 8.4853 38.0132 | 23.4307 | 22.0227

C B 7.6158 9.8489 20.0000 8.0000 11.4018

D B 20.5183 4.4721 33.6006 | 19.4165 | 18.0278

E A 11.4018 | 27.5862 7.2111 12.8062 | 25.1794

F A 14.2127 | 30.4795 4.4721 16.1245 | 25.9615

G A 5.0990 19.7231 | 10.0000 8.2462 15.0333

P(Y =A) 0.6667 0.0000 1.0000 0.6667 0.3333
Cut-off = 0.5 U A B A A B
Cut-off = 0.7 U B B A B B

How do we get d(A, H) = 6.32467 The calculation is as follows:

d(A, H) = /(29 — (35))2 + (118 — (120))2 = V40 = 0.5673

(b) The actual groups of the students are {A, B, A, B, B} for students {H, I, J, K, L}
respectively. Construct a confusion matrix and calculate the accuracy measurements for
a cut-off of 0.5 and a cut-off of 0.7.
(Answer: For a cut-off 0.5: ACC=0.8, TPR=1, TNR=0.6767, PPV=0.6667, NPV=1; For
a cut-off 0.7: ACC=0.8, TPR=0.5, TNR=1, PPV=1, NPV=0.75)

52 TOPIC 2. k-NEAREST NEIGHBOURS (KNN)

(¢) Write a Python script to produce the above calculations using the simple implementation
by lecturer in Section 2.3 and also use sklearn’s implementation.

Solution:
1 import pandas as pd
2 d_train = pd.DataFrame ({
3 ’weight’: [29,53,38,49,28,24,30],
4 ‘height ’: [118,137,127,135,111,111,121],
5 >group’ : [’A°,’B’,’B’,’B’,’A’ ,’A’ ’A’]
6 }, index = 1list (’ABCDEFG’))
7 d_test = pd.DataFrame ({
8 ‘weight’: [35, 47, 22, 38, 31],
9 ’height’: [120, 131, 115, 119, 136]
10 ¥}, index = 1list(’HIJKL’))
11

120 from knn_naive import =

13 X = d_train[[’weight’,’height’]].values

14 y d_train[’group’]

15 X_test = d_test[[’weight’,’height’]].values
16 for new_x in X_test:

17 print (knn_classify(3,X,y,new_x))

19 from sklearn.neighbors import KNeighborsClassifier
20 model = KNeighborsClassifier(n_neighbors=3, p=2)
2] model.fit(X,y)

22 print(model.predict(X_test)) # cut-off = 0.5

23 print(model.predict_proba(X_test))

(d) Write an R script to produce the above calculations.

Solution:
1 X_y.train = data.frame(row.names = LETTERS[1:7],
2 weight = c(29,53,38,49,28,24,30),
3 height = c(118,137,127,135,111,111,121),
4 group :C(JA),JB},JB),)BJ’)AJ’JA)’7A)))
5 X.test = data.frame(row.names = LETTERS([8:12],
6 weight = c(35, 47, 22, 38, 31),
T height = c (120, 131, 115, 119, 136))
8
9 dist.table = data.frame (row.names = LETTERS[1:7])

10 norm2 = function(x){return(sqrt(sum(x~2)))}
11 X = X_y.train[,1:2]
12 print(X)

2.4. ALGORITHMS OF KNN REGRESSOR

13 for(i in 1:nrow(X.test)) {

14 dist.table[,i] = apply(t(X)-t(X.test)[,i],2,norm2)
15 }

166 names(dist.table) = row.names (X.test)

17 print(round(dist.table,4))

18

19 1library(class) # for knn

20 M = ncol(X_y.train)

2] X.test$group = knn(train=X_y.train[,-M], test=X.test,

22 cl =X_y.train[, M], k=3, prob=TRUE)
23 X.test$prob = attr(X.test$group,"prob")

24 X.test$prob
25 cut.off = 0.7

26 X.test$group = ifelse(X.test$prob>cut.off, "A", "B")
27 print(cbind(round(X.test[,1:2],4),prob.A=round(X.test[,4],4),
28 predicted=X.test$group, actual=c(’A’,’B’,’A’,’B’,

53

ifelse(X.test$group=="A", X.test$prob, 1-X.test$pro

)B)))

2.4 Algorithms of kNN Regressor

The algorithms for the kNN regressor are similar to the kNN classifier except that the “mean”

is used to estimate the output as in (2.3) [Altman, 1992].

In Python, sklearn.neighbors.KNeighborsRegressor implements the kNN regressor with
Minkowski distance; In R, FNN’s knn.reg provides an implementation with the Euclidean dis-

tance.

Example 2.4.1 (Exam SRM Study Manual, p225, Q15.10). A continuous variable Y is mod-

elled as a function of X using kNN with k& = 3. With the following data:

\X58152230
Y |4]1]10]16 | 30

Calculate the fitted value of Y at X = 12. Try write a script using R (or Python) to perform

the calculation for you.
(Answer: Y = 5)

54

Example 2.4.2 (Final Exam May 2024 Sem, Q5(a)). Given the training data with two numeric
features “age”, “experience” and the response “income” in Table 5.1.

Table 5.1: Training data of the income data.

TOPIC 2. k-NEAREST NEIGHBOURS (KNN)

Obs. | age | experience | income
A 44 9 44190
B 43 10 47830
C 25 1 30450
D 30 3 35670
E 51 7 41630
F 28 5 41340
G 37 10 48700
H 54 5 36720

(i) Use the supervised learning model kNN (k=3) with the Euclidean distance to predict the
income for a 47 years old person with 2 years experience and a 41 years old person with
(10 marks)

6 years experience.

(Answer: YkNN (P1)=40846.67, YkNN(P2)=46906.67)

(ii) Use the cosine distance formula cos-dist(x, 2)

dist(age, experience) for the data in Table 5.1.

(Answer: 0.076417)

1 —

to calculate cos-

2.5. CLASSIFIER BOUNDARY 95

2.5 Classifier Boundary

Classifier boundary = Points & in the domain which do not belong to any output class
because P(Y|X = x) is not clearly defined.

Example 2.5.1. Analyse the ‘lame’ dataset from https://cs. joensuu.fi/sipu/datasets/
flame.txt using the kNN classifier with £k =1, £ = 3, & = 20, £ = 60, £ = 100.

Solution: The boundaries of 1-NN (Figure 2.1a) and 3-NN (Figure 2.1b) are rather “nonlin-
ear” and “rough”. As k is increased to 100, the boundary becomes “smoother” and usually
“straighter”: when & = 20, the boundary seems to be “smoother” in Figure 2.1c while the
boundary becomes “straighter” changing when k is increased to k = 60 (Figure 2.1d) to k = 100
(Figure 2.1e).

KNN(k=1)

KNN(k=3)

KNN(k=20)

o

°
o

o

(a) 1-NN boundary

KNN(k=60)

(b) 3-NN boundary

KNN(k=100)

(¢) 20-NN boundary

ol
b

18
|
S
LS
WP o
>

S
>
5
DD > e
> peb o

b P >
P>

Po
S
>

3

BB
nb B
3

14
I
14

(d) 60-NN boundary (e) 100-NN boundary

Example 2.5.2 (Symmetric Data Can Lead to Bias due to Class Order). Consider the data

T o | Y
0.0000 3.8284 | +
0.3536 2.7678 | +

—2.8284 1.0000 | +
—1.7678 0.6464 | +
2.8284 1.0000 | o
1.7678 1.3536 | o
0.0000 [—1.8284 | o
—0.3536 | —0.7678 | o

Analyse the decision boundary for £k =1 to k = 8.

56

TOPIC 2. k-NEAREST NEIGHBOURS (KNN)

x2

X2

KNN(k=1)
A ¥
“ +
~
& o
- " D <]
o
_ o
o o
I T 1T T 1T
-3 -1 0 1 2 3

x2

x2

KNN(k=2)

X2

X2

1 2 3 4

0

1 2 3 4

0

kNN(k=3)

X2

X2

1.2 3 4

0

1 2 3 4

0

Solution: By definition, the decision should be a straight line for all £ but when k& is even,
we will have a draw and in R’s implementation, the class order first will be chosen, leading
to non-diagonal line as shown below:

kNN(k=4)
+
7 +
-+ . g oo
E
1 T 1
-3 -1 0 1 2 3
x1
kNN(k=8)
T
7 +
o
-+ + o
H o
o
T T 1
-3 -1 0 1 2 3

Example 2.5.3 (Three-class Output). The iris data has 4 variables, but if we pick just two
variables, we can “visualise” the decision boundary using ‘point labels’ or ‘colours’ rather than
the contour plot as in the binary classifications in the earlier examples.

Petal. Width

We are fortunate that the three classes of iris flowers are ‘distinguishable’. Otherwise, the

Petal.Length

boundary will be mixed and very difficult to identify.

Conclusion: the choice of k depends upon the data. In general, larger values of k reduces
effect of the noise on the classification, but make boundaries between classes less distinet. A
good k can be selected by various heuristic techniques (e.g. based of prediction accuracy).
When k = 1, the decision boundary is over “flexible”. This corresponds to a classifier that
has low bias but very high variance. As k grows, the classifier becomes less flexible and
produces a decision boundary that is closed to linear. This corresponds to a low-variance

but high bias classifier.

2.6. FEATURE SCALING 57

2.6 Feature Scaling

e Features with large variations may shadow features with small variations in Kuclidean
distance measures.

e Scaling such as min-max scaling and standardisation (using R’s scale) can help
putting all features to the same ground.

Example 2.6.1 (Standardisation). For the training data and testing data from Example 2.3.1,
apply the standardisation and then perform k& = 3-NN (with Euclidean distance) to predict
which group the following students will be grouped into, based on a cut-off of 0.5 and a
cut-off of 0.7 on group A.

Solution:
Student | Weight (kg) | Height | Std_Wgt | Std_Hgt | Group
A 29 118 -0.6113 -0.4587 A
B 53 137 1.5284 1.3355 B
C 38 127 0.1910 0.3912 B
D 49 135 1.1717 1.1467 B
E 28 111 -0.7005 -1.1197 A
F 24 111 -1.0571 -1.1197 A
G 30 121 -0.5222 -0.1754 A
Mean 35.8571 122.8571
Std. dev 11.2165 10.5898

Important Note: The training data MUST used the standardisation used
in the training data because the kNN classifier is TRAINED with the training
data.

47 — 35.8571 131 — 122.8571
TR 05808 708
Student | Weight (kg) | Height (cm) | Std_Wgt | Std_Wgt

H 35 120 -0.0764 -0.2698
I 47 131 0.9934 0.7689
J 22 115 -1.2354 -0.7420
K 38 119 0.1910 -0.3642
L 31 136 -0.4330 1.2411

By performing Euclidean distance calculation, we obtain d(A, H) =
\/(—0.0764 — (—0.6113))2 + (—0.2698 — (—0.4587))2 = /0.3218 = 0.5673, etc. leading
to the table below.

H I J K L
Group | Distance | Distance | Distance | Distance | Distance

A A 0.5673 2.0205 0.6854 0.8079 1.7091

B B 2.2699 0.7792 3.4575 2.1628 1.9637

C B 0.7131 0.8869 1.8218 0.7554 1.0544

D B 1.8879 0.4177 3.0596 1.8013 1.6076

E A 1.0544 2.5370 0.6548 1.1686 2.3759

F A 1.2977 2.7878 0.4177 1.4590 2.4419

G A 0.4557 1.7857 0.9109 0.7378 1.4193

P(Y = A) 0.6667 0.0000 1.0000 0.6667 0.3333
Cut-off = 0.5 i A B A A B
Cut-off = 0.7 i B B A B B

58 TOPIC 2. k-NEAREST NEIGHBOURS (KNN)

2.7 Weighted kNN Models

Some academicians propose an extension to kNN by considering the following scenario:

?
—9 oo >
A B B A

Here, a new point marked with ‘?” has 4 similar/closest points. Suppose the kNN with
k = 4 is used. The conditional probability

P(Y =AX =?)=P(Y =B|X =7) =05

is obtained. If we use dictionary ordering, A is before B, so kKNN(k = 4) will give Y = A.
This may not be reasonable since B is closer to ‘7.

Weighted kNN (wkNN, available in R in kknn library) introduces weights (called
kernel) to solve this problem [Hechenbichler and Schliep, 2004].

1. Let N(x,k+1) be the k+ 1 nearest neighbours to @ according to a distance function
d(x, x;).

2. The (k + 1)th neighbour is used for “standardisation” of the k smallest distances via

d(wa mi)

D, = N&T)
d(ma xk‘-l—l)

3. A weighted majority of the k nearest neighbour

k
= max {Z K(D)I(y; = j)} .
=1

In order for the ‘weight’ to make sense, we need it to satisfy some requirements. The
‘weight’ K is called a kernel (function) if it satisfies

(1) K(z) > 0 for all z € R;
(2) K(z) is maximum when z = 0;
(3) K(x) descents monotonously when x — +oo.

Available kernels in R’s kknn or Python’s sklearn:

e rectangular/uniform: K(z) = £1(|z| < 1);
e inv/distance: K(z)=1/|x|
e triangular: K(z) = (1 — |z|)- I(|z] < 1).

2(d+4)>d/(d+4)

e optimal: The number of neighbours used for this kernel should be (e

ke [1.2,2],
where k is used
e Others: cos, gaussian, rank, epanechnikov (or beta(2,2)), biweight (or beta(3,3)), triweight

(or beta(4.4)).

The wkNN is implemented in Python’s KNeighborsClassifier and KNeighborsRegressor and
R’s kknn'’s kknn. By default, Python’s kNN algorithms sets the “weights” parameter to “uniform”,
which is the same as the usual kNN.

However, R’s kknn sets the “kernel” to “optimal” by default, which leads to a different calculation
from the usual kKNN. To set it to be the usual kNN, the “kernel” needs to be set to “rectangular”.
For each row of the test set, the k nearest training set vectors (according to Minkowski distance)
are found, and the classification is done via the maximum of summed kernel densities. In addition,
even ordinal and continuous variables can be predicted.

2.8. OPTIMAL: DATA PARTITIONING ALGORITHMS 99

2.8 Optimal: Data Partitioning Algorithms

To make kNN faster during prediction, Python sklearn’s kNNs implement more sophisti-
cated methods to “find” the nearest neighbours.

brute-force method. It finds all distances and sort in order.

kd_tree method. It partitions the feature space by (a) dividing the data into two halves,
e.g. left and right, along one feature. (b) For each training input, remember the half it lies in.

How can this partitioning speed up prediction? Let’s think about it for the one neighbour
case.

1. Identify which side the test point lies in, e.g. the right side.

2. Find the nearest neighbour ajﬁN of x; in the same side. The R denotes that our nearest
neighbour is also on the right side.

3. Compute the distance between z, and the dividing "wall”. Denote this as d,,. If d,, >
d(xy, fy) you are done, and we get a 2x speedup.

In other words: if the distance to the partition is larger than the distance to our closest neigh-
bour, we know that none of the data points inside that partition can be closer. We can avoid
computing the distance to any of the points in that entire partition. We can prove this formally
with the triangular inequality.

Let d(x¢, x) denote the distance between our test point x; and a candidate x. We know that
x lies on the other side of the wall, so this distance is dissected into two parts d(x¢, x) = dy + do,
where d; is the part of the distance on zs side of the wall and ds is the part of the distance
on z's side of the wall. Also let d,, denote the shortest distance from x; to the wall. We know
that d; > d,, and therefore it follows that

d(ze,x) =dy +do > dy + dy > dy,.

This implies that if d,, is already larger than the distance to the current best candidate point
for the nearest neighbor, we can safely discard x as a candidate.

The tree construction involves two steps: (a) Split data recursively in half on exactly one
feature. (b) Rotate through features by picking the feature with maximum variance.

The pros of the tree construction is its “exactness” and its easiness to build. The cons are
(1) The curse of dimensionality makes KD-Trees ineffective for higher number of dimensions;
(2) All splits are axis aligned.

ball tree method. It uses hyper-spheres (balls) instead of the boxes in KD-tree. As in
kd tree method, we can dissect the distance and use the triangular inequality

d(.’L’t,[E) = dl =+ d2 2 db + dg 2 db (210)

If the distance to the ball, dp, is larger than distance to the currently closest neighbor, we can
safely ignore the ball and all points within. The ball structure allows us to partition the data
along an underlying manifold that our points are on, instead of repeatedly dissecting the entire
feature space (as in KD-Trees).

Ball-trees are slower than KD-Trees in low dimensions (d < 3) but a lot faster in high
dimensions. Both are affected by the curse of dimensionality, but Ball-trees tend to still work
if data exhibits local structure (e.g. lies on a low-dimensional manifold).

The kNN is slow during prediction because it does a lot of unecessary work. KD-trees
partition the feature space so we can rule out whole partitions that are further away than our
closest k neighbours. However, the splits are axis aligned which does not extend well to higher
dimensions. Ball-trees partition the manifold the points are on, as opposed to the whole space.
This allows it to perform much better in higher dimensions.

The default algorithm in Python is auto, which attempts to decide the most appropriate
algorithm (out of brute, ball _tree, kd_tree) based on the values passed to fit method.

60 TOPIC 2. k-NEAREST NEIGHBOURS (KNN)

2.9 More Performance Evaluation — k-fold cross validation (CV)

The development of CRISP-DM until now:

e Business understanding
Data understanding ‘: structured and unstructured data, EDA (Section 1.5)

e | Data preparation / preprocessing | feature scaling
e | Modelling : kNN, wkNN

e |Evaluation|: MSE, R? for regression problems; confusion matrix / contingency table,
ROC for (binary) classification problems; holdout/validation set/train-test-split method
Deployment

A few issues regarding the holdout/validation set method from Topic 1:

e The model is not trained with all available data since the available data is split
into training set and testing set.

e The result depends on the sampling of the data. Note that in Practical 3, there
is a set.seed(123) which fixes a particular sampling. If we change the number
to 124 or 125, we will get different results for the performance due to different
sampling. If we apply stratified sampling with odd index, we get an accuracy of
0.8011988 and with even index, we get an accuracy of 0.7654691

Since holdout method is “sampling” dependent, to try to learn the ‘real’ performance of the
(kNN) model, we can cover all possible sampling. However,

for a data with 1000 rows, if we choose 700 rows for training and 300 rows for testing
using linear sampling, there are

1000!
700!300!

possible combinations! The number is just too large.

~ 5.428250 x 10263

To have a better confidence on the performance than the holdout method we can use the
cross-validation methods which are found to be acceptable by statisticians.

e Randomly divides the set of observations into k& “equal” “folds”;

e First fold = validation set & remaining k& — 1 folds = training set.

e Second fold = validation set & remaining & — 1 folds = training set.

e ctc.

Example 2.9.1 (5-fold). Example 2.9.2 (LOOCV).
[123] [123 n
11765 47 123 n
11765 47 123 n
11765 47 123 . n
11765 47
11765 a7 123 n
leave-one-out cross validation

(LOOCYV) is a special case k-fold CV

with [k = n]

Software support:

2.9. MORE PERFORMANCE EVALUATION — k-FOLD CROSS VALIDATION (CV) 61

R: caret::icreateDataPartition, createResamples (for bootstrapping), createFolds (for
k-fold cross validation), createMultiFolds (for repeated cross-validation), createTimeSlice
(for dealing with time-series).

Python: train_test_split (simple random split), KFold or StratifiedKFold (k-fold
CV), LeaveOneOut (LOOCV) from sklearn.cross_validation.

If we don’t have the right to install additional package like the caret library, we can still
use R’s basic commands to perform k-fold cross validation. The k& = 10 example is shown
below.

https://stats.stackexchange.com/questions/61090/how-to-split-a-data-set-to-do-10-fold-cross-validation

#Randomly shuffle the data & create 10 fold
d.f = d.f[sample(nrow(d.f)),]
folds = cut(seq(l,nrow(d.f)),breaks=10,labels=FALSE)
#Perform 10 fold cross validation
for(i in 1:10){
#Segement your data by fold using which()
testIndexes = which(folds==i,arr.ind=TRUE)
testData = d.f[testIndexes, 1]
trainData = d.f[-testIndexes,]

Using caret library (it is a complex R packages with many dependencies):

set.seed (123)

train.control <- trainControl (method="cv", number=5)

model <- train(y ~., data=train.data, method="1m",
trControl=train.control)

print (model)

Note that k-fold CV is still sampling dependent but the averaging has reduced the bias
problem compare to the holdout method.

2]

62

TOPIC 2. k-NEAREST NEIGHBOURS (KNN)

