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P(A|B)P(B)

The generative classifiers use the Bayes Theorem |P(B|A) = to analyse the

‘posterior distribution’:

P(X =z|Y =y)P(Y = y)_

PY =yl X =) = P(X = )

(4.1)

Note that we have to regard P as “probability density” function f when x and y are continuous.
In particular, when the response variable Y is categorical and has K distinct values 1, ...,
K, then (4.1) becomes

P(X ==z|Y = j)P(Y = j)
SEP(X =2y = E)P(Y =k)

B(Y = j|X = a) = cjell Ky (42)

where

o P(Y = k|X = x), the posterior probability, is the probability that the new observation
belongs to the kth class, given the predictor value for that observation;

e P(X =x) = Ele P(X = x|Y = k)P(Y = k) is regarded as a constant w.r.t the response
class j;

e P(X = z|Y = j) is the likelihood function, a density function of X for an observation
that comes from the jth class. It is relatively large if there is a high probability that an
observation in the jth class has X ~ x;

e P(Y = j) is the prior probability, i.e. the probability that a randomly chosen observation
comes from the jth class of response variable Y.

We are going to explore only two types of generative classifiers in this topic, i.e. the naive
Bayes model in Section 4.2 and discriminate analysis models (e.g. LDA, QDA) in Section 4.3.

4.1 Generative Models
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A general probabilistic predictive model is described by a joint probablity of the input and
the output
P(X.,Y).

According to Mitchell [1997],

¢ when we can estimate P(Y | X) directly, then the predictive model is called a discrim-
inative learning model.

e when we have the prior estimate P(Y) and P(X,Y), then we have the generative
learning model with the likelihood function P(X|Y) = P(X,Y)/P(Y).

The probabilistic framework that underlie the generative models is the Maximum a
Posteriori (M AP) which assumes 6 are random variables being updated based on
observed data. The generative classifier derived from (4.2) is

hp(x) = argmax P(Y = j| X = x)

jedt, K}
- P(X = 2|V = jP(Y = j)
= argmax
JelLonk) P(X =) (4.3)
= argmax P(X = z|Y = j)P(Y = j)
jedt, K
= argmax [InP(X =z|Y = j) + InP(Y = j)]
JE{L- K}

Note that MAP is only one way to get an estimator. There is much more information
in P(0|D), and it seems like a shame to simply compute the mode and throw away all
other information. A true Bayesian approach is to use the posterior predictive distribution
directly to make prediction about the label Y of a test sample with features X:

P(Y | D, X) = /HP(Y,H | D, X)df = ng(Y | 0, D, X)P(6| D)df

Here 6 is integrated out, our prediction takes all possible models into account. Unfor-
tunately, the above is generally intractable in closed form and sampling techniques, such
as Monte Carlo approximations, are used to approximate the distribution. A pleasant
exception are Gaussian Processes.

As always the differences are subtle. In MLE we maximise log [P(D;#)] in MAP we
maximise log [P(D|#)] + log [P(#)]. So essentially in MAP we only add the term log [P(0)]
to our optimisation. This term is independent of the data and penalises if the parameters,
# deviate too much from what we believe is reasonable. The term log [P(6)] is interpreted
as a measure of classifier complexity.

4.2 Naive Bayes Classifier (Supervised Learning)

A https://en.wikipedia.org/wiki/Naive_Bayes_classifier is a simple probabilistic clas-
sifier (4.2) based on approximating P(X|Y) using the strong (naive) independence as-
sumption, i.e. Xy, Xy, .-, X, are independent:

r
P(X =a|Y =) =P(X1 =m|V =j) - P(Xp = 2|V = j) = [[P(Xi = @V = ).

=1
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Therefore, the generative model (4.3) becomes the naive Bayes model:

P P
hp(x) = argmax P(Y = j) H]P’(X,L— =z;|]Y = j) = argmax InP(Y = j)+ ZIHP(Xz‘ =xY =j)| .
1=1 =1

je{l,...K} je{l,...K}
(4.4)
The estimate of the prior distribution P(Y = j) using MLE is as follows:
— . # 7 . = ]
PY =j5) = M (4.5)

n

However, it is possible to choose P(Y = j) = % if we know the outcome is theoretically
uniformly distributed.
The features X; can be the following cases:

e One X, is categorical — Categorical NB

e One X; is numeric — Gaussian NB, Non-parametric NB (using kernel density ap-
proximation rather than normal distribution)

e All X; are binary — Bernoulli NB
e All X; are integral — Multinomial NB & Complement NB(?7)

e One X, is non-negative integral — Poisson (distribution) NB

Naive Bayes Algorithm in R

library(naivebayes)

nbD = naive_bayes(Y ~ ., D, options)

Yhat predict (nbD, newX, type="class")

Prob = predict(nbD, newX, type="prob") # Get log-posterior prob
Yhat = predict(1ldaD, newX)$class

Prob = predict(ldaD, newX)$posterior # log?

Most of the following naive Bayes models are available in R except for the complement
NB. R provides unified functions such as naivebayes::naive_bayes, e1071::naiveBayes,
bnlearn: :naive.bayes (which can only handle categorical data), k1aR: :NaiveBayes.

4.2.1 Categorical Naive Bayes

When the feature X; is categorical and takes on M; possible values by %; = {cgi), e ,CE,\?{}, the
conditional distribution is assumed to be

P(X; =]y = j) = 2X=c& V=i cq (4.6)

’l’lyzj
where

® nx,—c & y—; is the number of times category ¢ appears in the samples X;, which belong
to class j;

e ny—; is the number of samples with class j.

Example 4.2.1 (Final Exam May 2019, Q3(d)). Table Q3(d) shows a data set containing 7
observations with 3 categorical predictors, X7, X2 and X3.
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Observation | X7 | Xo | X3 Y
1 C | No | 0 | Positive
2 A | Yes | 1 | Positive
3 B | Yes | 0 | Negative
4 B | Yes | 0 | Negative M
5 A | No | 1 | Positive
6 C | No | 1 | Negative
7 B | Yes| 1 | Positive
Without Laplace smoothing, predict the response, Y for an observation with X; = B, Xy =
Yes and X3 = 1 using Nalve Bayes approach. (5 marks)
Solution: Let ‘+’ denote ‘Positive’ and ‘-’ denote ‘Negative’.
prior P(X1]Y) P(X>]Y) P(X3]Y) | prop, I | Y
4 1 1 3
PY==)=_ |PB|-)=_- | P(Yes|]—) =~ | P(1|-) = = ) —
(v ==) = |P(BI-) =, | P(Yes|-) = . | P(1]-) =5 | 0.0635 |V,

Since P(Y = —|X) > P(Y = +|X), Y has higher probability to be “Negative”.

Example 4.2.2. Consider the following case given in https://machinelearningmastery.
com/naive-bayes-tutorial-for-machine-learning/

Weather Car Y
sunny | working go-out
rainy broken go-out
sunny | working go-out
sunny | working go-out
sunny | working go-out
rainy broken | stay-home
rainy broken | stay-home
sunny | working | stay-home
sunny broken | stay-home
rainy broken | stay-home

Construct the categorical Naive Bayes model for the above data.

Solution: Let X;=Weather, X9=Car. The categorical Naive Bayes model:
PY =j|X =) x P(Y = j)P(Xy = 21|Y = j)P(Xy = 22]Y = j)

0.5, Y =out

where Prior, P(Y) = { v _ o
= stay

g
o

=, X1 = sunn 2 X = sunn
PG = out) = {? X = minyy ’ Py = stag) = {2 X = minyy

5 1 — B 1=

4 - 1 -

s, Xo= k 5, Xo= k
P(Xa|Y = out) = ¢ 37 27 WO P(XolY = stay) = {3 2~ O

5, Xo =broken 5, Xo=broken

In tabular form:
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prior P(X; = x1]Y =) P(X2 = 22|Y =)
P(Y =out) = 0.5 | P(sunnylout) = ¢ | P(workinglout) = 3
P(Y = stay) = 0.5 | P(sunny|stay) = £ | P(working|stay) = %
P(Y =out) = 0.5 | P(rainylout) = % P(broken|out) = %
P(Y = stay) = 0.5 | P(rainy|stay) = % P(broken|stay) = 3

In Python, CategoricalNB implements the categorical Naive Bayes algorithm for categor-
ically distributed data. It assumes that each feature, X;, has its own categorical distribution
and the sample matrix is encoded (for instance with the help of OrdinalEncoder) such that
all categories for each feature are represented with numbers 0,---, M; — 1. The probability of
category c in feature X; given class k is estimated as:

#Xj=c&kY =k +ta
#(Y = k) + ad;
where o is a smoothing parameter and d; is the number of available categories of feature

X defined above. Setting a = 1 is called Laplace smoothing, while o < 1 is called Lidstone
smoothing.

P(X;=clY =k; a) = (4.7)

Categorical Naive Bayes (Classifier) in Python

from sklearn.naive_bayes import CategoricallNB
CategoricallNB(alpha=1.0, fit_prior=True, class_prior=DNone)

4.2.2 Gaussian Naive Bayes

When a feature X; in (4.4) is continuous, we usually approximate P(X;|Y = k) for a fixed %k
using a Gaussian distribution (unless there is a strong proof that it is other kind of distribution):

P(X; =z]Y =k) = Ujki/ﬂ eXP(*i(x zagik)z)- (4.8)
The theoretical mean and theoretical standard deviation in (4.8) are
wir =E[X;|Y =k, o =E[(X; — p)’|Y =k], k=1,... K. (4.9)
The maximum likelihood estimator for (4.9) are
n n ~
A ST R

Here j refers to the jth column of the tabular data while k refers to all rows with ¥ = k and
the 7 goes through all rows in the tabular data as we will see in the following example.

Example 4.2.3. The table below shows the data collected for predicting whether a customer
will default on the credit card or not:

customer | balance | student | Default
1 500 No N
2 1980 Yes Y
3 60 No N
4 2810 Yes Y
5 1400 No N
6 300 No N
7 2000 Yes Y
8 940 No N
9 1630 No Y
10 2170 Yes Y

(a) Compute the probability density of customer with balance 2080, given Default=Y.
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Solution: Let X; be balance. Then

1 2080 — p1.y)?
P(X; = 2080 | Default = Y) = exp(—( > /i) ) = 0.0009162
S,y V 2 251;)/

where

S0z I(Default =Y) 1980 + 2810 + 2000 + 1630 + 2170
10 I(Default = Y) 5

\/ S0 (i — finy ) (g = Y)

S0 I(Default = Y)) — 1

H1y =

= 2118;

= 433.7857

(b) Compute the probability of customer who is a student, given Default=Y.

Solution: P(student = Yes | Default =Y) =

T

(c) Calculate the “probability density” of default for a student customer with balance 2080
by using the Naive Bayes assumption.

Solution: P(student = Yes | Default = N) = % =0

P(Default =Y | balance = 2080, student = Yes)
P(balance = 2080, student = Yes | Default = Y )P(Default =Y)
- P(balance = 2080, student = Yes) =: P(...)
P(balance = 2080, student = Yes | Default = Y)P(Default =Y)
P(... | Default = Y)P(Default =Y) + P(... | Default = N)P(Default = N)
0.0009162 x % x £

— 1()
0.0009162 x £ x 5 + P(balance = 2080|Default = N) x 0 X 1%

=1

(d) Write down the full naive Bayes model from the data.

Solution: Let z;=balance, zo=student, y=Default. The Naive Bayes Model is
hp (w1, 22) = argmax P(z1]y = j)P(x2ly = j)P(y = j)-
J
05 y=N
05 y=Y

1 22 =No 1/5 x99 = No
Plosly=N) =L 2 P(asly = V) =4 /0 2
0 z2=Yes 4/5 x5 =Yes

where the prior P(y) = {

o (z1 — 640)?

P(zily = N) = \/We}{p{mw&m?}
o (z1 — 2118)?

P(rily =Y) = mexp{m}

Note that the P(balance = 2080|Default = N) in part (c) was not calculated because
it will be multiplied with 0. The calculation is similar to part (a):

(2080 — pin )’

1
P(balance = 2080 | Default = N) = —— exp(—~— "5 ) = 1.9616x 1077
( | ) Si;N V 2m p( 2312;N )

Example 4.2.4 (Final Exam Jan 2019, Q3(c)). A more efficient marketing strategy can be
achieved by targeting the customers who have higher probability to complete a purchase. Hence,
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yvou have been asked to predict whether a customer will buy the product based on their demo-
graphic data such as age, race, gender and income. Table Q3(c) shows the data collected from

previous records.

Cust. | Age | Race | Gender Income Result
1 52 Indian Male | RM 11,500 | Not Buy
2 22 | Chinese | Female | RM 6,500 Buy
3 30 | Chinese | Male RM 8,000 Buy
4 26 Malay Male RM 8,500 Buy
) 27 Indian | Female | RM 6,500 Buy
6 32 | Chinese | Female | RM 9,500 | Not Buy
7 33 Indian Male RM 4,000 | Not Buy
8 50 Malay | Female | RM 10,000 Buy
9 31 | Chinese | Female | RM 5,500 Buy
10 27 Malay Male RM 9,200 | Not Buy

(i) State an assumption used in Naive Bayes approach.

Table Q3(c)

(1 mark)

(ii) Using Naive Bayes approach without Laplace smoothing, predict whether a Malay female

customer, aged 29, with income RM7,800, will buy the product.

(9 marks)
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Gaussian Naive Bayes (Classifier) in Python

from sklearn.naive_bayes import GaussianNB
GaussianNB(priors=None, var_smoothing=1e-09)

Here var smoothing is a portion of the largest variance of all numeric features that is added to
variances for calculation stability.

Example 4.2.5. The Iris dataset (https://archive.ics.uci.edu/ml/datasets/Iris) con-
sists four attributes: sepal length, sepal width, petal length and petal width, all in cm; and a
label of 3 classes (Iris Setosa, Iris Versicolour, Iris Virginica).

A script to train and test the dataset in Python is listed below.

# https://wuw.python-course.eu/naive_bayes_classifier_scikit.php
from sklearn import datasets, metrics, naive_bayes
dataset = datasets.load_iris()

model = naive_bayes.GaussianNB()

model.fit(dataset.data, dataset.target)

print (model)

expected = dataset.target

predicted = model.predict(dataset.data)

# summarise the fit of the model

print (metrics.confusion_matrix(predicted, expected))
print (metrics.classification_report(predicted, expected))

4.2.3 Laplace Smoothing

When one of the categorical feature has zero numerator or one of the numeric feature
has zero or extremely small variance, the Naive Bayes classifier may perform poorly. A
proposal to improve the performance is to apply the Laplace smoothing or https://en.
wikipedia.org/wiki/Additive_smoothing to the Naive Bayes classifier. For a categorical
feature X;, it is accomplished by adding a (by default, o = 1) as shown in (4.7).

The parameter « is usually chosen to be 1 because in such case the symmetric Dirichlet
prior is equivalent to the uniform distribution and for bigger number of observations in the data
such prior has small effect on the estimates. The other popular value for « is 0.5, which corre-
sponds to the popular (non-informative) Jeffreys prior. We can imagine the Laplace smoothing
as adding some “pseudosamples” into the data to ensure that each class occurs at least once to
avoid zero in the probability/density function.

The situation of a categorical feature having zero probability is illustrated in the Exam-
ple 4.2.3 and in the following example illustrates how Laplace smoothing can provide an im-
provement by avoiding the zero probability.




4.2. NAIVE BAYES CLASSIFIER (SUPERVISED LEARNING) 109

Example 4.2.6. Redo Example 4.2.3 by applying the Laplace smoothing.

Solution: The naive Bayes model for the “continuous” feature is the same:
P(balance = 2080 | Default = N) = 1.9616 x 10~°.

because the variance is not too small.
Applying the Laplace smoothing with o« = 1 (the default) to the categorical variable
student leads to

e student=Yes or No =

1
e P(student = Yes | Default = N) = 0+

5+2

Now, the conditional probability will no longer zero:

P(Default = N | balance = 2080, student = Yes)
P(balance=2080,student=Yes | Default=N)P(Default=N)
P(... | Default= N)P(Defaul‘t N)+P(... | Default=Y )P(Default=Y")

5.1
_ 1.9616x 10~ ><—><ﬁ

1.9616x 105 x 1 X—+0 000916154 x 2 xm

_ 1.401151e—6
= T40TT5T¢—06-+0 0003271979 — 0-004264014

Example 4.2.7 (May 2022 Semester Final Exam, Q4(a)). The data in Table 4.1 from a study
of low birth weight infants in a neonatal intensive care unit is used to examine the development
of bronchopulmonary dysplasia (BPD), a chronic lung disease, in a sample of 10 infants weighing
less than 1750 grams. The response variable bpd is binary (0 denotes ‘no” and 1 denotes ‘yes’),
denoting whether an infant develops BPD by day 28 of life. The predictors are listed below:

e brthwght: birth weight in number of grams;
e gestage: gestational age in number of weeks;

e toxemia: a condition in pregnancy characterised by abrupt hypertension, albuminuria
and edema. This is a binary variable with 0 = no, 1 = yes.

brthwght | gestage | toxemia | bpd
850 30 0 0
1400 30 0 0
1720 30 0 0
1150 32 0 0
1610 34 0 0
1230 32 1 0
320 26 0 1
340 30 0 1
1060 30 0 1
1140 34 0 0

Table 4.1: Training data for a study of low birth weight infants.

Use the Naive Bayes classifier model with Laplace smoothing to predict if an infant has
the BPD problem given that the infant has a birth weight of 1120 grams, has a gestational age
29 weeks and the pregnancy does not have toxemia. (12 marks)
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4.2.4 Relation of GNB to Logistic Regression

When Y is Boolean (assuming the values to be 1 and 0 and P(Y = 1) + P(Y = 0) = 1),
the Gaussian naive Bayes (GNB) classifier is equivalent to the multiple logistic regression (3.2)
under suitable assumptions. The illustration is as follows: From (4.2) and (4.8), we have

P(Y = 1|X = z)
B P(Y = DP(X; = 21V = 1) P(X, = 2,|Y = 1)

TP = )P(X, =21|Y = 1) P(X, = 2,[Y = 1) + P(Y = 0)P(X1 = 21|Y = 0) - P(X, = z,|Y = 0)
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1
1+ P(Y=0)P(X1=21|Y=0)--P(X,=x,|Y=0)
P(Y=1)P(X1=z1|Y=1)P(Xp=x,|Y=1)

1+ exp (ln 1P(Y=1) _ (@i—pn)? | @i—mo)® L (@ppp)? | (pr—upO)Q)

P(Y=1) 20—%1 20’%0 20’1271 20’}2)0

If we assume that 0;1 = 0,0 = o; (which is not true in general based on our earlier calculations),
we can have

(@i — pir)® | (i — pao)® _ (2F — 20w + pigg) — (2 — 2panwi + pdy) _ —2(pao — par)wi + (i — 131)

201-21 20?0 20r,‘;-2 202-2 ’
This can be written as a linear term b; — w;x;, ¢ =1,--- ,p and
1
PY=1X=x) = TFo=D)
1+exp(lnP(Y7:I)+b1+-~+bp7w1m17--~prxp)

which is equivalent to the multiple logistic regression (3.2).

The logistic regression directly estimates the parameters of P(Y|X), whereas naive Bayes
directly estimates parameters for P(Y) and P(X|Y'). The former is known as a discriminative
classifier, and the latter is known as a generative classifier. We have shown that the
assumptions of a special type of GNB classifier imply the parametric form of P(Y|X) used in
logistic regression. In fact, if the o-assumption holds, then asymptotically the GNB and logistic
regression converge toward identical classifiers.

According to https://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf, the two algo-
rithms also differ in interesting ways:

e When the GNB o-assumption do not hold, logistic regression and GNB typically learn
different classifier functions. In this case, the asymptotic classification accuracy for lo-
gistic regression is often better than the asymptotic accuracy of GNB. Although logistic
regression is consistent with the GNB’s assumption that the input features X; are condi-
tionally independent given Y, it is not rigidly tied to this assumption as is GNB. Given
data that disobeys this assumption, the conditional likelihood maximisation algorithm for
logistic regression will adjust its parameters to maximise the fit to (the conditional likeli-
hood of) the data, even if the resulting parameters are inconsistent with the Naive Bayes
parameter estimates.

e GNB and logistic regression converge toward their asymptotic accuracies at different rates.
GNB parameter estimates converge toward their asymptotic values in order logn exam-
ples, where n is the dimension of X. In contrast, logistic regression parameter estimates
converge more slowly, requiring order n examples. In certain datasets, logistic regres-
sion outperforms GNB when many training examples are available, but GNB outperforms
logistic regression when training data is scarce.

In summary, logistic regression is the discriminative counterpart to Naive Bayes. In Naive
Bayes, we first model P(x|y) for each label y, and then obtain the decision boundary that
best discriminates between these two distributions. In logistic regression we do not attempt to
model the data distribution P(x|y), instead, we model P(y|x) directly. We assume the same

oy . ) o 1
probabilistic form P(y|x;) = T TR

making assumptions about P(x|y) (in fact it can be any member of the Exponential Family).
This allows logistic regression to be more flexible, but such flexibility also requires more data
to avoid overfitting. Typically, in scenarios with little data and if the modelling assumption
is appropriate, Naive Bayes tends to outperform Logistic Regression. However, as data sets
become large logistic regression often outperforms Naive Bayes, which suffers from the fact that

but we do not restrict ourselves in any way by
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the assumptions made on P(x|y) are probably not exactly correct. If the assumptions hold
exactly, i.e. the data is truly drawn from the distribution that we assumed in Naive Bayes, then
Logistic Regression and Naive Bayes converge to the exact same result in the limit (but NB will
be faster).

4.2.5 Multinomial Naive Bayes and Its Variants

According to https://blog.floydhub.com/naive-bayes-for-machine-learning/, the
conventional version of the Naive Bayes (NB) is the Gaussian NB, which works best for
continuous types of data. The underlying assumption of Gaussian NB is that the features
follow a normal distribution. The other variants are best used for text classification prob-
lems, wherein the data features are discrete. BernoulliNB is the NB version where the
features are vectorised in a binary fashion. Whereas, MultinomialNB is the non-binary
version of BernoulliNB. As the word implies, multinomial means “many counts”. Comple-
ment NB (CNB) algorithm is an adaptation of the standard MultinomialNB algorithm that
is particularly suited for imbalanced data sets wherein the algorithm uses statistics from
the complement of each class to compute the model’s weight. The inventors of CNB show
empirically that the parameter estimates for CNB are more stable than those for MNB.
Furthermore, CNB regularly outperforms MNB (often by a considerable margin) on text
classification tasks.

The Naive Bayes algorithm for multinomially distributed data is called a multinomial Naive
Bayes (MNB) classifier:

hp(document) = argmax P(document|Y = k)P(Y = k)
k=1, K

(4.11)
= argmax P(wcy, weg, -+ - ,wep|Y = k)P(Y = k)
k=1, K
where we; is the number of times the word X, j = 1,---,p, occurred in the document, p is the

size of the vocabulary (number of features). In real-world, possible entries of “classes” Y for
document are “scientific”, “economic”, “management”, etc.

The model (4.11) is a Naive Bayes variant used in text classification (where the data are
typically represented as word vector counts).

The estimates for the prior probabilities and likelihood fuction are

N number of documents of class k‘

pact
~
|

=
l

number of documents, n

B(X; = we,|Y = k) ~ total number of the occurrences of the word X; in documents of class &

total number of words Xi,---, X, in documents of class k

Dy—k WE + @ N+ a

?:1 Zyi=k we; + adj - N+ ad; o

where the number of times feature 7 appears in a sample of class k in the training set D and
the total count of all features for class k are respectively

p
Nka chj= Nk:ZNkj-
yi=k i=1

The conditional probability of the multinomial naive Bayes model is [Manning et al., 2009,
Chapter 13]
(Z?:l ’UJCj)r i we;

a,.7. 4.12
weyl X - x we,! 1L 7RI ( )
P i1

P(X =Y = k) =
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A complement Naive Bayes (CNB) algorithm is an adaptation of the standard MNB algo-
rithm that is particularly suited for imbalanced data sets. Specifically, CNB uses statistics from
the complement of each class to compute the model’s weights. The inventors of CNB show
empirically that the parameter estimates for CNB are more stable than those for MNB [Rennie
et al., 2003]. Further, CNB regularly outperforms MNB (often by a considerable margin) on
text classification tasks. The procedure for calculating the weights is as follows:

Zy#k wej + o
12k we + o

Ohj =

where the summations are over all documents ¢ not in class k, wc; is either the count or https:
//en.wikipedia.org/wiki/Tf-idf (term frequency-inverse document frequency) of term j (in
document k); « is the Laplace smoothing hyperparameter like that found in MNB. The second
normalisation addresses the tendency for longer documents to dominate parameter estimates in
MNB. In the CNB, a document is assigned to the class that is the poorest complement match.

Bernoulli Naive Bayes is used when the data is distributed according to multivariate Bernoulli
distributions i.e., there may be multiple features but each one is assumed to be a binary-valued
(Bernoulli, Boolean) variable. Therefore, this class requires samples to be represented as binary-
valued feature vectors.

For Bernoulli Naive Bayes, the conditional probability (4.12) becomes

P
P(X =alY =k) =[] 0501 - ) (4.13)
i=1
with 2; = I(wc; > 0) being binary. It differs from MNB’s rule in that it explicitly penalises
the non-occurrence of a feature that is an indicator for class k, where the MNB variant
would simply ignore a non-occurring feature.

Multinomial naive Bayes classifiers are used in email spam filtering. They typically use bag
of words features to identify spam email, an approach commonly used in text classification.
They work by correlating the use of tokens (typically words, or sometimes other things), with
spam and non-spam emails. Naive Bayes spam filtering is a baseline technique for dealing with
spam that can tailor itself to the email needs of individual users and give low false positive
spam detection rates that are generally acceptable to users. It is one of the oldest ways of doing
spam filtering, with roots in the 1990s. Examples are found in a few books such as Lantz [2015,
Chapter 4].

Multinomial Naive Bayes Classifier and Its Variants in Python

from sklearn.naive_bayes import *

MultinomialNB(alpha=1.0, fit_prior=True, class_prior=DNone)
ComplementNB(alpha=1.0, fit_prior=True, class_prior=None, norm=False)
BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None)

Example 4.2.8. Real-world application is complex. There are a lot of information on the
Internet, so I will not create a “fake” example, but just use the a Python example.

# https://jakevdp.github.io/PythonDataScienceHandbook/05.05-naive-bayes.html
from sklearn.datasets import fetch_20newsgroups

# Downloads https://ndownloader.figshare.com/files/5975967 and

# put in under “/scikit_learn_data/

data = fetch_20newsgroups ()

data.target_names

categories = [’talk.religion.misc’, ’soc.religion.christian’,
’sci.space’, ’comp.graphics’]
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train = fetch_20newsgroups (subset=’train’, categories=categories)
test = fetch_20newsgroups (subset=’test’, categories=categories)

from sklearn.feature_extraction.text import TfidfVectorizer ,CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import make_pipeline

# https://machinelearningmastery.com/prepare-text-data-machine-learning-scikit-lear:
# https://scikit-learn.org/stable/modules/feature_extraction.html

vectoriser = CountVectorizer ()

vectoriser.fit(train.data)

print(vectoriser.vocabulary_)

feature_table = vectoriser.transform(train.data)

model = make_pipeline(TfidfVectorizer (), MultinomialNB())

model.fit(train.data, train.target)

labels = model.predict(test.data)

from sklearn.metrics import confusion_matrix

import seaborn as sns, matplotlib.pylab as plt

mat = confusion_matrix(test.target, labels)

sns .heatmap (mat.T, square=True, annot=True, fmt=’d’, cbar=False,
xticklabels=train.target_names,
yticklabels=train.target_names)

plt.xlabel (’true label’)

plt.ylabel (’predicted label’)

4.3 Discriminant Analysis

Discriminant Analysis (DA) is a generative model (4.3) which assumes that the predictors
X = (X1,Xy, -+ ,X,) are numeric and are drawn from a multivariate Gaussian (or a multi-
variate normal) distribution, Normal(p, C). Therefore, the “P” in (4.3) should be regarded as
“probability density” because the predictors are numeric.

DA parallels multiple regression analysis and is closely related to analysis of variance (ANOVA),
logistic regression and principle component analysis (PCA). The main difference between DA
and regression is that regression analysis deals with a continuous dependent variable, while
discriminant analysis must have a discrete dependent variable.

Two important DA models are the linear discriminant analysis (LDA) models and quadratic
discriminant analysis (QDA) models.

In the QDA models, P(X = z|Y = k) is assumed to have the following form:

P(X =z|Y = k) y'epy e - Mk)} (4.14)

1 1
©(2m)p/2\/|CY| eXp{Q(m et

where pu and Cj, are the class-specific mean vector and the class-specific covariance matrix
respectively.
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By substituting (4.14) into (4.3), we have

hp(x) = argmax
ke{l,...K}

— 1 T €r —
InP(Y = k) + (zﬂ)p/z\/@' { (o — ) O .U'k)}]

= argmax [ln]P’(Y =k) — ln|C'k| (w —pp)'C (- ,uk)]
ke{l,...K}
(4.15)

From here, we can obtain the “discriminant functions” for QDA:
1 1 T -1
Op(@) =InP(Y = k) - SIn|Cyf - S(@ — )" Cp (@ —pi), k=1,--- K. (416)

Note that the “boundary” between classes is a quadratic surface according to (4.16).
The prior distribution P(Y = k) is usually estimated according to (4.5) while the class-
specific covariance matrix, C},, has the following estimation:

n

N 1 ~ R
Cy = p— > (@i — fi) (i — i) (i = k). (4.17)
=1

In the LDA models, P(X = «|Y = k) is assumed to be multivariate normal distribution
(4.14) with a common covariance matrix C':

Ci=Cy=---=Cg=C.

In such a case, the derivation is similar to QDA but the generative model (4.15) will
become

[ 1
hp(x) = argmax |InP(Y =k)— —In|C| — (a: — ez - Mk)]
kefl,. K} 2
[ 1
= argmax |[InP(Y =k)— _ (x 2'C e —plCle—atClyu + plC uk)]
ke{l,...K} 2
_ 1 .
= argmax |InP(Y =k) - - (- oufClx + pfC- ,uk)
kell,..K) 2
[ 1
— argmax |InP(Y = k) 4+ p} Cla — Mk I'e- ,uk]
ke{l,.. K}
(4.18)
From here, we obtain the discriminant function for LDA:
1
§h(X) =InP(Y = k) — 5;1,;1:0_1;% + plc e (4.19)

Note that the “boundary” between classes is a linear space according to (4.19). The name
of LDA is from the fact that the discriminant functions, dr(x) are linear functions of x.

The estimation of the parameters in the discriminant function (4.19) using the standard
moment estimators is as follows [Hastie et al., 2008, p109].

e The prior probability P(Y = k) is approximated by the fraction of training samples
of class k, (4.5).
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e The centre of each class py has the estimation

oy md(yi=k)

SR Y T 2

e The common covariance matrix C is an unbiased estimate of its covariance matrix of
the vectors of deviations (21 — Ly, ), (T2 — My, ), -+ (Ty — My, ):

1
n— K

K n
DD (@i ) (@i — ) Iy = k). (4.21)

k=11i=1

C =

Computer implementation of LDA is more complex than the steps mentioned earlier. Here
is some description of algorithms used in computer implementations.

The dimensionality reduction procedure of LDA involves the within-class variance, W =
i], and the between-class variance, B. The between-class variance indicates the deviation
of centroids from the overall mean, [ = Ele Tk fig, and is defined as:

K
B=> (i — i) — )"
k=1

Finding a sequence of optimal substeps involves three steps:

1. Compute the K x p matrix M containing the centroids, ux, and determine the common
covariance matrix W.

2. Compute M* = MW~z using the eigen-decomposition of W.

3. Compute B* (the between-class covariance) and its eigen-decomposition B* = V*DpV*1.
The columns v} of V* define the coordinates of the reduced subspace.

The I-th discriminant variable (one of the K — 1 new dimensions) is determined by
Zy = ol X with v; = W20},

Fisher’s LDA optimisation criterion states that the centroids of the groups should be
spread out as far as possible. This amounts to finding a linear combination Z = a’ X such
that «” maximizes the between-class variance relative to the within-class variance.

As before, the within-class variance is W is the pooled covariance matrix, 2, which
indicates the deviation of all observations from their class centroids. The between-class
variance is defined according to the deviation of the centroids from the overall mean, as
defined earlier. For Z, the between class variance is a’ Ba and the within-class variance is
ATWa. Thus, LDA can be optimized through the Rayleigh quotient

a’ Ba
e TWa’
which defines an optimal mapping of X to the new space Z. Note that Z € R'*P, that
is, the observations are mapped to a single dimension. To obtain additional dimensions,
we need to solve the optimization problem for ai,...,ax_1 where each successive ay is
constructed to be orthogonal in W to the previous discriminant coordinates. This leads to
the linear transformation G = (Zif, Zg, . ,Z}I;_l) € RP*? with which we can map from p
to ¢ dimension via X G. Why do we consider K — 1 projections? This is because the affine
subspace that is spanned by the K centroids has a rank of at most K — 1.
Using Fisher’s formulation of LDA, classification involves two steps:




4.3.

do not need to use all K — 1 dimensions and instead can choose a smaller subspace H; with
Il < K—1. When [ < K — 1 is used, this is called reduced-rank LDA. The motivation for
reduced-rank LDA is that classification basd on a reduced number of discriminant variables
can improve performance on the test set when the model is overfitted.

are K means, fi; that are estimated. The covariance matrix does not require additional
parameters because it is already defined by the centroids. Since we need to estimate K
discriminant functions (to obtain the decision boundaries), this gives rise to K calculations
involving the p elements. Additionally, we have K — 1 free parameters for the K priors.
Thus, the number of effective LDA parameters is Kp + (K — 1).

2. Classify observations x; to the closest class centroid in the transformed space, taking
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1. Sphere the data using the common covariance matrix Y = UDpUT (eigendecompo-

sition) such that X* = D :UTX. In this way, the covariance of X* becomes the
identity matrix. By eliminating the covariance between the variables in this way, it
becomes much easier to separate the classes in the transformed space.

into account the class priors m. Here, the intuition is that an observation with equal

distance to two centroids would be assigned to the class with the greater prior.

LDA performs classification in a reduced subspace. When performing classification, we

The number of effective parameters of LDA can be derived in the following way. There

Example 4.3.1 (Final Exam May 2019, Q4). (a) State the advantages of using linear dis-

criminant analysis in classification as compared to logistic regression. (3 marks)

Solution:

e LDA is more stable when the classes are well-separated.

e If n is small and the distribution of the predictors X is approximately normal
in each of the classes, LDA is more stable than logistic regression.

e When we have more than two response classes, LDA is more popular.

If by any chance, the assumptions of LDA hold for the true distribution of the data,
then LDA is optimal in the sense that it converges to the Bayes classifier (Section 2.2)
when the number of data tends towards infinity (at which point the parameter esti-
mates coincide with the true distribution parameters).

(i) State two assumptions made in linear discriminant analysis. (2 marks)

(ii) Bayes’ theorem states that posterior probability to estimate probability of a new
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observation belongs to the jth class can be written as

miP|Y = j)
Zfil milP(z|Y =)

P(Y = j|X = 2) =

where m; = P(Y = j). Classification is done by assigning an observation to the class
which posterior probability, P(Y = j|X = xz) is the largest. Linear discriminant
analysis involves assigning the observation to the class for which discriminant func-
tion, 0,;(X) is the largest. For linear discriminant analysis with one predictor, the
discriminant function is
2
ty _ H
di(x) =x-—= — —5 +In(m;).
J@) =2~ LS ()
With assumptions stated in Q4(b)(i), show how discriminant function, §;(z) can be
equivalent to posterior probability, P(Y = j|X = z) in linear discriminant analysis
with one predictor. (10 marks)

(¢) A teacher is preparing an extra class for the students who are predicted to fail in their

final exam. The teacher would like to predict the performance of the current students in
final exam (fail/pass). You are to build a model for the teacher by using 500 previous
students’ record. Below shows some information and analysis of the previous record:

(I) The coursework consisted of Assignment, Quiz and Test.

(IT) Average mark for students who passed in Assignment was 73.9; whereas average

mark for students who failed in Assignment was 51.4.



4.3. DISCRIMINANT ANALYSIS 119

(III) Average mark for students who passed in Quiz was 68.2; whereas average mark for
students who failed in Quiz was 42.3.

(IV) Average mark for students who passed in Test was 63.7; whereas average mark for
students who failed in Test was 35.6.

(V) There were 380 students passed the final exam.

(VI) The inverse of the group covariance matrix for the collected data is

0.0022 0.0132 0.0095
C~!''=10.0132 0.0074 0.0108
0.0095 0.0108 0.0180

where ©1 = Assignment; o = Quiz; x3 = Test.

Using linear discriminant analysis, predict the final exam performance (pass/fail) of a
current student who scored 55.7 marks in Assignment, 49.8 marks in Quiz and 52.6 marks
in Test. (10 marks)

Solution: Let pass = 1 and fail = 0.
Prior probability (given in item (V) and using (4.5)):

380
m=_——-=076, m=1-0.76 =0.24
m 500 0.76; 7o 0.76 =0

Mean vector (given in items (II), (IIT) and (IV) and calculate using (4.20)):
[ = [73.9, 68.2, 63.7]; Jio = [51.4, 42.3, 35.6]

Discriminant function, §;(X):
5;(X) = ;¢ e — %ﬁjc—lﬁ}” + Inm;,
51(X) = [1.6680, 2.1681, 2.5852]" — 435.8066 + In(0.76)
S0(X) = [1.0096, 1.3760, 1.5859]z” — 166.5589 + In(0.24)
For a new observation, * = [55.7, 49.8, 52.6],

51(x*) = 118.6826

do(x*) = 123.4746

Since 1 (x*) < dp(x*), the new observation should be assigned to class 0, the student
will “more likely to” fail in final exam.

In the one-dimensional case, the estimation formulae for the LDA parameters {71, - , 7k},
{p1,-++ ,px} and o2 in Example 4.3.1 are
n, 1 1 &
~ — A.__E . 52 E E 02
A #J_nj_ .LEH ?  n—K 4 . .(1:1 1) (4.24)
i1yi=] j=limyi=j

where n is the total number of training observations, and n; is the number of training observa-
tions in the jth class.

Example 4.3.2 (May 2022 Semester Final Exam, Q2). The data in Table 2.1 contains size
measurements for two Raisin classes, i.e. Besni and Kecimen.
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Area Perimeter Class
78883 1092.709 Kecimen
49336 909.681 Kecimen
53890 957.132 Kecimen

143386 1422.014 Besni

158808 1624.343 Besni

134303 1497.515 Besni

116198 1328.070 Besni

Table 2.1: Seven data from the UCI Raisin dataset.

Construct a linear discriminant analysis (LDA) classifier for the given data in Table 2.1 by
following the following steps.

(a) Write down the general mathematical formula of the LDA classifier in terms of the dis-
criminant functions. (2 marks)

Solution: The general mathematical formula for the LDA classifier in terms of the
discriminant functions is

hp(x) = argmax |InP(Y =7) + M?C’_l(af: - l,uj)] [2 marks]
je{l,. K} 2

which is based on the posterior probability is proportional to Gaussian distribution:

P(Y|X = 1) x @ )T C (e — ) PY)

1
ey

where ]S(Y) is the prior distribution.

(b) Write down the estimates of all the parameters of discriminant functions of the LDA model
in part (a) and write down the mathematical formulas of the discriminant functions. Note

T
0'001665] . (13 marks)

that [ oime, O ~ [ 0.304976

Solution: The prior probability estimates for both classes are

~

~ 4
P(Y = Kecimen) = % = 0.4285714, P(Y = Besni) = v = 0.5714286. [2 marks|

The mean vectors for both classes are

1
fikecimen = (78883, 1002.700) + (49336, 909.681) + (53890, 957.132))

= (60703, 986.5073)

1
Finesni = (143386, 1422.014) + (158808, 1624.343)+ [4 marks|

(134303, 1497.515) + (116198, 1328.070))
= (138173.8,1467.9855)




4.3. DISCRIMINANT ANALYSIS 121
We now estimate the “unscaled” covariance matrix estimate for Kecimen:
78883  1092.709
XKecimen — HKecimen = |49336  909.681 | — [60703, 986.5073]
53890  957.132
[ 18180  106.20167
= [ —11367 —76.82633 [1.5 marks]
| —6813  —29.37533
CKecimen — (XKecimen - ﬁKecimen)T(XKecimen - ﬁKeCimen)
_ (506138058 3004165.38
| 3004165 18043.99
We now estimate the “unscaled” covariance matrix estimate for Besni:
(143386  1422.014
_ 158808 1624.343
XBesni — [{Besni = 134303 1497515 [138173.8,1467.985]
| 116198  1328.070
[ 521225  —45.9715
_ | 20634.25  156.3575 [1.5 marks]
— | —3870.75 29.5295
| —21975.75 —139.9155]
CBesni - (XBesni - ﬁBesni)T(XBesni - ﬁBesni)
_ [950856117 5947151.53]
| 5947152 47009.39 |
The group covariance matrix estimate is
1 291398835 1790263.38
= 5 5 ecimen esni) = 1 k
C = 73 (Crecimen + Cpeani) [ 1790263 13010.67 ] [ mark]
Note that using scientific calculator or linear algebra, we can obtain
oy —1_ |—0.001665359 _r —1_ [—0.001416364
Hiecimen €' = { 0304075610 | * FBeniC€ = | g 307700380 | - [Fmarkl
The discriminant functions (of the LDA model) for both classes are
T
3 —0.001665 11 60703
Okecimen(®) = Inz + [ 0.304976 ] (@=3 [986.5073] )
[2 marks]

4

7

1
:U__

2

—0.001416
0.307720

138173.8

5Besni($) =In 1467.9855

| = i)

(c¢) Based on the calculations in part (b), comment on the need for data preprocessing with

justification.

(2 marks)

(d) Suppose the number of samples n is less than

or equal to the number of features p, can the
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linear discriminant analysis model still be applied? Write down your answer by providing
justification based on the mathematical formulation from linear algebra. (Hint: rank of
matrix) (3 marks)

Solution: When n < p, the matrix X corresponding to class k£ is an nj x p-matrix
and the matrix Xy, — jiy, is also an nj, X p-matrix of rank ny < p since ny < n. [1 mark]

When the unscaled covariance matrices for class k is computed:
Cr = (Xi — i) (X — fix)

it is found to be p x p but the matrix has a rank lower than p. The group covariance
matrix will also have a rank lower than p leading to the impossibility of inverting the
group covariance matrix C' which is required by the LDA’s discriminant functions.
[2 marks|

(e) The CART tree trained on a subset of the UCI Raisin dataset is shown in Figure 2.1.

Perimeter|< 1124.34
I

Perimeter|< 917.679 Perimeter |< 1256.14

Area <|76168 Area < 80839.5

Kecimen Besni

Perimeter|< 1076.35

Kecimen  Besni Besni

Area {71160

Besni

Perimeter < 1006.49

Kecimen

Area <|53435 Area <|62982

Besni  Kecimen Besni  Kecimen

Figure 2.1: Fitted CART tree.

(1) Predict the class for a raisin with an area 87524, a major axis length 442.2460,
a minor axis length 253.2912, an eccentricity 0.8197384, a convex-area 90546, an
extent 0.7586506 and a perimeter 1184.040. (3 marks)

Solution: Based on the CART tree, only the Area and Perimeter are important.
e The perimeter is 1184.040 > 1124.34, go right.
e The perimeter is 1184.040 < 1256.14, go left.
e The area 87524 > 80839.5, goright ............................ [1.5 marks]

Prediction of the class: Besni ...................... ... [1.5 marks]

(ii) Predict the class for a raisin with an area 49242, and a perimeter 881.836. (2 marks)
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Example 4.3.3. Table below shows the data collected:

Customer | Balance | Default

1 500
1980
60
2810
1400
300
2000
940
1630
2170

© 00 1 O U= W

KA AZ2 22

—_
=)

Use these data and the predictive model LDA to predict if a customer with balance 1500 will
default in his credit card?

So far, we have been applying the LDA using hand-calculation. LDA and QDA are avail-
able in R’s MASS package as 1da and qda respectively [Venables and Ripley, 2002]. They are
available in Python’s sklearn.discriminant_analysis as LinearDiscriminantAnalysis and
QuadraticDiscriminantAnalysis.

According to Tim [2018], The MASS package’s 1da function produces coefficients in a different
way from (4.20), (4.21) and to most other LDA software. The alternative approach computes
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one set of coefficients for each group and each set of coefficients has an intercept. With the
discriminant function (scores) computed using these coefficients, classification is based on the
highest score and there is no need to compute posterior probabilities in order to predict the
classification. A modification of the MASS function that produces these more convenient co-
efficients is available as Displayr/flipMultivariates. If an object is created using LDA, we
can extract the coefficients using obj$original$discriminant.functions.

The theory behind this function is “Fisher’s Method for Discriminating among Several Pop-
ulation” [Johnson and Wichern, 2007, §11.6].

Example 4.3.4. Redo Example 4.3.3 using R. Are you able to find the discriminant functions?

Example 4.3.5 (Final Exam Jan 2023, Q2. Part (a) is in Tut3). (b) Suppose the parameters
of the quadratic discriminant analysis (QDA) predictive model

PY=kX=2) x [ 1 exp (1(32 — ) C (= — Mk)T)

(27)P/2,/det(Cy,) 2
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trained the data D are given in Table 2.1.

k DOWN UP
By = k) 18228 13489
mean(X,|Y = k) 4.0659 3.8932
mean(Xs|Y = k) 0.4634 0.5515
mean(Xs|Y = k) 0.5166 0.4775
det(Ck) 0.00923456 0.00560849
3.8891 0.0316 —0.0226 4.1010 -0.0204 -0.0189
Cr 0.0316  0.0989 —0.0083 —0.0204 0.0656  0.0004
—0.0226 —0.0083 0.0249 —0.0189 0.0004  0.0210
0.2589 —0.0648 0.2139 0.2452  0.0750  0.2197
C’k_l —0.0648 10.4136  3.4063 0.0750 15.2625 —0.2162
0.2139  3.4063 41.5542 0.2197 —0.2162 47.9087

Table 2.1: Parameters of the trained QDA model.

Determine the value of p in the trained QDA model and then calculate the posterior
probalities for DOWN and UP when the day is 2, the period is 0.042553 and the transfer
is 0.414912 based on the trained QDA model. (4 marks)

Solution: Since there are three attributes, p=3. ......................... (1 mark]

18228
P(Y = DOWN|X| = 2. X5 = 0.042553, X3 = 0.414912) ox — o0
( X1 =2,X, 43 ) > 13928 1 13480
—2.0659]" —2.0659

1
' exp | —= | —0.4208] Cpiwx | —0.4208
(27)3/2 x \/0.00023456 2| “0.1017 ~0.1017

1
= 0.5747076 x ————— exp(—1.823913) = 0.06128495

1.513484
[1 mark]

13489
P(Y = UP|X; = 2. Xy = 0.042553, X5 = 0.414912) oc 2222
( X1 =2, X 43 ) > 2998 1+ 13489
T

—1.8932 —1.8932

1 1
7 exp [ 5 | 05089 Cgp | —0.5089 [1 mark]

1
= 04252924 x —— exp(—2.601496) = 0.0267381
04252024 x |- exp(—~2.601496) = 0.02673813

0612 .02
The posterior probabilities for DOWN and UP are (()(.)006?28855;00?02667352 =

0.3038) (1 mark]
Average: 0.97 / 4 marks in Jan 2023; 71% below 2 marks.

(0.6962,

(¢) By using the coefficients from Table 2.1, use the notion of linear algebra to prove that the

inverse of the covariance matrix C' in the linear discriminant analysis (LDA) predictive

model is as follows:
0.2525 —0.0160 0.2258

C'=|-0.0160 11.9250 2.3438
0.2258  2.3438  43.7657

Use the trained LDA model with C~!, det(C) = 0.007705512 and the parameters from
Table 2.1 to calculate the posterior probalities for DOWN and UP when the day is 2, the
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period is 0.042553 and the transfer is 0.414912. [Hint: You may reuse some of results from

part (b).] (7 marks)
Solution: To prove the values of C~1, we need to calculate
C = ((18228 — 1)Cpown + (13489 — 1)C'yp) /(18228 + 13489 — 2)
3.9792  0.0095 —0.0210 [1 mark]
~ | 0.0095  0.0847 —0.0046
—0.0210 —0.0046 0.0232
and the show that the following product is close to identity:
1 0.0004 0.0015
CxCltx |0 09991 —0.0007| ~ I. [1 mark]
0 —0.0001 0.9998
P(Y = DOWN|X; = 2, X2 = 0.042553, X3 = 0.414912) 18228 X
= = = U. 2 = . xX —m8M8M8M8M8M8
PT e ' 18228 + 13489
) | [-2.0659] " ~2.0659
: exp | —= |—0.4208| C~!|—0.4208
(27)3/2 x 1/0.007705512 2 —0.1017 —0.1017

exp(—2.168739) = 0.0351678

1
— 04252024 x —
* 179.4193

1

— 0.574 —— exp(—1.95504) = 0.05884
0.5747076 X oz exp(—1.95504) = 0.0588455
[2 marks|
P(Y = UP|X; = 2, X = 0.042553, X3 = 0.414912) 14
= = = . 2 = . X
P P 18228 + 13489
. | [-1:8932 g —1.8932
7 exp | — |—0.5089 C~' | -0.5089 [2 marks]

0588455, 0.0351
(0.0588455,0.0351678) (0.6259,

0.3741)
Average: 1.10 / 7 marks in Jan 2023; 86% below 3.5 marks.

Th teri babilities for DOWN and UP =
e posterior probabilities for an are o rcedre T 0.0351678

[1 mark]

Example 4.3.6 (Completely Separable 2D Data). For the separable data in Example 3.1.6,
unlike LR, LDA has no issue fitting separable data. The decision boundaries of the classifiers
Gaussian Naive Bayes (GNB), LDA and QDA are shown in the figure below.
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Example 4.3.7 (Decision Boundaries for (Milely Nonlinear) Flame Data). For the “flame”
data in Example 3.1.14, the script to estimate the decision boundary is shown below.

d.f = read.table("flame.txt", header=FALSE)
names(d.f) = c("x1", "x2", "y")
d.f$y = factor(d.f$y)

x1min = min(d.f$x1)
ximax = max(d.f$x1)
x2min = min(d.f$x2)
x2max = max(d.f$x2)

### Contour plot

g.xl = seq(ximin-2, xlmax+2, by=0.1)
g.x2 = seq(x2min-2, x2max+2, by=0.1)
d.grid = expand.grid(xl=g.xl, x2=g.x2)

library(naivebayes)

model = naive_bayes(y ., d.f)

prob = predict (model, newdata=d.grid, type="prob")[,2]
prob = matrix(prob, length(g.x1l), length(g.x2))
### https://stackoverflow.com/questions/24109956/how-to-increase-font-size-of-contour-labels
contour(g.x1, g.x2, prob, levels=c(0.1,0.45,0.5,0.55,0.9), col="black",
labcex=2, xlab="x1",ylab="x2",main="Flame Data with GNB",
lty=2,1lw=5, xlim=range(g.x1), ylim=range(g.x2))
points(d.f$x1, d.f$x2, col=1+as.integer(d.f$y), pch=1+as.integer(d.£f$y),
cex=2, xlab="x1",ylab="x2")

library (MASS)
model = lda(y ~ ., d.f)

# Pick the posterior probability for Y=1 at second column

prob = predict(model, newdata=d.grid)$posterior[,2]

prob = matrix(prob, length(g.xl), length(g.x2))

contour (g.x1, g.x2, prob, levels=c(0.1,0.45,0.5,0.55,0.9), col="black",
labcex=1.5, xlab="x1",ylab="x2",main="Flame Data with LDA",
method="edge", 1lty=2,lw=5, xlim=range(g.x1), ylim=range(g.x2))

points(d.f$xl, d.f$x2, col=1+as.integer(d.f$y), pch=1+as.integer(d.f8y),
cex=2, xlab="x1",ylab="x2")

model = qda(y ~ ., d.f)

prob = predict (model, newdata=d.grid)$posteriorl[,2]

prob = matrix(prob, length(g.xl), length(g.x2))

contour (g.x1, g.x2, prob, levels=c(0.1,0.45,0.5,0.55,0.9), col="black",
labcex=2, xlab="x1",ylab="x2",main="Flame Data with QDA",
lty=2,1lw=5, xlim=range(g.x1), ylim=range(g.x2))

points(d.f$x1, d.£f$x2, col=1l+as.integer(d.f$y), pch=1+as.integer(d.f$y),
cex=2, xlab="x1",ylab="x2")

The decision boundaries of the classifiers Gaussian Naive Bayes (GNB), LDA and QDA are

shown in the figure below.

Flame Data with GNB Flame Data with LDA Flame Data with QDA
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Example 4.3.8 (Decision Boundaries for Strongly Nonlinear Data). For the strongly nonlinear
data in Example 3.1.15, the decision boundaries of the classifiers Gaussian Naive Bayes (GNB),
LDA and QDA are shown in the figure below.
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According to James et al. [2013, §4.4], the answer to choosing LDA or QDA lies in the bias-
variance trade-off. When there are p predictors, then estimating a covariance matrix requires
estimating p(p+1)/2 parameters. QDA needs to estimate a separate covariance matrix for each
class, for a total of Kp(p + 1)/2 parameters which is large when p is large.

Applications

It is vital for a company to closely monitor the public reception of key events, such
as product launches or press releases. With its real-time access and easy accessibility
of user-generated content on Facebook and Twitter, it is now possible to do “sentiment
classification” or “opinion mining” [Coelho and Richert, 2015, Chapter 6]. One tool that is
useful in sentiment analysis is the LDA method.

LDA is also used in special image analysis. According to https://en.wikipedia.org/
wiki/Linear_discriminant_analysis, Otsu’s method, named after Nobuyuki Otsu, was
created to turn the histogram of pixels in a grayscale image to binary values by optimally
picking the black/white threshold.

The algorithm assumes that the image contains two classes of pixels following bi-modal
histogram (foreground pixels and background pixels), it then calculates the optimum thresh-
old separating the two classes so that their combined spread (intra-class variance) is min-
imal, or equivalently, so that their inter-class variance is maximal. Consequently, Otsu’s
method is roughly a one-dimensional, discrete analogue of Fisher’s Discriminant Analysis.

The terms Fisher’s linear discriminant [Johnson and Wichern, 2007]3 and LDA are
often used interchangeably, although Fisher’s original article actually describes a slightly
different discriminant, which does not make some of the assumptions of LDA such as
normally distributed classes or equal class covariances.

4.4 General Generative Models and Neural Network Architec-
tures

According to Wikipedia, general classes of generative models include:

e General mixture model (e.g. GMM used in clustering)

e Hidden Markov model
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e Probabilistic context-free grammar and Latent Dirichlet Allocation

e Bayesian Network (a generalisation of Naive Bayes)

e (Restricted) Boltzmann Machine

e Autoregressive model (https://www.georgeho.org/deep-autoregressive-models/)
e https://en.wikipedia.org/wiki/Energy-based_model

e https://en.wikipedia.org/wiki/Generative_adversarial_network (GAN): Two ANNs
contest with each other in the form of a zero-sum game, where one agent’s gain is another
agent’s loss.

e https://en.wikipedia.org/wiki/Variational_autoencoder
e https://en.wikipedia.org/wiki/Flow-based_generative_model

— NICE: Nonlinear Independent Components Estimation
— Real Non-Volumne Preserving (Real NVP)
— Generative Flow (Glow) Network
— Masked Autoregressive Flow (MAF)
— Continuous Normalising Flow (CNF)
e https://en.wikipedia.org/wiki/Diffusion_model : Constructing a sequence of de-
noising decoders to generate data from noise.
— Denoising Diffusion Probabilistic Model (DDPM)
— Score-Based Generative Model (SGM)

— Score Stochastic Differential Equations

Diffusion Normalising Flow : “Diffusion + Flow”

— DiffFlow : “Diffusion Model + GAN”

4.4.1 Encoder-Decoder Architecture

Encoder-Decoder Architecture is a kind of unsupervised learning which is to “compress images”,
to obtain “super-resolution of images” or to “highlight regions of images” (e.g. identify tumour),
to encode machine translation of a source language (e.g. Malay language) to a target language
(e.g. Chinese language).

V n Feature 2n Feature 4n Feature 2n Feature n Feature
Maps Maps Maps Maps Maps

H L J L )

Input Image Encoder Part Decoder Part Output Image

FIGURE 5. In an encoder-decoder CNN, the feature maps are spatially compressed by an encoder network, then increased back to the size of the output
image by a decoder network.

Source: https://www.khoury.northeastern.edu/home/hand/teaching/
cs6140-fall-2021/Neural_Network_Architectures_for_Images.pdf
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Autoencoder

https://en.wikipedia.org/wiki/Autoencoder is an unsupervised learning model such that
h(x) =~ x. It is used for dimensionality reduction and for learning generative models of data.

decoder
encoder

One famous autoencoder is the https://en.wikipedia.org/wiki/U-Net which is used in
biomedical image segmentation.
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Source: https://www.khoury.northeastern.edu/home/hand/teaching/
056140—fall—2021/Neural_Network_Architectures_for_Images.pdf

Variational Autoencoder (VAE)

https://en.wikipedia.org/wiki/Variational_autoencoder is an artificial neural network
architecture introduced by Diederik P. Kingma and Max Welling (2013). It is part of the families
of probabilistic graphical models and variational Bayesian methods.

Latent

Input Encoder Space

Decoder Output
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4.4.2 Generative Adversarial Network (GAN)

https://en.wikipedia.org/wiki/Generative_adversarial_network is a class of machine
learning frameworks containing two distinct neural networks working in tandem to produce
an output from the input. The concept was initially developed by Ian Goodfellow and his
colleagues in June 2014. In a GAN, the two neural networks contest with each other in the
form of a zero-sum game, where one agent’s gain is another agent’s loss.

Discriminator input Target output
)
Noise vector |:>E> Fake image E> Discriminator |:> 0
~—
)
Real image |:> Discriminator |:> 1
-~

Within GANs are subtypes that have unique architectures, such as:

e Vanilla GAN: This is the basic version of a GAN that needs to be adapted for many
specific real-world applications.

e CycleGAN: The cycle-consistent generative adversarial network, or https://junyanz.
github.io/CycleGAN/, is useful for image-to-image translation, moving an image from
one domain to another.

e DCGAN: Deep convolutional generative adversarial network, or DCGAN (https://arxiv.
org/abs/1511.06434, leverages CNNs for more powerful image generation.

o Text-2-image: A text-2-image GAN can create novel images from text-based descriptions,
such as adding specific eye colour to a generated face.

4.4.3 Applications

The Al based on generative models is usually called “generative AI”.
Examples of Generative Al include:

e DeepSeck3 and DeepSeekR1: open source large language model (LLM) and reasoning
model;

e ChaptGPT (and GPT-40): closed source large language models (and reasoning model)
created by OpenAl, backed by Microsoft;

e DALL-E 3 (https://openai.com/dall-e-3): image generation tool created by OpenAl,;
e Google Gemini (former Bard): large language model created by Google.

e Stable Diffusion 3 (https://stability.ai/stable-image): text to image generation
tool created by stability.ai (they also offer video, audio, 3D and language generation
models);

Generative models for real-world applications include

e Health care and pharmaceuticals:

— Enhancing medical images: Generative Al can augment medical images like X-rays
or MRIs, synthesise images, reconstruct images, or create reports about images. This
technology can even generate new images to demonstrate how a disease may progress
in time.
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— Discovering new medicines: Researchers can use generative Al called generative de-
sign to develop new medicines.

— Simplify tasks with patient notes and information: Healthcare professionals keep and
take notes about patient medical care. Generational Al can build patient information
summaries, create transcripts of verbally recorded notes, or find essential details in
medical records more effectively than human efforts.

— Personalised treatment: Generative Al can consider a large amount of patient in-
formation, including medical images and genetic testing, to deliver a customised
treatment plan tailored to the patient’s needs.

e Media and entertainment (relevant to Content Creators / YouTubers): Generative models
can be used in generating images, summary of reports and subtitles (speech to text) for
online social media.

— Create audio and visual content: Generative Al can create new video content from
scratch, create visual content faster by creating visual effects, adding graphics, or
streamlining editing.

— Manage tags for better content management: Generative Al can tag and index ex-
tensive media libraries, making locating the files you need at any time easier. Similar
to our manufacturing example above, generative Al allows using conversational lan-
guage to find the information or media you're looking for in a complex media library.

e Advertising and marketing:

— Generate marketing text and images: Generative Al can help marketing professionals
create consistent, on-brand text and images to use in marketing campaigns in many
languages.

— Generate personalised recommendations: Generative Al helps create powerful rec-
ommendation engines to help customers discover new products they might like.

— Create product descriptions: Beyond flashy advertising campaigns, generative Al
can help with tedious or time-consuming content requirements like creating product
descriptions.

— Enhance search engine optimisation (SEO): SEO professionals can use genera-
tive Al for tasks like image tags or page titles or to create content drafts. Tools like
ChatGPT or Bard can be used to provide recommendations that could make content
that improve SEO ranking.

e Manufacturing

— Accelerating the design process: Using generative Al engineers and project managers
can work through the design process much faster by generating design ideas and
asking the AI to assess ideas based on the constraints of the project.

— Provide smart maintenance solutions for equipment: Maintenance professionals can
use generative Al to track the performance of heavy equipment based on historical
data, potentially alerting them to trouble before the machine malfunctions. Gener-
ative Al can also recommend routine maintenance schedules.

— Improve supply chain: Generative Al can help tracking down the cause of problems
in the supply chain by speaking conversationally with the technology to sort through
a vast amount of transactional or product data. Generative Al can also help generate
delivery schedules or recommendations for suppliers.

e Software development
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— Generating code: Software developers can create, optimise, and auto-complete code
with generative Al. Generative Al can create code blocks by comparing them to a
library of similar information.

— Translate programming languages: Generative Al can be a tool for developers to
interact with software without needing a programming language. The generative Al
would act as a translator.

— Automate testing: Developers can improve their automated testing processes using
generative Al to highlight potential problems and execute testing sequences faster
than other AT methods. Generative Al can learn the logic of the software and how
users will interact with it and create test cases to demonstrate various user scenarios.

e Financial services

— Create investment strategies: Generative Al can recommend the best investments
according to client’s goals. This technology can find and execute trades much faster
than human investors and can do so within the parameters you set for the kind of
transaction you want.

— Communicate and educate clients and investors: Financial services professionals
sometimes need to communicate complex information to clients and colleagues. Gen-
erational Al can provide personalised customer service without adding more customer
service professionals.

— Quickly draft documentation and monitor regulation: Generative Al can monitor
regulatory activity, keep you informed of any changes, and create drafts of documents
such as investment research or insurance policies.
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