Topic 7: Ensemble Methods (Meta-Learning

Algorithms)

7.1

7.2

7.3

Average Methods i 180
7.1.1 Bagging 180
7.1.2 Random Forest & Extremely Randomised Trees. 184

Boosting i i i e e e e e e e e e e e e e e e e e 188
7.2.1 AdaBoost (Adaptive Boosting) oL 188
7.2.2 (Generalised) Gradient Boosting 191
7.2.3 Various Open-Source Extension: XGBoost 194
7.2.4 Various Open-Source Extension: LightGBM 196
7.2.5 Various Open-Source Extension: CatBoost 196

SUmmary v v v i e s e 199

Ensemble methods are “meta-algorithms” which combine two or more predictions from
“basic” predictive models into one model which is more robust than the basic predictive
models by reducing the overfitting and/or variance issue with the ensemble of basic predic-
tive models. [Abbott, 2014, Chapter 10].

There are two families of ensemble methods:

e Averaging Methods: The driving principle is to build several estimators indepen-
dently based on bootstrap sampling and then average their predictions. The combined
estimator is usually better than any of the single base estimator because its variance
is reduced. Examples:

Majority Voting: For a set of training data D, predictive model h; (e.g. kNN),
ha (e.g. logreg), ..., h, (e.g. naive bayes) are trained and all will be used in pre-
diction, the output will be the majority. In Python, we have VotingClassifier,
VotingRegressor.

Bagging (Section 7.1.1): For a set of training data D, we construct boostraped
samples D1, ..., Dg from D by sampling uniformly, then train on an algorithm h
to get hp,, ..., hp,. Finally, take majority vote from them in prediction.
Random Forest (Section 7.1.2): We fit decision trees on different bootstrap sam-
ples and for each decision tree, we select a random subset of features, m,
(e.g logy p + 1) at each node to decide upon the optimal split.

Stacking, Blending (see https://www.analyticsvidhya.com/blog/2018/06/
comprehensive-guide-for-ensemble-models/), etc. E.g. StackingClassifier
StackingRegressor are available in Python’s scikit-learn.

¢ Boosting Methods: Base estimators are built sequentially and one tries to reduce
the bias of the combined estimator. The motivation is to combine several weak models
to produce a powerful ensemble. Examples:

Adaptive Boosting (Section 7.2.1)
Gradient Boosting (Section 7.2.2)

179

U

180 TOPIC 7. ENSEMBLE METHODS (META-LEARNING ALGORITHMS)

Despite the interpretability, decision trees do not have the same level of predictive accuracy
as other predictive models. Decision trees are unstable as they produce drastically different
trees from slight different train sets. In technical terms, decision trees suffer from high vari-
ance. By using ensemble methods like bagging, random forests and boosting, the predictive
performance of trees can be improved and averaging the trees leads to the reduction in variance
[James et al., 2013, Section 8.1.4].

In this topic, H will denote the hypothesis class, a set of classifiers with large bias and usually
high training error (e.g. CART trees with very limited depth.)

In his machine learning class project in 1988, https://en.wikipedia.org/wiki/Michael_
Kearns_(computer_scientist) famously asked the question: Can weak learners i be combined
to generate a strong learner with low bias?

In 1990, https://en.wikipedia.org/wiki/Robert_Schapire showed that we can! The
solution is to create ensemble classifier

T
Hp(Z) =) ahy(x).
t=1

built in an iterative fashion. In iteration ¢ we add the classifier aihi(x) to the ensemble. At
test time we evaluate all classifier and return the weighted sum.

7.1 Average Methods

Popular averaging methods are https://en.wikipedia.org/wiki/Bootstrap_aggregating,
https://en.wikipedia.org/wiki/Random_forest and extra trees.

7.1.1 Bagging

Bagging is an abbreviation for bootstrap aggregation [Lindholm et al., 2022, Chapter 7|:

e Bagging averages a given class of predictive models over many samples to reduce
its variance by maintaining the bias and produces smoother decision boundaries.
However, we need to note that more ensemble members does not make the resulting
model more flexible.

e [t reduces overfitting and works best with strong and complex models such as fully
developed decision trees.

Lindholm et al. [2022] pointed out that the “dropout” used in the training of ANN is a
bagging-like technique.

Example 7.1.1. An illustration of Bagging with 5 bootstraps for the predictive model A is

shown below.

Original Bootstrapl Bootstrap2 Bootstrap3 = Bootstrap4 = Bootstrap5 |
Index D1.Index D2.Index D3.Index D4.Index D5.Index

= =
ArWOONO WO O
=

=

O ~NO © O ~NOoUg NPk

O RPN ONOOOO~N
=

O WO ~NO O NMWNER
OO0 Oo MO O OO ©
WO AARrNRKRNMOORN

[N
o0
>'g
=
o0
>'g
N
=
UJ'U
w
=
g
=
=
0lg
(2]

Predict(X)

7.1. AVERAGE METHODS 181

Bagging is a strategy to reduce the variance term in the bias-variance decomposition (6.7),
i.e. making hp — h. The following theoretical analysis of bagging is based on Professor Kilian
Q. Weinberger’s CS4780.

The weak law of large numbers says for i.i.d. random variables X; with mean X, we have,

Assume we have B training sets Dy, ..., Dp drawn from P™. If we apply this idea to classifiers,
averaging the classifiers trained on each D; should approximate a less bias classifier h:

B
ﬁ:é;h[)i—ﬂz as B = oo.

We refer to such an average of multiple classifiers as an ensemble of classifiers.

The good news is, if h — R the variance component of the error must also vanish, i.e.
E,[(h(z) — A(x))?] - 0.

The problem is, we don’t have B data sets Dy,, Dp, we only have D.

What we can do is to simulate drawing from P by drawing uniformly with replacement from
the set D, i.e. let Q(X,Y|D) be a probability distribution that picks a training sample (x;, ;)
from D uniformly at random. More formally,

Qi 9)ID) = - Veiw) €D, n=|D|

We sample the set D; ~ Q", i.e. |D;| = n, and D; is picked with replacement from Q|D.
The bagged predictive model

o~

B
1 ~
hp = B E hp, (regressor); hp =mode{hp,, -+ ,hp,}, (classifier). (7.1)

=1

won’t approximate A in general:
hp = h.
because the weak law of large number only works for i.i.d. samples.
However, in practice bagging still reduces variance very effectively.
Although we cannot prove that the new samples are i.i.d., we can show that they are drawn
from the original distribution P. Assume P is discrete, with P(X = x;) = p; over some set
Q =ux1,..en (N very large) (let’s ignore the label for now for simplicity)

" /n _ k 1 e=/n e 1
Qux=a) =3 (1)a-pr B IS (gt = L=,
k=1

k=1 S~~~
~ ~ Probability o
Probability that are pick one of Expected value of
k copies of x; in D these copies Binomial Distribution
with parameter p;
E[B(ps,n)]=np;

Each data set Dj is drawn from P, but not independently.

There is a simple intuitive argument why Q(X = ;) = P(X = x;). So far we assumed that
we draw D from P™ and then @ picks a sample from). However, we don’t have to do it in
that order. We can also view sampling from @ in reverse order: Consider that we first use @ to
reserve a “spot” in D, i.e. a number from 1,...,n, where i means that we sampled the i data
point in D. So far we only have the slot, ¢, and we still need to fill it with a data point (z;, y;).
We do this by sampling (z;,¥;) from P. It is now obvious that which slot we picked doesn’t
really matter, so we have Q(X = z) = P(X = z).

In summary, a bagging of the algorithm A involves three steps:

182 TOPIC 7. ENSEMBLE METHODS (META-LEARNING ALGORITHMS)

1. Sample B data sets D1, ..., Dg from D with replacement.
2. For each D; train a classifier hp,.

3. The final classifier is (7.1).

Note that larger B results in a better ensemble, however at some point we will obtain diminishing
returns. Note that setting B unnecessarily high will only slow down the classifier but will not
increase the error of the classifier.

A Naive Implementation of Bagging of CART regressor in R

B=100
bagged_models=1ist ()
set.seed(12)
for(i in 1:B) {
bootstrap = sample(idx.train, size=length(idx.train), replace=T)
bagged_models = c(bagged_models, list(rpart(Y~.,
d.f.train[bootstrap],control=rpart.control (minsplit=6))))
¥
bagged_result=NULL
i=0
for (from_bag_model in bagged_models) {
if (is.null(bagged_result))
bagged_result=predict (from_bag_model ,new_X)
else
bagged_result=
(i*bagged_result+predict (from_bag_model ,new_X))/(i+1)
i=i+1

In R, there are a few libraries providing the bagging meta-algorithm. However, they are
not popularly. The ipred library, which stands for “improved predictive models by indirect
classification and bagging for classification, regression and survival problems” depends on the
lava (latent variable models) library, which in turn too many libraries. It provides a primitive
bagging method bagging. The package adabag implements Freund and Schapire’s Adaboost.M1
algorithm and Breiman’s Bagging algorithm using classification trees as individual classifiers
[Kuhn and Johnson, 2013, Chapter 8]. The package autoBagging implements rank bagging.
Both adabag and autoBagging depend on caret library, which in turn too many libraries.

In Python, bagging is available from the scikit-learn library.

class sklearn.ensemble.BaggingClassifier (estimator=None, n_estimators=10, *,
max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False,
oob_score=False, warm_start=False, n_jobs=None, random_state=None, verbose=0)

class sklearn.ensemble.BaggingRegressor(estimator=None, n_estimators=10, =*,
max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False,
oob_score=False, warm_start=False, n_jobs=None, random_state=None, verbose=0)

#from sklearn.neighbors import BaggingClassifier, KNeighborsClassifier
#bg=BaggingClassifier (KNeighborsClassifier () ,max_samples=0.6,max_features=0.4)

Here, max samples and max features control the size of the subsets (in terms of samples and

features), while bootstrap and bootstrap features control whether samples and features are

drawn with or without replacement. When using a subset of the available samples the general-

isation accuracy can be estimated with the out-of-bag samples by setting oob_score=True.
Advantages of Bagging

e Reduces variance, so has a strong beneficial effect on high variance classifiers.

7.1. AVERAGE METHODS 183

e As the prediction is an average of many classifiers, we obtain a mean score and variance.
The latter can be interpreted as the uncertainty of the prediction. Especially in regression
tasks, such uncertainties are otherwise hard to obtain. For example, imagine the prediction
of a house price is $300,000. If a buyer wants to decide how much to offer, it would be
very valuable to know if this prediction has standard deviation +$10, 000 or +$50, 000.

e Bagging provides an unbiased estimate of the test error, which we refer to as the out-of-
bag error. The idea is that each training point was not picked and all the data sets Dy.
If we average the classifiers hy of all such data sets, we obtain a classifier (with a slightly
smaller B) that was not trained on (x;,1;) ever and it is therefore equivalent to a test
sample. If we compute the error of all these classifiers, we obtain an estimate of the true
test error. The beauty is that we can do this without reducing the training set. We just
run bagging as it is intended and obtain this so called out-of-bag error for free.

More formally, for each training point (x;,y;) € D let S; = {k|(xi,y;) ¢ D} - in other
words S; is a set of all the training sets Dy, which do not contain (xg, yx). Let the averaged
classifier over all these data sets be

kesS;

The out-of-bag error becomes simply the average error/loss that all these classifiers yield

1 5
€00B = — > ihixi),).
(xi,y:)€D

This is an estimate of the test error, because for each training point we used the subset of
classifiers that never saw that training point during training. If B is sufficiently large, the
fact that we take out some classifiers has no significant effect and the estimate is pretty
reliable.

Despite the fact that bagging is not a complex method but calculation by hand is impossible,
therefore, relevant exam questions are usually theoretical.

Example 7.1.2 (SRM-02-18, Q12). Determine which of the following statements is true

(A) Linear regression is a flexible approach

(B) Lasso is more flexible than a linear regression approach

(C) Bagging is a low flexibility approach

(D) There are methods that have high flexibility and are also easy to interpret
(E) None of (A), (B), (C), or (D) are true

Solution:

(A) is false, linear regression is considered inflexible because the number of possible
models is restricted to a certain form.

(B) is false, the lasso determines the subset of variables to use while linear regression
allows the analyst discretion regarding adding or moving variables.

(C) is false, bagging provides additional flexibility.

(D) is false, there is a tradeoff between being flexible and easy to interpret.

Answer: (E)

184 TOPIC 7. ENSEMBLE METHODS (META-LEARNING ALGORITHMS)

7.1.2 Random Forest & Extremely Randomised Trees

e When random subsets of the dataset are drawn as random subsets of the samples without
replacement, then this algorithm is known as Pasting. E.g. R’s sample(nrow(d.f),
0.8*nrow(d.f))

e If samples are drawn with replacement, then the method is known as Bagging. E.g.
R’s sample(nrow(d.f), replace=TRUE)

e When random subsets of the dataset are drawn as random subsets of the features, then
the method is known as Random Subspaces.

e When base estimators are built on subsets of both samples and features, then the method
is known as Random Patches.

A random forest (RF), developed by Breiman and Cutler, is essentially bagged decision
trees, with a slightly modified splitting criteria.

e Sample m < p columns/features (mtry) randomly from the p features from D with
replacement as data D;. (Random Subspaces. If m = p, we have Bagging.)

e Grow a simple decision tree of level 1 or a CART tree for the bootstrap data Dy;

e Stop when 7" number of decision trees (ntree) are constructed. The random forest
is the collection of decision trees. The final classifier and regression are respectively
[Breiman, 2001]

1
h(@) = mode(hy(@)}. () = —— h% hi().

Example 7.1.3. An illustation of random tree with n = 10, p=4, m =2 and T' = 3 is given
below.

B | ¢ | b | e | F Ho| 1| J S N | M | n | o |
mtry =2
Original Bootstrapl Bootstrap?2 Bootstrap3

Index C1 [C2 |C3 [C4 | D1l.Index |C1 [C2 | D2.Index |C4 [C2 | D3.Index |[C3 |C1
1 9 1 7
2 9 7 5
3 3 5 6
4 8 10, 9
5 10 7 2
6 7 9 5
7 10 9 8
8 9 10, 2
9 3 7 1
10 4 5 9

h_D1 h_D2 b h D3

Predict(X) A A B

Remark 7.1.4. According to the paper “Bias in random forest variable importance measures:
Illustrations, sources and a solution”, bioinformatics face the so-called “small n large p”’ prob-
lem: Usual data sets in genomics often contain 10 of genes or markets that serve as predictor
variables but only for a comparatively small number n of subjects or tissue types. Logistic
regression and neural networks won’t work but the random forest works fine.

In R, randomForest, which implements Breiman’s random forest algorithm based on Breiman
and Cutler’s original Fortran code is the most popular library for random forest (and bagging
as a special case).

randomForest (x, y=NULL, xtest=NULL, ytest=NULL, ntree=500,

7.1. AVERAGE METHODS 185

mtry=if (!is.null(y) && !is.factor(y))

max (floor (ncol(x)/3), 1) else floor(sqrt(mcol(x))),
replace=TRUE, classwt=NULL, cutoff, strata,
sampsize if (replace) nrow(x) else ceiling(.632*nrow(x)),
nodesize = if (!is.null(y) && !'is.factor(y)) 5 else 1,
maxnodes NULL, importance=FALSE, locallImp=FALSE, nPerm=1,
proximity, oob.prox=proximity, norm.votes=TRUE, do.trace=FALSE,
keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE,
keep.inbag=FALSE, ...)

The cforest in party or partykit implements the random forest with conditional inference
trees (Section 5.4.3).

cforest (formula, data = list (), subset = NULL, weights = NULL,
controls = cforest_unbiased(),

xtrafo = ptrafo, ytrafo = ptrafo, scores = NULL)

Hyper parameters in cforest_control are:

1. The number of randomly preselected variables mtry, which is fixed to the value 5 by default
here for technical reasons, while in randomForest the default values for classification and
regression vary with the number of input variables.

2. The number of trees ntree. Use more trees if there are more input variables.

3. The depth of the trees, regulated by mincriterion. Usually unstopped and unpruned
trees are used in random forests. To grow large trees, set mincriterion to a small value.

The aggregation scheme works by averaging observation weights extracted from each of the
ntree trees and NOT by averaging predictions directly as in randomForest.
In Python, RF is available in scikit-learn ensemble module.

class sklearn.ensemble.RandomForestClassifier(n_estimators=100, *,

criterion=’gini’, max_depth=None, min_samples_split=2, min_samples_leaf

min_weight_fraction_leaf=0.0, max_features=’sqrt’, max_leaf_nodes=None
min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=Nong
random_state=None, verbose=0, warm_start=False, class_weight=None,
ccp_alpha=0.0, max_samples=None)

criterion: gini, entropy, log_loss

class sklearn.ensemble.RandomForestRegressor(n_estimators=100, =,
criterion=’squared_error’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=1.0,
max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True,
oob_score=False, n_jobs=None, random_state=None, verbose=0,
warm_start=False, ccp_alpha=0.0, max_samples=None)

criterion: squared_error, absolute_error, friedman_mse, poisson

Remarks on Python’s RandomForestClassifier:

e The default values for the parameters controlling the size of the trees (e.g. “max_depth®,
“min_samples_leaf*, etc.) lead to fully grown and unpruned trees which can potentially
be very large on some data sets. To reduce memory consumption, the complexity and size
of the trees should be controlled by setting those parameter values.

e The features are always randomly permuted at each split. Therefore, the best found
split may vary, even with the same training data, “max features=n features“ and “boot-
strap=False*, if the improvement of the criterion is identical for several splits enumerated
during the search of the best split. To obtain a deterministic behaviour during fitting,
“random_state“ has to be fixed.

186 TOPIC 7. ENSEMBLE METHODS (META-LEARNING ALGORITHMS)

The RF is a popular and easy to use out-of-the-box classifier due to reasons below:

e Simple RF only has two hyper-parameters, 7" and m. Most people set m = /p for
classification problems and m = p/3 for regression problems |[Lindholm et al., 2022]. We
can set T as large as we can afford.

e Decision trees do not require a lot of preprocessing. For example, the features can be of
different scale, magnitude, or slope. This can be highly advantageous in scenarios with
heterogeneous data, for example the medical settings where features could be things like
blood pressure, age, gender, ..., each of which is recorded in completely different units.

e Random forests can be used to rank the importance of variables in a regression or classi-
fication problem in a natural way.

The first step in measuring the variable importance in a data set

Do = {(Xa, Yo}y
is to fit a random forest to the data. During the fitting process the out-of-bag error for
each data point is recorded and averaged over the forest (errors on an independent test
set can be substituted if bagging is not used during training).
To measure the importance of the j-th feature after training, the values of the j-th feature
are permuted among the training data and the out-of-bag error is again computed on this
perturbed data set. The importance score for the j-th feature is computed by averaging
the difference in out-of-bag error before and after the permutation over all trees. The
score is normalised by the standard deviation of these differences.
Features which produce large values for this score are ranked as more important than
features which produce small values.
This method of determining variable importance has some drawbacks. For data including
categorical variables with different number of levels, random forests are biased in favour
of those attributes with more levels. Methods such as partial permutations and growing
unbiased trees can be used to solve the problem. If the data contain groups of correlated
features of similar relevance for the output, then smaller groups are favoured over larger
groups.

Manual calculation with RF is time consuming and so exam questions on RF are conceptual.

Example 7.1.5 (SRM-02-18, 310). Determine which of the following statements about random
forests is/are true?

1. If the number of predictors used at each split is equal to the total number of available
predictors, the result is the same as using bagging.

II. When building a specific tree, the same subset of predictor variables is used at each split.

ITI. Random forests are an improvement over bagging because the trees are decorrelated.

(A) None

(B) T and II only
(C) I and IIT only
(D) II and III only

(E) The correct answer is not given by (A), (B), (C), or (D).

Solution: II is false because with random forest a new subset of predictors is selected for
each split.
Answer: (C)

7.1. AVERAGE METHODS 187

Example 7.1.6 (SRM-02-18, Q41). For a random forest, let p be the total number of features
and m be the number of features selected at each split.
Determine which of the following statements is/are true.

I: When m = p, random forest and bagging are the same procedure.

II. 2™ is the probability a split will not consider the strongest predictor.
III: The typical choice of m is §.
(A) None
(B) T and II only
(C) I and III only
(D) II and IIT only
(E) The correct answer is not given by (A), (B), (C), or (D).

Solution:
I is true. Random forests differ from bagging by setting m < p.
IT is true. p — m represents the splits not chosen.
III is false. Typical choices are the square root of p or p/3.
Answer: (B)

Extremely Randomised Trees or Extra Trees (ET), construct multiple trees like RF
algorithms during training time over the entire dataset. During training, the ET will construct
trees over every observation in the dataset but with different subsets of features usually without
bootstrapping. Furthermore, when constructing each decision tree, the ET algorithm splits
nodes randomly. The differences between ET and RF are stated in the following table.

RF ET

Sample subsets through bootstrapping
Nodes are split by selecting the best split
medium variance

it takes time to find the best split

samples the entire training dataset
randomised node split

low variance

faster since node splits are random

The main advantage of ET is the reduction

in bias. This is in terms of sampling from the

entire dataset during the construction of the trees. Different subsets of the data may introduce
different biases in the results obtained, hence ET prevents this by sampling the entire dataset.

Another advantage of ET is that they reduce variance. This is a result of the randomised
splitting of nodes within the decision trees, hence the algorithm is not heavily influenced by

certain features or patterns in the dataset.

class sklearn.ensemble.ExtraTreesClassifier(n_estimators=100, =*,

criterion=’gini’,
min_samples_leaf=1,
max_leaf_nodes=None,
oob_score=False, n_jobs=None,
warm_start=False,
criterion:

max_depth=None,

gini, entropy, log_loss

class_weight=None,

min_samples_split=2,

min_weight_fraction_leaf=0.0,
min_impurity_decrease=0.0,

random_state=None,

max_features=’sqrt’,
bootstrap=False,
verbose=0,
ccp_alpha=0.0, max_samples=None)

class sklearn.ensemble.ExtraTreesRegressor (n_estimators=100, *,

criterion=’squared_error’,
min_samples_leaf=1,
max_leaf_nodes=None,
oob_score=False, n_jobs=None,
warm_start=False, ccp_alpha=0.0,
criterion: squared_error,

max_depth=None,
min_weight_fraction_leaf=0.0,
min_impurity_decrease=0.0,
random_state=None,
max_samples=None)
absolute_error,

min_samples_split=2,

max_features=1.0,

bootstrap=False,
verbose=0,

friedman_mse, poisson

188 TOPIC 7. ENSEMBLE METHODS (META-LEARNING ALGORITHMS)

7.2 Boosting

Boosting tries to boost “base predictive models” which are weak (high-bias) (e.g. trees
with a depth 1 (equivalent to 1 feature)) to become “strong learners” by reducing bias in
high-bias base models [Lindholm et al., 2022].

There are two broad categories of boosting: (a) adaptive boosting; (b) gradient boosting;
and a few less popular methods such as https://en.wikipedia.org/wiki/LogitBoost
(implemented in R’s ada library).

7.2.1 AdaBoost (Adaptive Boosting)

Assume that we have binary classification problem with y; € {41, —1} and weak learners h € H
are binary, h(zx;) € {—1,+1}, Vo. We perform line-search to obtain best step-size . Let the
loss function be the exponential loss [Schapire and Freund, 2012]:

n

E(H) _ Z e_yiH(Xi)‘

i=1
To find the best weak learner, we first compute the gradient

OH (x;)

For notational convenience, let us define w; = %e‘yiH(“”), where Z = >0, e Vi) jg g
normalising constant so that > " ; w; = 1. Note that the normalising constant Z is identical
to the loss function. Each weight w; therefore has a very nice interpretation. It is the relative
contribution of the training point (x;,y;) towards the overall loss.

In order to find the best next weak learner, we need to solve the optimization problem: (in
the following, we will make use of the fact that h(x;) € {+1,—1}.)

h(x;) = argminz rih(x;) (substitute in: r; = e_H(mi)yi)
heH 7
n
= argmin — Z yie_H(mi)yih(mi) (Substitute in: w; = %e‘H(“’i>yi)
heH —1
= argr?ﬂin— Z wiyih(x;) (yih(:vi) € {+1, -1} with h(x;)y; =1 <= h(x;) = yz)
< i=1
= argmin Z w; — Z wW; (Z w; =1— Z wi)
hel i:h(mi)#yi i:h(mi):yi i:h(:ﬂi)Zyi i:h(mﬂ#yi
= argmin w; (This is the weighted classification error.)
P (@),

Let us denote this weighted classification error as € = Zi:h(xi)yi:_l w;. So for AdaBoost,
we only need a classifier that can take training data and a distribution over the training set
(i.e. normalzied weights w; for all training samples) and which returns a classifier h € H that
reduces the weighted classification error of these training samples. It doesn’t have to do all that
well, in order for the inner-product), r;h(x;) to be negative, it just needs less than € < 0.5
weighted training error.

In GBRT, we set the stepsize o to be a small constant. As it turns out, in the AdaBoost
setting we can find the optimal stepsize (i.e. the one that minimises ¢ the most) in closed form
every time we take a “gradient” step.

When we are given ¢, H, h, we would like to solve the following optimization problem:

7.2. BOOSTING 189

o = argmin{(H + ah) = argminz e VilH (xi)+ah(xi)]
@ ¢ =1
We differentiate w.r.t. o and equate with zero:

S yih()e GHO w0 =0 (yih(x;) € {+1,-1})
=1

— (i H(x:)+ayih(x;)) —(yiHx)+ayih(xX;))

> RS> T =0 (mm ge)
—_ e e - = w; = — B B
T Ze
ith(x;)yi=1 ith(x;)yi=—1
- Z wie” " + Z wie® =0 (e = Z wz)
i:h(x;)yi=1 ith(x;)yi=—1 w:h(xi)yi=—1
—(l—€e “+e”=0
e? = lieﬁazllnlie.
€ 2 €

It is unusual that we can find the optimal step-size in such a simple closed form. One
consequence is that AdaBoost converges extremely fast.

After you take a step, i.e. Hyr1 = H; + ah, you need to re-compute all the weights and
then re-normalize. It is however straight-forward to show that the unnormalized weight w; is
updated as

’LILL' — U/}i * €_ah(xi)yi

Z < Z*2\/e(l —e).

Putting these two together we obtain the following multiplicative update rule:

and that the normalizer Z becomes

e—ah(xi)yi
2/e(T—¢)

The (adaptive) boosting algorithm is as follows.

Wy <— W;

1. Initialise all weights to w = % where n is the number of instances in the dataset
2. For t := 0 to T, the number of models to be grown, do:

e Create a model and get the hypothesis h(z,,) for all datapoints x,, in the dataset;

Calculate the error € of the training set summing over all datapoints x,, in the
training set with:

SNl Iy # he(xn))

€t =

i 1 w!
where I(cond) returns 1 if I(cond) == True and 0 otherwise
e Compute o with:
1—
ar = log(Et)

€t

Update the weights for the N training instances in the next (¢ + 1) model with:

wi™ = wl - exp(ay - I(yn # hel(zn)))

T
3. After the T iterations, calculate the final output with: h(z) = sign(z ot - he(x)).
t

190 TOPIC 7. ENSEMBLE METHODS (META-LEARNING ALGORITHMS)

Remark 7.2.1. e Aslong as H is negation closed (this means for every h € H we must also
have —h € H), it cannot be that the error € > % The reason is simply that if h has error
€, it must be that —h has error 1 —e. So you could just flip h to —h and obtain a classifier
with smaller error. As h was found by minimizing the error, this is a contradiction.

e The inner loop can terminate as the error € = %, and in most cases it will converge to %

over time. In that case the latest weak learner h is only as good as a coin toss and cannot
benefit the ensemble (therefore boosting terminates). Also note that if € = % the step-size
a would be zero.

Example 7.2.2. In Adaboost, the “shortcomings” are identified by high-weight datapoints.
For a data with 10 samples, we have

" Choose X1, X2, X3forh 1 [Choose X1| X2, X3 for h_2
Data Let's say X2 wins out Let's say X3 wins out
Index [X1]|X2|X3| Y |D1[i]| Err X2| Y |D2[i] formula D2[]]" D2Ii] Index [X3|Y

0.1 '=G8*EXP(-J17) 0.05 0.063
0.1 '=G8*EXP(-J17) 0.05 0.063
'=G8*EXP(J17) 02 0.25
'=G8*EXP(-J17) 0.05 0.063

I;]I\)_.
o|o
5
n

0.1 '=G8*EXP(-J17) 0.05 0.083
0.1)Yes '=G8*EXP(J17) 0.2 0.25 1
7 0.1 '=G8*EXP(-J17) 0.05 0.063 10
g 0.1 '=G8*EXP(-J17) 0.05 0.063| 9
9 0.1 '=G8*EXP(-J17) 0.05 0.0863 7|
10] 0.1 '=G8*EXP(-J17) 0.05 0.063 4
Stumps: h_1 0.8 h_2
errt 0.2 Z1
alpha_1=
0.693147

(Tree) boosting averages many trees, each grown to re-weighted versions of the training
data, hence classifies the data by weighted majority vote. Boosting grows trees sequentially:
each tree is grown using information from previously grown trees. It does not involve bootstrap
sampling; instead each tree is fit on a modified version of the original data set. Unlike bagging,
boosting fit a decision tree using residuals (for regression problem, it is usually the RSS, in
general, it is loss function) of a model, rather than the outcome Y. The mathematical theory
of boosting is given in Mohri et al. [2018, Chapter 7).

Let us examine the two kinds of updates.

The weight update:

wW; 4— W; * e—ah(xi)yi’
as, h(x;)y; is either +1 (if classified correctly by this weak learner) or —1 (otherwise), it follows
that this weight update multiplies the weight w; either by a factor e® > 1 if it was classified
incorrectly (i.e. increases the weights), or by a factor e~ < 1 if it was classified correctly (i.e.
decreases the weight).

The normalisation update:

Z < Zx2v/€e(l —e).

Previously we established that the normalizer 7 is identical to the loss. We can therefore use
it to bound the loss function after 7" iterations:

T
((H) =Z=n]]2Ve(l—e),

(the factor n comes from the fact that the initial Zy = n, when all weights are %) If we define
¢ = max te;, we can establish

(H)<n [2 (1= c)]T.

7.2. BOOSTING 191

The function ¢(1—c¢) is maximized at ¢ =
would have terminated). Therefore ¢(1 —
some «. This leaves us with

But we know that each ¢; < % (or else the algorithm
) < 1 and we can re-write it as ¢(1 —¢) = } — 2, for

o N

((H)<n(1- 4*)/2)% .
In other words, the training loss is decreasing exponentially!

In fact, we can go even further and compute after how many iterations we must have zero
training error. Note that the training loss is an upper bound on the training error (defined
as Z?zl 5H(x1-)75yi) - simply because 5H(xi)#yi < e M) in all cases. We can then compute
the number of steps required until the loss is less than 1, which would imply that not a single
training input is misclassified.

2log(n)

n(1—4m/2)%<1:T> .
log(1—f=)
This is an amazing result. It shows that after O(log(n)) iterations your training error must be
zero. In practice it often makes sense to keep boosting even after we make no more mistakes
on the training set.

In R, adaboost is implemented in https://github.com/benob/icsiboost, ada, JOUSBoost,
adabag (depends on caret), and the no longer supported fastAdaboost.

library (JOUSBoost)
adaboost (X, y, tree_depth = 3, n_rounds = 100, verbose = FALSE,
control = NULL) # uses rpart.control

In Python, random forest is available in the scikit-learn ensemble module.

sklearn.ensemble.AdaBoostClassifier (estimator=None, *, n_estimators=50,
learning _rate=1.0, algorithm=’SAMME.R’, random_state=None)

sklearn.ensemble.AdaBoostRegressor(estimator=None, ¥, n_estimators=50,
learning _rate=1.0, loss=’linear’, random_state=None)

7.2.2 (Generalised) Gradient Boosting

(Generalised) Gradient boosting (in particular, Gradient Boosted Regression Tree) is one of the
most popular class of predictive models for learning to rank, the branch of machine learning
focused on learning ranking functions, for example for web search engines.

It is an extension to Freund and Schapire’s AdaBoost algorithm (Section 7.2.1 and Fried-
man’s gradient boosting machine, which adopts AdaBoost’s exponential loss function and Fried-
man’s gradient descent algorithm [Ridgeway, 2007]. It incorporates different loss functions and
therefore includes adaptive boosting as a special case. Let £ denote a (convex and differentiable)
loss function. With a little abuse of notation we write

() = 3" s H(w). (7.2)
i=1

Assume we have already finished ¢ iterations and already have an ensemble classifier H;(x).
Now in iteration t + 1 we want to add one more weak learner h**! to the ensemble. To this end
we search for the weak learner that minimises the loss the most,

R = argmin ¢(H; + ah®). (7.3)
heH

Once h'*! has been found, we add it to our ensemble, i.e. Hyy 1 := H; + ah!t!.

192 TOPIC 7. ENSEMBLE METHODS (META-LEARNING ALGORITHMS)

Apart from the boostrapping method, we can find such h € H using gradient descent in
function space. In function space, the inner product can be defined as (h,g) = [h(z)g(x)dx.
X

Since we only have training set, we define
(hog) = hlwi)g(:).
i=1
Given H, we want to find the step-size @ and (weak learner) h to minimise the loss ¢(H +ah).
By applying the Taylor Approximation on ¢(H + «h),
UH+ah)~l(H)+a(VL{H),R). (7.4)

This approximation (of £ as a linear function) only holds within a small region around ¢(H), i.e.
as long as « is small. We therefore fix it to a small constant (e.g. o~ 0.1). With the step-size
a fixed, we can use the approximation above to find an almost optimal h:

argmin /(H + ah) =~ argmin(V{(H), h) = argminz ih(xl) (7.5)
heH heH heH O[H (x;

We can write £(H) = > | ((H(x;)) = ¢(H(x1), ..., H(xy,)) (each prediction is an input to the

loss function) g—é(xq;) = % So we can do boosting if we have an algorithm A to solve
—~ o
AL = argmin Y ———— h(z).
e o)
———

i

We need a function

A{(z1,7m1),. .., (®n,10)}) = arf;géﬁin; rih(x;).

To make progress, h does not have to be great. We still make progress as long as > | rih(x;) <
0. A generic boosting (a.k.a Anyboost) algorithm is summarised below.

¢ Require:
— An inner product space (X, (,)) containing functions mapping from X to some
set Y.
— A class of base classifiers H C X.
— A differentiable cost functional C': lin(H) — R
— A weak learner C(H) that accepts H € lin(H) and returns h € H with a large
value of —(VC(H), h).
e Let Hyo(z) :=O.
e fort:=0to 7 do
— Let ht+1 = L(Ht)
— if —(VC(Hy), ht+1) < 0 then return H;.
— Choose w4 1.

— Let Hyy1:= Hy +wip1hi

e return Hyp .

A few additional things to know:

7.2. BOOSTING 193

e The step size « is often referred to as shrinkage.

e Some people do not consider gradient boosting algorithms to be part of the boosting
family, because they have no guarantee that the training error decreases exponentially.
Often these algorithms are referred to as stage-wise regression instead.

e Inspired by Breiman’s Bagging, stochastic gradient boosting subsamples the training data
for each weak learner. This combines the benefits of bagging and boosting. One variant
is to subsample only n/2 data points without replacement, which speeds up the training
process.

e One advantage of boosted classifiers is that during test time the computation H(x) =
Z?:l ath!(x) can be stopped prematurely if it becomes clear which way the prediction
goes. This is particularly interesting in search engines, where the exact ranking of results
is typically only interesting for the top 10 search results. Stopping the evaluation of lower
ranked search results can lead to tremendous speed ups. A similar approach is also used
by the Viola-Jones algorithm to speed up face detection in images. Here, the algorithm
scans regions of an image to detect possible faces. As almost all regions and natural
images do not contain faces, there are huge savings if the evaluation can be stopped after
just a few weak learners are evaluated. These classifiers are referred to as cascades, that
spend very little time on the common case (no face), but more time on the rare interesting
case (face). With this approach Viola and Jones were the first to solve face recognition in
real-time on low performance hardware (e.g. cameras).

A gradient boosting procedure builds iteratively a sequence of approximations
Fl.RPF SR, t=0,1,2,..

in a greedy fashion, i.e. F' is obtained from the previous approximation F*~! in an additive
manner: F! = F'~1 4 ah! where « is a step size (a hyperparameter) and function A’ : R? — R
is a base predictor chosen from a family of functions H (e.g. decision trees of a fixed-depth)
in order to minimise the expected loss:
h' = argminE [((y, '~ ' (z) + h(z))] = argmin L(F*™! + h). (7.6)
heH heH
The minimisation problem is usually solved by the Newton method or the steepest descent

method using a second-order approximation of £(F'=! + h?) at F'~1 or by taking a (negative)
gradient step. In particular, the gradient step h! is chosen to approximate

G,
— / —_
g(@,y) = —5 ly.s) =)

When £ is the square loss/gaussian and o = 1, the gradient boosting algorithm is summarised
below.

Input: training set {(x;,y:)};=, a differentiable loss function ¢(y, F'(x)).
1. Initialise model with a constant value
n
FOz) := argminz L(yi,y)-
Y=l
2. Fort:=1toT do

(a) Compute the negative gradient as the working response: For all i =1 to n,

9 11
Ti,t — —gf(yi, S) Sth_l(mi) =i — F (ZEZ)

194 TOPIC 7. ENSEMBLE METHODS (META-LEARNING ALGORITHMS)

(b) Fit a base learner (or weak learner, e.g. tree) h'(z) to pseudo-residuals, i.e. train
it using the training set {(z;,r;¢)}0 ;.
(¢) Compute multiplier v by solving the following 1D optimisation problem:

Yo = argminz Ay F* @) + yhi (25) = argminz(Ft_l(mi)Jrvht(mi)—yi)g.
7=l 7=

(d) Let Fi(z) := F'" () + ~:h'(x)
3. Return FT(z).

The gradient boosting is implemented in the package gbm and has the following syntax.

gbm(formula = formula(data), distribution = "bernoulli',
data = list(), weights, var.monotone = NULL, n.trees = 100,
interaction.depth = 1, n.minobsinnode = 10, shrinkage = 0.1,

bag.fraction = 0.5, train.fraction = 1, cv.folds = 0, keep.data = TRUE
verbose = FALSE, class.stratify.cv = NULL, n.cores = NULL)

Practical 12 (regression problem)
#model = gbm(Sales ~ ., "gaussian", data=data.train)
#yhat = predict(reg.model, data.train)

The n.trees is the number of iterations 7T'; the interaction.depth is the depth of each tree; the
shrinkage is the learning rate a, the bag.fraction is the subsampling rate; the distribution
is the loss function ¢ in (7.6) and has the options: gaussian (squared error), laplace (absolute
loss), tdist (t-distribution loss), bernoulli (logistic regression for 0-1 outcomes), huberized
(huberized hinge loss for 0-1 outcomes), adaboost (the AdaBoost exponential loss for 0-1 out-
comes), poisson (count outcomes), coxph (right censored observations), quantile or pairwise
(ranking measure using the LambdaMart algorithm).
In Python, the implementations in scikit-learn library are shown below.

sklearn.ensemble.GradientBoostingClassifier (x, loss=’log_loss’,
learning_rate=0.1, n_estimators=100, subsample=1.0,
criterion=’friedman_mse’, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0,
init=None, random_state=None, max_features=None, verbose=0,
max_leaf_nodes=None, warm_start=False, validation_fraction=0.1,
n_iter_no_change=None, to0l=0.0001, ccp_alpha=0.0)

sklearn.ensemble.GradientBoostingRegressor (*, loss=’squared_error’,
learning _rate=0.1, n_estimators=100, subsample=1.0,
criterion=’friedman_mse’, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0,
init=None, random_state=None, max_features=None, alpha=0.9, verbose=0,
max_leaf_nodes=None, warm_start=False, validation_fraction=0.1,
n_iter_no_change=None, t0l=0.0001, ccp_alpha=0.0)

7.2.3 Various Open-Source Extension: XGBoost

Various generalisations/variations of gradient boosting algorithm are developed by commercial
coorporations as open source software. The most popular are the Distributed (Deep) Machine
Learning Community (DMLC) group’s XGBoost and the (Microsoft) Light GBM and a newer
model is the (Yandex) CatBoost.

https://en.wikipedia.org/wiki/XGBoost (eXtreme Gradient Boosting) is an open-source
software library which provides a regularizing gradient boosting framework. It is an optimised

7.2. BOOSTING 195

distributed gradient boosting library designed to be highly efficient, flexible and portable. XG-
Boost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data
science problems in a fast and accurate way. The same code runs on major distributed envi-
ronment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

It works as Newton-Raphson in function space unlike gradient boosting that works as gradi-
ent descent in function space, a second order Taylor approximation is used in the loss function
to make the connection to Newton Raphson method.

A generic unregularized XGBoost algorithm is given in https://en.wikipedia.org/wiki/
XGBoost:

Input: training set {(xi,y;)}i; a differentiable loss function £(y, F'(x)), a number of weak
learners M and a learning rate «.

1. Initialise model with a constant value

Fo(z) := argminz L(yi,y)-
7=l

2. Fort:=1toT do

(a) Compute the ‘gradients’ and ‘hessians’:

82

£(yi,s) :

stioy — Y
U (mz) g2 s=Ft=1(x;)

1) = 5 t(yi.9)

s=Ft=1(x;)

(b) Fit a base learner (or weak learner, e.g. tree) using the training set

e

by solving the optimisation problem below:

h'(x) = ad'(x), ht = argminz 1f;t(ale) [q;t(

(c) Let F'(x) := Ft=1(x) + hi(x).

3. Return F¥(z) = Z?:U ht(x).

In R, the xgboost package has more advantages over the more popular gbm package men-
tioned earlier:

1. Regularisation: xgboost implements a ‘regularised boosting’ technique which helps to
reduce overfitting,.

2. Parallel Processing: xgboost implements parallel processing and is blazingly faster as
compared to gbm. xgboost also supports implementation on Hadoop.

3. High Flexibility: xgboost allow users to define custom optimisation objectives and
evaluation criteria. This adds a whole new dimension to the model and there is no
limit to what we can do.

4. Handling Missing Values:

e xgboost has an in-built routine to handle missing values.

e User is required to supply a different value than other observations and pass that as

196 TOPIC 7. ENSEMBLE METHODS (META-LEARNING ALGORITHMS)

a parameter. xgboost tries different things as it encounters a missing value on each
node and learns which path to take for missing values in future.

5. Tree Pruning:

e A gbm would stop splitting a node when it encounters a negative loss in the split.
Thus it is more of a greedy algorithm.

e xgboost on the other hand make splits upto the max depth specified and then start
pruning the tree backwards and remove splits beyond which there is no positive gain.

e Another advantage is that sometimes a split of negative loss say -2 may be followed
by a split of positive loss +10. gbm would stop as it encounters -2. But xgboost will
go deeper and it will see a combined effect of +8 of the split and keep both.

6. Built-in Cross-Validation: xgboost allows user to run a cross-validation at each iteration
of the boosting process and thus it is easy to get the exact optimum number of boosting
iterations in a single run. This is unlike gbm where we have to run a grid-search and only
a limited values can be tested.

7. Continue on Existing Model: User can start training an xgboost model from its last iter-
ation of previous run. This can be of significant advantage in certain specific applications.
gbm implementation of sklearn also has this feature so they are even on this point.

7.2.4 Various Open-Source Extension: LightGBM

https://en.wikipedia.org/wiki/LightGBM, short for light gradient-boosting machine, sup-
ports different algorithms including GBDT, GBRT, GBM, multiple-additive regression tree
(MART) and random forest. Light GBM has many of XGBoost’s advantages, including sparse
optimisation, parallel training, multiple loss functions, regularisation, bagging, and early stop-
ping. A major difference between the two lies in the construction of trees. Light GBM does not
grow a tree level-wise (row by row) as most other implementations do but grows trees leaf-
wise. It chooses the leaf it believes will yield the largest decrease in loss. Besides, Light GBM
does not use the widely-used sorted-based decision tree learning algorithm, which searches the
best split point on sorted feature values, as XGBoost do, but it implements a highly optimised
histogram-based decision tree learning algorithm, which yields great advantages on both effi-
ciency and memory consumption. The Light GBM algorithm utilizes two novel techniques called
Gradient-Based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) which allow
the algorithm to run faster while maintaining a high level of accuracy.

7.2.5 Various Open-Source Extension: CatBoost

https://en.wikipedia.org/wiki/CatBoost provides a gradient boosting framework which
among other features attempts to solve for Categorical features using a permutation driven
alternative compared to the classical algorithm.

According to https://deep-and-shallow. com/2020/02/29/the-gradient-boosters-v-catboost/,
CatBoost deals with Categorical variables in a native way. Many studies have shown that One-
Hot encoding high cardinality categorical features is not the best way to go for many predictive
models, especially in tree based algorithms. Other popular alternatives all come under the
umbrella of Target Statistics (TS) — Target Mean Encoding (Greedy TS), Leave-One-Out En-
coding, etc.

The basic idea of Greedy TS is simple: we replace a categorical value by the mean of all
the targets for the training samples with the same categorical value. For example, we have a
Categorical value called weather, which has four values — sunny, rainy, cloudy, and snow. We
replace “sunny” with the average of the target value for all the training samples where weather
was “sunny”.

7.2. BOOSTING 197

If X; is the categorical feature we are encoding and £ is the specific value in X, and ny, is
the number of training samples with X; =k, i.e.

E?:l yilXijZk

GreedyTS(X; = k) = o
k

But this is unstable when the number of samples with % is too low or zero. Therefore we use
the Laplace Smoothing used in Naive Bayes Classifier to make the statistics much more robust:

Z?:l yi|X1’j=k +oap
ng + o ’

GreedyTS(X; =Fk) =

where o > 0 is a hyperparameter. A common setting for the prior p is the average target value
in the dataset.

But these methods usually suffer from something called Target Leakage because we are
using our targets to calculate a representation for the categorical variables and then using those
features to predict the target. Leave-One-Out Encoding tries to reduce this by excluding the
sample for which it is calculating the representation, but is not fool proof.

CatBoost authors propose another idea here, which they call Ordered TS. This is inspired
from Online Learning algorithms which get the training examples sequentially in time. And in
such cases, the TS will only rely on the training examples in the past. To adapt this idea to
a standard offline training paradigm, they imagine a concept of artificial time, but randomly
permuting the dataset and considering them sequential in nature.

Then they calculate the TS using only the samples which occured before that particular
sample in the artificial time. It is important to note that if we use just one permutation as the
artificial time, it would not be very stable and to this end they do this encoding with multiple
permutations.

The main motivation for the CatBoost algorithm is, as argued by the authors, the target
leakage, which they call Prediction Shift, inherent in the traditional Gradient Boosting models.
The high-level idea is quite simple. As we know, any Gradient Boosting model works iteratively
by building base learners over base learners in an additive fashion. But since each base learner
is build based on the same dataset, the authors argue that there is a bit of target leakage
which affects the generalisation capabilities of the model. Empirically, we know that Gradient
Boosted Trees has an overwhelming tendency to overfit the data. The only countermeasures
against this leakage are features like subsampling, which they argue is a heuristic way of handling
the problem and only alleviates it and not completely removes it.

The target shift or the bias is found to be inversely proportional to the size of the dataset,
i.e. if the dataset is small, the target leak is much more pronounced. This observation also
agrees with our empirical observation that Gradient Boosted Trees tend to overfit to a small
dataset.

To combat this issue, they propose a new variant of Gradient Boosting, called Ordered
Boosting. The main problem with previous Gradient Boosting was the reuse of the same
dataset for each iteration. So, if we have a different dataset for each of the iteration, we would
be solving the problem of leakage. But since none of the datasets are infinite, this idea, purely
applied, will not be feasible. So, the authors have proposed a practical implementation of the
above concept.

It starts out with creating s + 1 permutations of the dataset. This permutation is the
artificial time that the algorithm takes into account. Let’s call it o9 — o,. The permutations
o1 — 05 is used for constructing the tree splits and oq is used to choose the leaf values b;. In
the absence of multiple permutations, the training samples with short “history” will have high
variance and hence having multiple permutations ease out that defect.

The gradient statistics required for the tree splits and the target statistics required for the
categorical encoding are calculated using the sampled permutation. Once all the trees are built,

198 TOPIC 7. ENSEMBLE METHODS (META-LEARNING ALGORITHMS)

the leaf values of the final model F are calculated by the standard gradient boosting procedure
using permutation og. When the final model F' is applied to new examples from test set, the
target statistics are calculated on the entire training data.

CatBoost also differs from the rest of the flock in another key aspect — the kind of trees that
is built in its ensemble, by default, is Symmetric Trees or Oblivious Trees. These are trees the
same features are responsible in splitting learning instances into the left and the right partitions
for each level of the tree.

This has a two-fold effect in the algorithm:

e Regularization: Since we are restricting the tree building process to have only one feature
split per level, we are essentially reducing the complexity of the algorithm and thereby
regularisation.

e Computational Performance: One of the most time consuming part of any tree-based
algorithm is the search for the optimal split at each nodes. But because we are restricting
the features split per level to one, we only have to search for a single feature split instead
of L splits, where L is the number of nodes in the level. Even during inference these trees
make it lightning fast. It was shown to be 8X faster than XGBoost in inference.

Another important detail of CatBoost is that it considers combinations of categorical vari-
ables implicitly in the tree building process. This helps it consider joint information of multiple
categorical features. But since the total number of combinations possible can explode quickly,
a greedy approach is undertaken in the tree building process. For each split in the current tree,
CatBoost concatenates all previously used Categorical Features in the leaf with all the rest of
the categorical features as combinations and target statistics are calculated on the fly.

Another interesting feature in CatBoost is the inbuilt Overfitting Detector. CatBoost can
stop training earlier than the number of iterations we set, if it detects overfitting. there are two
overfitting detectors implemented in CatBoost:

e Iter is the equivalent of early stopping where the algorithm waits for n iterations since an
improvement in validation loss value before stopping the iterations;

e IncToDec is more slightly involved. It takes a slightly complicated route by keeping track
of the improvement of the metric iteration after iteration and also smooths the progression
using an approach similar to exponential smoothing and sets a threshold to stop training
whenever that smoothed value falls below it.

Following XGBoost’s footsteps, CatBoost also deals with missing values separately. There
are two ways of handling missing values in CatBoost — Min and Max.

If we select “Min”, the missing values are processed as the minimum value for the feature.
And if we select “Max”, the missing values are processed as the maximum value for the feature.
In both cases, it is guaranteed that the split between missing values and others are considered
in every tree split.

If Light GBM had a lot of hyperparameters, CatBoost has even more. With so many hyper-
parameters to tune, GridSearch stops being feasible. It becomes more of an art to get the right
combination of parameters for any given problem:

e one_hot_max_size: This sets the maximum number of unique values in a categorical
feature below which it will be one-hot encoded and not using Target statistics. It is
recommended that we do not do our one-hot encoding before we feed in the feature set,
because it will hurt both accuracy and performance of the algorithm.

e iterations: The number of trees to be built in the ensemble. This has to be tuned with
a cv or one of the overfitting detection methods should be employed to make the iteration
stop at the ideal iteration.

7.3. SUMMARY 199

od_type, od_pval, od_wait: These three parameters configure the overfitting detector.
od_type is the type of overfitting detector;

od_pval is the threshold for IncToDec (Recommended Range: [10e-10, 10e-2]). Larger
the value, earlier Overfitting is detected;

od_wait has different meaning depending on the od_type. If it is IncToDec, the od_wait
is the number of iterations it has to run before the overfitting detector kicks in. If it is
Iter, the od_wait is the number of iterations it will wait without an improvement of the
metric before it stops training.

learning_rate: CatBoost automatically set the learning rate based on the dataset prop-
erties and the number of iterations set.

depth: This is the depth of the tree. Optimal values range from 4 to 10. Default Value:
6 and 16 if growing_policy is Lossguide

12_leaf_reg: This is the regularisation along the leaves. Any positive value is allowed
as the value. Increase this value to increase the regularisation effect.

has_time: We have already seen that there is an artificial time which is taken to accom-
plish ordered boosting. But what if our data actually have a temporal order? In such
cases set has_time = True to avoid using permutations in ordered boosting, but instead
use the order in which the data was provided as the one and only permutation.

grow_policy: As discussed earlier, CatBoost builds “SymmetricTree” by default. But
sometimes “Depthwise” and “Lossguide” might give better results.

min_data_in_leaf is the usual parameter to control the minimum number of training
samples in each leaf. This can only be used in “Lossguide” and “Depthwise”.

max_leaves is the maximum number of leaves in any given tree. This can only be used in
Lossguide. It is not recommended to have values greater than 64 here as it significantly
slow down the training process.

rsm or colsample_bylevel: The percentage of features to be used in each split selection.
This helps us control overfitting and the values range from (0,1].

nan_mode: Can take values “Forbidden”, “Min”, “Max” as the three options. “Forbidden”
does not allow missing values and will throw an error. Min and Max are mentioned earlier.

The following are some real-world applications:

e JetBrains uses CatBoost for Code Completion;

e Cloudflare uses CatBoost for bot detection;

e Careem uses CatBoost to predict future destinations of the rides.

7.3

Summary

Discriminative models have the advantage that they directly address finding an accurate clas-
sifier P(Y|X) based on modelling the decision boundary.

The disadvantage of the discriminative approach is that they are usually trained as ‘black-
box’ classifiers, with little prior knowledge built used to describe how data for a given class is
distributed. E.g. we don’t know whether the output is imbalance or how it is distributed.

200 TOPIC 7. ENSEMBLE METHODS (META-LEARNING ALGORITHMS)

Generative models have the advantage that the information about the structure of the
data D (e.g. domain knowledge) is often specified through a generative model P(X,Y). E.g.
it is easier to describe certain illness (output) in relation to the age, weight, etc. rather that
based on age, weight, etc. to determine the probability of a person to have certain illness.

The disadvantage of the generative approach is that it does not target the classification
model P(Y|X) directly. When the data D is complex, finding a suitable data model P(X|Y)
is difficult!

Nonparametric Parametric
discriminative
e kNN, wkNN (k € Z) e LR
e Decision tree models, Ran- e Multilogit & ANN
dom Forest, Gradient Boost- .
ing Models e Linear SVM
e Kernel SVM
generative
e NB with curve fitting(?) e Naive Bayes (NB)
e Gaussian mixture model e LDA., QDA

e kNN: Based on distance/similarity measure, inputs need to be numeric, data scaling is
recommended. Need to be careful with high dimension data (curse of dimensionality).

o LR: Based on linear algebra and nonlinear iteration, data scaling is usually unnecessary.
Only suitable for closely linear data. It has a nice statistical theory.

e Multilogit with regularisation (ElasticNet) & ANN: Based on optimisation, data scaling
is recommended. Need large samples of data. Superpowerful but very difficult to train.

e LDA, QDA: The input needs to be numeric and not too nonlinear. Data scaling is recom-
mended otherwise large covariance matrix. The covariance matrix performs terribly with
low samples.

e Naive Bayes: Data scaling is not necessary. Tends to be ‘bias’. It is used in older email
spam filtering system.

e Decision tree models & Random Forest: Scaling is not necessary. Tend to be ‘bias’.

Dealing with Imbalanced Data (https ://developers.google.com/machine-learning/data-prep/construct/

sampling—splitting/imbalanced—data):
e Use the right performance metrics:

— Use the right recall (sensitivity, specificity) and the right precision (PPV, NPV)
— F1 Score, Cohen’s kappa, ROC Curves, etc.
e Tryhttps://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysisor

Generate Synthetic Samples, in particular, SMOTE (Synthetic Minority Over-sampling
TEchnique, based on NN).

e Try collecting more data: This is possible for spam filtering but impossible for customer
survey.

