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Clustering is a broad class of unsupervised learning methods for finding “clusters” by la-
belling data (usually with integers) [James et al., 2013, Section 10.3|. Its primary purposes are
(i) to group objects based on the similarity in the features and (ii) to reduce the information

from an entire sample into information about smaller, manageable subgroups. A good clustering
algorithm should produce high quality clusters with high intra-cluster (within-cluster) similarity

and low inter-cluster (between-cluster) similarity for clustered data.

The motivations for clustering [MacKay, 2003] are (i) the underlying cluster labels are
meaningful in the description of the unlabelled data (a typical example is the clustering of
photos, i.e. photos of similar objects should be clustered); (ii) clusters can be useful in lossy
compression (e.g. in image compression, very similar colours can be replaced by the average
colour) or summarising data; (iii) if the data cannot be clustered, that indicates irregular or

random patterns which need special attention.
According to Yao [2008], clustering methods can be classified into

e Partitioning methods;

Density-Based methods;
Grid-Based methods:
Hierarchical methods;

e Kernel and Spectral methods;

e Hidden Markov models: uses observed data to recover the sequence of states.

The texts for clustering are [Rencher, 2002, Chapter 14| and Jain and Dubes [1988].

Python’s Scikit-learn and R support the following types of clustering algorithms.
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Methods Parameters Usecase Metric R packages
K-Means number of clus- | General-purpose, Distances be- | stats:kmeans(),

ters even cluster size, flat | tween points clusterR, clus-
geometry, not too ter
many clusters
Gaussian many Flat geometry, good | Mahalanobis ClusterR, mix-
mixtures for density estima- | distances to | ture
tion centres
Affinity damping, sam- | Many clusters, un- | Graph distance | clusterR,
propagation ple preference even cluster size, | (e.g. nearest- | apcluster
non-flat geometry neighbour
graph)
Mean-shift bandwidth Many clusters, un- | Distances  be- | meanShiftR,
even cluster size, | tween points LPCM::ms

non-flat geometry

Spectral number of clus- | Few clusters, even | Graph distance | kernlab, Spec-
clustering ters cluster size, non-flat | (e.g. nearest- | trum
geometry neighbor graph)
DBSCAN neighbourhood Non-flat  geometry, | Distances  be- | dbscan::dbscan,
size uneven cluster sizes tween nearest | fpc
points
OPTICS minimum cluster | Non-flat geometry, | Distances  be- | dbscan::optics
membership uneven cluster sizes, | tween points
variable cluster
density
AGNES number of clus- | Many clusters, pos- | Any pairwise | stats:hclust(),
ters or distance | sibly connectivity | distance clus-
threshold, link- | constraints, non ter:agnes(),
age type, dis- | Euclidean distances clust, fastclus-
tance ter, flashClust
BIRCH branching fac- | Large dataset, out- stream::DSC_BIRCH
tor, threshold, | lier removal, data re-
optional global | duction.
clusterer.

Let us recall the definition of “dissimilarity” from Section 2.1 which is fundamental to
hierarchical clustering.

(i) d(x;,z;) > 0 and d(x;, z;) =0 iff x; = zj;

A dissimilarity (function) d(x;, x;) is a function which satisfies the following conditions:
For any x;, x;, xy,

A distance function is a dissimilarity function which satisfies

(ili) d(m;, zj) < d(xi, xr) + d(, ;) (triangle inequality).

9.1 Partitioning Methods

There are many partitioning methods such as k-Means clustering, k-Medoids clustering (par-

titions around medroids (PAM) in particular), k-Prototype clustering, CLARA, CLARANS,
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GMM (Gaussian mixture models), etc. We will only be exploring the simplest of the partition-
ing algorithms.

9.1.1 k-Means Clustering

The k-means clustering partitions a data set of n observations into K distinct, non-
overlapping clusters (groups) Cy,--- ,Ck with the nearest mean, serving as a prototype
for the cluster. It tries to find a “cluster” to optimise

K
. min, {Z WSSk}, WSSk(Cr) = Y d(z,Cy)? (9.1)
LK k=1 mECk

where WSS}, is the within sum of squares of the cluster k and Cj, is the kth centroid.
In this section, we will only explore the simplest k-means clustering algorithm — Lloyd
(1957) and Forgy (1965), other more algorithms will be ignored:

e Lloyd, S. P. (1957, 1982). Least squares quantization in PCM. Technical Note, Bell
Laboratories. Published in 1982 in IEEE Transactions on Information Theory, 28,
128-137.

e Forgy, E. W. (1965). Cluster analysis of multivariate data: efficiency vs interpretabil-
ity of classifications. Biometrics, *21*, 768-769.

e Hartigan, J. A. and Wong, M. A. (1979): Algorithm AS 136: A K-means clustering
algorithm. Applied Statistics, 28, 100-108. It considers both the first and second
nearest clusters.

e MacQueen, J. (1967). Some methods for classification and analysis of multivariate
observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statis-
tics and Probability, eds L. M. Le Cam & J. Neyman, 1, pp. 281-297. Berkeley, CA:
University of California Press. More complex that Lloyd-Forgy because it updates
the centroids when it is assigning labels.

e Elkan, Charles (2003). Using the Triangle Inequality to Accelerate K-Means, AAAI
Press.

The Lloyd-Forgy algorithm is roughly shown below [James et al., 2013, Chapter 10]:
1. Randomly pick K observations as the initial centroid(s) c.
2. Iterate until the centroid(s) stop changing:

(a) Assign each observation ; to the cluster with the nearest centroid c;, i.e. par-
tition the observations according to the Voronoi diagram generated by the cen-
troid:

C]gt) — {mz :Vj, 1 S j S K(d(mz,cg)) S d(mi’CEt)))’ 1 S 7 S n},

)

where each x; is assigned to exactly one C (t , even if it could be assigned to two

or more of them.

1
(b) Recalculate centroids for x; assigned to each cluster: c,(:H) = Z ;.

(t)
|C% |MGCS)

The implementation of k-means clustering in R and Python are listed below.

# R
kmeans (x, centers, iter.max = 10, nstart = 1, trace=FALSE,
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algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"))
# Python

sklearn.cluster.KMeans(n_clusters=8, *,
max_iter=300, to0l=0.0001, verbose=0)

init=’k-means++’,

n_init=10,

For Python, ‘k-means++’ is the method for initialisation which selects initial cluster centres for
k-mean clustering in a smart way to speed up convergence. An alternative is ‘random’, which
chooses n_clusters observations (rows) at random from data for the initial centroids; and an
ndarray in the shape of (n _clusters, n_features) which gives the initial centres. The algorithm

is 11loyd and elkan.
The return values of R’s kmeans are:

e cluster: A vector of integers (from 1 to k) indicating the cluster to which each point is

allocated.
e centers: A matrix of cluster centres.

e totss: The total sum of squares, i.e. sum of squares when there is only one cluster.
e withinss: Vector of within-cluster sum of squares, W.SSj in (9.1).
e tot.withinss: Total within-cluster sum of squares, i.e. sum(withinss).

e betweenss: The between-cluster sum of squares, i.e. totss-tot.withinss.

e size: The number of points in each cluster.

e iter: The number of (outer) iterations.

e ifault: integer: indicator of a possible algorithm problem — for experts.

Example 9.1.1 (May 2022 Semester Final Exam, Q3(a)). Given the three-dimensional data

in Table 3.1.

X1 €9 xrs3
Al26] 3 | 4
B|14] 4 | 5
Cl|25]| 2 2
D|17] 2|5
E(27] 3 | 4
Fl24] 4 | 4

Table 3.1: Three-dimensional data for clustering,.

Perform k-means clustering algorithm (using the Euclidean distance) on the data from
Table 3.1 with A and F as the initial centres until two clusters are found. Write down the
stable cluster centres. You may round the numbers in your calculations to 4 decimal places.

(12 marks)

‘We can obtain one k-means clustering using the Lloyd-Forgy algorithm.

X = read.csv(text="
x1,x2,x3
2.6,3,4

", row.names=LETTERS[1:6])

X[C(HAII,I!FH) ,]

kmeans (X, ini, algorithm="Lloyd") # km = kmeans (X,

ini, trace=T)
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print (km)

The output of the Lloyd-Forgy algorithm (note that the Hartigan-Wong algorithm gives us
a different k-means clustering).

K-means clustering with 2 clusters of sizes 4, 2

Cluster means:

x1 x2 x3
1 2.375 2.5 3.75 <- km$centers
2 1.900 4.0 4.50

lustering vector:

n
EF
1 2

== Q

uster
B CD
211 <- km$cluster
Within cluster sum of squares by cluster:
[1] 6.3775 1.0000 <- km$withinss

(between_SS / total_SS = 35.4 %)
Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"
[6] "betweenss" "size" "iter" "ifault"

Solution: Given the initial cluster centres 1 and 2:
A(2.6,3,4), F(2.4,4,4)

Step 1 : Update table based on distance to cluster centres

x1 | x2 | x3 | dist.1 | dist.2 | clust.centre
26| 3 | 4 0 1.0198 1
14| 4 | 5 | 1.8547 | 1.4142 2
25| 2 | 2 | 22383 | 2.8302 1
1.7 2 | 5 | 1.6763 | 2.3431 1
271 3 | 4 0.1 1.044 1
241 4 | 4 ]1.0198 0 2
................................................................................ [7 marks|
The new cluster centres 1 and 2 are
Centre; = (2.375,2.5,3.75),
[1 mark]

Centrey = (1.9,4,4.5)

Step 2 : Update table based on distance to cluster centres

x1 | x2 | x3 | dist.1 | dist.2 | clust.centre
26| 3 | 4 |0.6026 | 1.3191 1
14| 4 | 5 | 21825 | 0.7071 2
251 2 | 2 |1.8243 | 3.2573 1
1.7 2 | 5 1.506 | 2.0712 1
271 3 | 4 | 0.6466 | 1.3748 1
24| 4 | 4 | 1.5209 | 0.7071 2
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................................................................................ [3 marks]
The stable cluster centres are

Centre; = (2.375,2.5,3.75),

[1 mark]
Centres = (1.9,4,4.5)

Example 9.1.2 (May 2022 Semester Final Exam, Q4(c)). Given the three-dimensional points
in Table 4.2.

Obs. | 1 | 22 | 23
P 3314425
P 24131121
Py 01119 1.1
Py 0312415
P 0.6 1.1]1.1
Py 2910.1)0.1
P 43164155
Py 3.4 151151
Py | 113941

Table 4.2: Three-dimensional points.

Use the k-means clustering method with Manhattan distance to cluster the given points
into k = 3 clusters by using P, P3, Ps as the initial clusters, find the stable cluster cen-
tres/centroids. (8 marks)

Solution: Given the initial centres:
Centre; = (2.9,0.1,0.1), Centres = (0.1,1.9,1.1), Centres = (0.6,1.1,1.1)

Step 1 : Update table based on distance to cluster centres
Obs. | 21 | 2 | z3 | dist.1 | dist.2 | dist.3 | label
P |33 44|25 71 7.1 7.4 1

P | 24]131]21] 55 4.5 4.8 2
P 101(19]11] 56 0 1.3 2
Py 1032415 6.3 1.1 2 2
P06 11|11 43 13 0 R RTERTETITETTRTRY [3 marks]
Ps 129]01]0.1 0 5.6 4.3 1
P 14316455 131 13.1 13.4 1
Ps |34 |51]561] 105 10.5 10.8 1
Py 1113941 9.6 6 6.3 2
The new cluster centres are ............ ..o [1 mark]

Centre; = (3.475,4,3.3), Centres = (0.975,2.825,2.2), Centres = (0.6,1.1,1.1)

Step 2 and Step 3 : Update table based on distance to cluster centres
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x1 | @2 | 23 | dist.1? | dist.2? | dist.3% | label® | dist.1? | dist.2? | dist.3° | label®
3.3 14425 1.375 4.2 7.4 1 3.1333 | 3.3667 7.2 1
2413121 3.175 1.8 4.8 2 5.7333 | 1.6333 4.6 2
0119 11| 7.675 2.9 1.3 3 10.2333 | 3.8667 2.3 3
032415 6575 1.8 2 2 9.1333 | 2.7667 2
0611 ]1.1| 7975 3.2 0 3 10.5333 | 4.1667 1 3
2910101 7.675 6.75 4.3 3 10.2333 | 7.1333 3.3 3
4.3 | 6.4 | 5.5 | 5425 10.2 13.4 1 2.8667 | 9.2333 | 13.2 1
345151 2975 7.6 10.8 1 1.2 6.6333 | 10.6 1
1.1 1 39|41 3.275 3.1 6.3 2 4.2333 | 2.4667 6.3 2

....................................................................... [241=3 marks]
The cluster centres from Step 2 and the stable cluster centres are

Centre; = (3.6667,5.3,4.3667), Centres = (1.2667,3.13333,2.5667),

Centres = (1.2,1.03333,0.7667) .. ...oorniiii i [1 mark]

Example 9.1.3. You are given the following observations with two variables, xy and x,.

OJ]:S 51311 $12 Perform k-means clustering to group the ob-
B 1|9 servations into two groups using Euclidean dis-
tance. Given that the random initial centroids
C 21 be D and A.
D 2 | 2
E 8 | 8
F 81 9
G 9 | 8
H 919
Solution:
Initial Centroids: cgo) =(2,2), cg)) =(1,1)
Obs | z | y | distance from ¢; | distance from c¢» | cluster
A 1|1 1.414214 0.000000 2
B 112 1.000000 1.000000 1
C 211 1.000000 1.000000 1
Step 1: D 212 0.000000 1.414214 1
E 8|8 8.485281 9.899495 1
F 819 9.219544 10.630146 1
G 918 9.219544 10.630146 1
H 919 9.899495 11.313708 1
Update Centroids: ¢|") = &25209 — (5 571429, 5.571429), i) = (1,1)
Obs | z | y | distance from ¢; | distance from ¢z | cluster
A 111 6.464976 0.000000 2
B 1|2 5.801126 1.000000 2
C 211 5.801126 1.000000 2
Step 2: D 212 5.050763 1.414214 2
E 818 3.434519 9.899495 1
F 819 4.201555 10.630146 1
G 918 4.201555 10.630146 1
H 919 4.848732 11.313708 1
c

Update Centroids:

() _ G8+-+09) _ (35 8.5), i)

w — (1.5, 1-5)
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Obs | # | y | distance from ¢; | distance from ¢z | cluster
A 171 10.6066017 0.7071068 2
B 112 0.9247166 0.7071068 2
C 211 9.9247166 0.7071068 2
Step3: D |22 9.1923882 0.7071068 2
E 8|8 0.7071068 9.1923882 1
F 819 0.7071068 9.9247166 1
G 918 0.7071068 9.9247166 1
H 919 0.7071068 10.6066017 1

S = (1.5,1.5)

No further changes in the closest cluster labels. Stable/Final Centroids: ¢;

(1)

= (8.5,8.5),

LYo
o

Initial Centroids

The visual presentation of the update of centroids for initial centroids B and C.

Step 1

2l @,
f*ﬁ
L 4 J

g 3

®

Step 2

Step 3

Example 9.1.4 (Feature Scaling for Data with Large Variance). Given the following observa-

tions with two variables, x1 and xs.

Obs | 1 | 22
A 0 0
B 0 2
C 20 | 0
D 20 | 2
E 80 | 8
F 80 | 10
G [100 | 8
H | 100 | 10

(a) Perform k-means clustering to group the observations into two groups using Euclidean
distance. Note that the range for x; is [0,100] and range for x5 is [0,10]. Assume that the

random initial centroids are B and E.

Solution:
Initial Centroids: cgu) = (0,2), cg]) = (80,8)
T | 9 Distl Dist2 cluster

Al 0|0 2.00000 | 80.39900 1

B| 0 2 | 0.00000 | 80.22468 1

C | 20 | 0 | 20.09975 | 60.53098 1
Step1: D | 20 | 2 | 20.00000 | 60.29925 1

E | 8 | 8 | 80.22468 | 0.00000 2

F | 80 | 10 | 80.39900 | 2.00000 2

G | 100 | 8 | 100.17984 | 20.00000 2

H | 100 | 10 | 100.31949 | 20.09975 2
Update Centroids: cgl) = w = (10,1), cgl) = (SO’SH”‘:(IOO’IO) =(90,9)
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1 | x9 Dist1 Dist2 cluster
Al O 0 | 10.04988 | 90.44888 1
B| 0 2 | 10.04988 | 90.27181 1
C | 20 | 0 | 10.04988 | 70.57620 1
Step2: D | 20 | 2 | 10.04988 | 70.34913 1
E | 80 | 8 | 70.34913 | 10.04988 2
F | 80 [ 10 | 70.57620 | 10.04988 2
G | 100 | 8 | 90.27181 | 10.04988 2
H | 100 | 10 | 90.44888 | 10.04988 2

Stable Centroids: cgl) = (10,1), céU =(90,9)
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Rescale both variables 21 and x2 using standardisation and perform k-means clustering.

Solution: First calculate the mean X

and then the (sample) standard deviation

0+..4+90

14

(sx) = \/
(sx)2 = \/

After the standardisation, if the k-mean clustering (k = 2) gives the cluster centres
c; = (—0.8107425, —0.7765905) and cp = (0.8107425,0.7765905), then

(0—50)2+---4+ (90 - 50)2

14—-1

0—5)2+ -+ (3-5)2

= 3.86304

14 -1

50;

Obs 5)1 5)2 d(fﬁ'l, Cl) d(f:l,CQ) cluster
A | -1.3512375 | -1.2943175 | 0.7484491 | 2.9937964 1
B -1.3512375 | -0.7765905 | 0.5404950 | 2.6620534 1
C | -0.8107425 | -1.2943175 | 0.5177270 | 2.6301850 1
D | -0.8107425 | -0.7765905 | 0.0000000 | 2.2453473 1
E 0.8107425 | 0.7765905 | 2.2453473 | 0.0000000 2
F 0.8107425 | 1.2943175 | 2.6301850 | 0.5177270 2
G 1.3512375 | 0.7765905 | 2.6620534 | 0.5404950 2
H 1.3512375 | 1.2943175 | 2.9937964 | 0.7484491 2
1 -1.0809900 | 0.5177270 | 1.3222297 | 1.9093617 1
J -0.5404950 | -0.7765905 | 0.2702475 | 2.0586923 1
K | -0.2702475 | 1.0354540 | 1.8909363 | 1.1115528 2
L 0.2702475 | -1.0354540 | 1.1115528 | 1.8909363 1
M 0.5404950 | 0.7765905 | 2.0586923 | 0.2702475 2
N 1.0809900 | -0.5177270 | 1.9093617 | 1.3222297 2

0+..+3
%, - 0t

= =5
14

v1942.857143 = 37.00312

(¢) Rescale both variables using min-max normalisation and perform k-means clustering.

Solution: After the min-max scaling and performing k-mean clustering, if we obtain
the final centroids:

the final table is:

¢ = (0.2,0.2),

¢z = (0.8,0.8),
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x) | @ dist1 dist2 cluster
0.0 | 0.0 | 0.2828427 | 1.1313708
0.0 | 0.2 | 0.2000000 | 1.0000000
0.2 | 0.0 | 0.2000000 | 1.0000000
0.2 | 0.2 | 0.0000000 | 0.8485281
0.8 | 0.8 | 0.8485281 | 0.0000000
0.8 | 1.0 | 1.0000000 | 0.2000000
1.0 | 0.8 | 1.0000000 | 0.2000000
1.0 | 1.0 | 1.1313708 | 0.2828427
0.1 | 0.7 | 0.5099020 | 0.7071068
0.3 | 0.2 | 0.1000000 | 0.7810250
0.4 ] 0.9 | 0.7280110 | 0.4123106
0.6 | 0.1 | 0.4123106 | 0.7280110
0.7 | 0.8 | 0.7810250 | 0.1000000
0.9 | 0.3 | 0.7071068 | 0.5099020

—
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Example 9.1.5 (Final Exam May 2019, Q1(a)). (i) Normalisation is normally applied to the
algorithm involved distance measures such as clustering. State the reason why normaliza-
tion is required and how it helps. (2 marks)

Solution: The distance measures are affected by the scale of the variables. By
putting all variables into the same range (normalize), the variables will be weighted
equally.

(ii) State two types of normalization. Explain on how the normalisation works. (4 marks)

Solution: Min-max normalisation transforms all variables into an interval [0,1] by
using the equation (1.2).

Standardisation transforms all variables to a standard scale with mean of zero and
standard deviation of one by using the equation (1.1).

Example 9.1.6 (Final Exam Jan 2019, Q1(b)). A factory doing oranges packaging would like
to group their oranges according to oranges’ weight and diameter. Table Q1(b) - i shows the
weight and diameter of the oranges.

Orange | Weight (g) | Diameter (cm)
1 108 7.26
2 81 4.61
3 132 6.92
1 118 5.02 Table Q1(b) - i
) 126 4.16
6 94 5.12
7 150 5.53
3 36 5.10

With standardisation, k-means clustering has been performed to group the oranges into three
clusters (A, B, C). Table Q1(b) - ii shows part of the results in final iteration of this k-means
clustering.
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Orange | Distance A | Distance B | Distance C
1 2.3802 2.3082 0.5228
2 2.1092 0.3959 2.8035
3 1.8604 2.6118 0.5228
4 0.5645 1.2903 1.9111 Table Q1(b) - ii
5 0.7206 1.7746 2.7141
6 1.5644 0.3334 2.1141
7 0.9674 2.6736 1.9039
8 1.8927 0.1504 2.3164

(i) Group the oranges into appropriate cluster and state the centroids for each cluster formed.
(6 marks)

Solution: Group into cluster with shortest distance and then standardise the pre-
dictors, weight, w and diameter, d:
By = 111.8750; o, = 24.0620; p,, = 5.4650; o, = 1.0841
Orange | Dist_ A | Dist B | Dist_C | Cluster w* d*

1 2.3802 | 2.3082 | 0.5228 -0.1610 | 1.6557
2.1092 | 0.3959 | 2.8035 -1.2831 | -0.7886
1.8604 | 2.6118 | 0.5228 0.8364 | 1.3421
0.5645 | 1.2903 | 1.9111 0.2546 | -0.4105
0.7206 | 1.7746 | 2.7141 0.5870 | -1.2037
1.5644 | 0.3334 | 2.1141 -0.7429 | -0.3182
0.9674 | 2.6736 | 1.9039 1.5844 | 0.0600

8 1.8927 | 0.1504 | 2.3164 -1.0753 | -0.3367
Compute centroids for each cluster:

N S NI VSO SIS
WrewWersQwa

C4 = (0.8087, —0.5181), Cp = (—1.0338, —0.4812) C¢ = (0.3377, 1.4989)

(ii) Based on (i), calculate the within cluster sum of square (wss) for each cluster. (6 marks)

Solution: Using the within cluster sum of square (wss) for kth cluster (9.1), we have
Cluster A, WSS, = 0.5645% 4 0.7206% + 0.9674% = 1.7738

Cluster B, WSSg = 0.3959° + 0.33342 + 0.15042 = 0.2905

Cluster C, WSSc = 0.52282 + 0.52282 = 0.5466

According to https://stats.stackexchange.com/questions/112698/using-k-means-with-other-met
k-means with other distance is not sound. However, it is still possible to just perform calcu-
lations using Lloyd algorithm like Example 9.1.2 and the following example despite the final
centroids are not theoretical guarantee to be optimum.

Example 9.1.7 (Tutorial 2, Q3). The table below shows the marks for 2 assessments (Test
and Assignment) of 6 students in a class.

Student | Test | Assignment | Std_Test | Std_Asgmt
1 89 34 0.8119 -0.2871
2 45 27 -1.5435 -1.2145
3 56 30 -0.9546 -0.8170
4 89 44 0.8119 1.0379
5 81 46 0.3836 1.3028
6 83 36 0.4907 -0.0221

Group the students into 3 clusters based on the mark for these 6 students using Manhattan
distance and the following initial centroids:

C, = (—0.3658, —0.7508); Ch = (—0.0714, 0.1104); Cs = (0.4372, 0.6404).
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Solution: By using the initial centroids, calculate the distance of all points to the centroids
by using Manhattan distance (2.5) to obtain:
Student | Dist.1 | Dist.1 | Dist.1 | Cluster
1 1.6414 | 1.2807 | 1.3022 2
1.6414 | 2.7970 | 3.8355
0.6551 | 1.8107 | 2.8492
2.9663 | 1.8107 | 0.7722
2.8031 | 1.6474 | 0.7160
6 1.5852 | 0.6946 | 0.7160

Step 1:

T W N
RO W W

Update centroids:
C] = (—1.2491, —1.0158); % = (0.6513, —0.1546); C% = (0.5978, 1.1703)

Step 2:

Student | Dist.1 | Dist.2 | Dist.3 | Cluster
1 2.7897 | 0.2931 | 1.6715 2
0.4932 | 3.2547 | 4.5261
0.4932 | 2.2684 | 3.5398
4.1146 | 1.3530 | 0.3466
3.9513 | 1.7251 | 0.3466
2.7335 | 0.2931 | 1.2995

S O W N
R W W =

Since the clusters are the same, the stable/final centroids are

Cl = (—1.2491, —1.0158); 5 = (0.6513, —0.1546); C4 = (0.5978, 1.1703)

One of the requirements to perform k-means clustering is a pre-determined number of clus-
ters. In some cases, we can have a known number of clusters but this does not apply to all.
When we don’t know the number of clusters, we want a technique to determine the number of
clusters.

Since one of the properties of good clustering is high intra-cluster (within-cluster) similarity
— Observations within clusters will be close together when plotted geometrically. We can
make use of this property to determine the optimum number of clusters to be formed. An
optimum number of clusters is the one which the total within groups sum of squares (wss)
(9.1) decreases dramatically as compared to the previous number, and only decreased a little
as compared to the after number. This is called the elbow principle (supported by Python’s
https://www.scikit-yb.org/).

Example 9.1.8 (Elbow principle is not science). Consider the following data and the variation
of the total within sum of squares on k clusters.
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To visualise the clustering result of high-dimensional clusters, we usually project them to

The clusters obtain from k-means clustering are not very satisfactory.
2-D using PCA’s biplot.

An alternative to the elbow principle is the silhouette method

sklearn.metrics).
Example 9.1.9 (4D data). Investigate the clusters in USArrest data using k

and project the clusters into the first and second principle components.



240 TOPIC 9. CLUSTERING (UNSUPERVISED LEARNING)
We compare two ways of projecting k-means clusters in R as follows.
1 X = USArrests
2 pca = prcomp(X, scale=TRUE) # Build-in standardisation
3 #
4 # Standard biplot does not support k-means cluster labels
o o#
6 biplot(pca, cex=0.7, scale=0) # biplot projects data to PC1l & PC2
To#
8 # Manual biplot using scatter-plot
9 #
10 kmeans.m = kmeans (X, centers=2) # centers=k
11 pdf ("usarrests_kmeansl.pdf")
12 €1 = kmeans.m$cluster
13 plot(pca$x[,1], pca$x[,2], pch=Cl+15, col=Cl+1l, main="Manual biplot",
14 cex=2.5, xlim=c(-3,3), ylim=c(-3,3), xlab="PC1", ylab="PC2")
15 1library(cluster)
16 pdf ("usarrests_kmeans2.pdf")
17 clusplot(X, Cl, main="cluster::clusplot", cex=2.5,
18 xlim=c(-3,3), ylim=c(-3,3))
os 00 s Manual biplot cluster::clusplot
1 ~ o -
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® ° = TA AT A A 0O
e geoqe % §°’ ’Qﬁgg,«/_\,«i AL © ©
° 8 AL L ?\ﬁ h Eﬁ o
T T .: : ° 7 . A\L\\/\, . & i C
o . ° v
%
9.1.2 k-Prototype Clustering

The k-means clustering only deals with numeric data. The k-Modes clustering deals with cate-
gorical data while the k-Prototype clustering merges k-means and k-modes.

The applications involving mixed data is the ‘spatial clustering’ in hotspot detection:

¢ pollution analysis: Malaysia’s major concerned, a million of Selangor residents were facing
the cease of water supply due to water pollution in Sept 2020 during COVID-19 pendan-
mic;

e disease analysis: Flu, influensa, Denggi, foot-and-mouth disease;
e crime analysis;

e fire analysis, etc.

In R, k-prototype clustering is implemented in clustMixType. However, the implementation

is slower than snail for any data having more than a hundred rows.

clustMixType::kproto(x, k,
na.rm=TRUE,

lambda=NULL,
keep.data=TRUE,

iter.max=100,
verbose=TRUE, )

nstart=1,

9.1

.3 k-Medoids: PAM, CLARA, CLARANS

The k-medoids algorithm is a clustering approach related to k-means clustering for parti-
tioning a data set into k clusters. In k-medoids clustering, each cluster is represented by one of
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the data point called cluster medoid rather than the centroid. Because k-medoids minimises
a sum of pairwise dissimilarities instead of a sum of squared Euclidean distances, it is more
robust (less sensitive) to noise and outliers than k-means.

Partitioning Around Medoids (PAM) algorithm is the most popular k-medoids algo-
rithm:

1. Select k objects to become the medoids, or in case these objects were provided use them
as the medoids;

2. Calculate the dissimilarity matrix if it was not provided;
3. Assign every object to its closest medoid;

4. For each cluster search if any of the object of the cluster decreases the average dissimilarity
coeflicient; if it does, select the entity that decreases this coefficient the most as the medoid
for this cluster;

5. If at least one medoid has changed go to 3., else end the algorithm.

Despite being more robust, PAM is only efficient for small data sets but does not scale well for
large data sets due to the O(k(n — k)?) complexity for each iteration.

cluster::pam(x, k, diss = inherits(x, "dist"),
metric = c("euclidean", "manhattan"), medoids = NULL, stand = FALSE,
cluster.only = FALSE, do.swap = TRUE,
keep.diss = !diss && !cluster.only && n < 100,
keep.data = !diss && !cluster.only, pamonce = FALSE, trace.lev = 0)

Example 9.1.10 (4D data). Investigate the clusters in USArrest data using PAM with k = 2
by projecting the clusters into the first two principle components and draw the silhouette plot.

Solution: The R script

X = scale(USArrests)

library(cluster)

pam.m = pam(X, k=2)

pdf ("usarrests_pam.pdf")

plot(pam.m, ask=FALSE, which.plots=1) # Same as clusplot(pam.m)
pdf ("usarrests_pam_silh.pdf")

plot(pam.m, ask=FALSE, which.plots=2) # call: plot.partition

CO =] O Ut = QW b =

generates the PAM(k = 2) and the silhouette plot shows that & = 2 is a good choice.

clusplot(pam(x = X, k = 2)) silhouette plot of pam(x = X, k = 2)
n=50 2 clusters

1020 | 037

Component 2
>

2: 30 | 0.43

T T T T T T T T T T T T 1
-3 -2 - 0 1 2 3 0.0 02 04 06 08 10

Silhoustte width s,
Gomponent 1

These two components explain 86.75 % of the point variability Average sihoustte width : 0.41

CLARA and CLARANS are approximating k-medoid methods which tackle PAM’s inability
to handle large data sets. CLARA applies PAM on multiple subsamples, keeping the best result.
CLARANS works on the entire data set, but only explores a subset of the possible swaps of

# https://www.datanovia.com/en/lessons/k-medoids-in-r-algorithm-and-practical -exan
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medoids and non-medoids using sampling. BanditPAM uses the concept of multi-armed bandits
to choose candidate swaps instead of uniform sampling as in CLARANS.
CLARA = Clustering LARge Applications (Kaufmann and Rousseeuw in 1990):

e Draw multiple samples of the data set, apply PAM on each sample, give the best clustering
e Perform better than PAM in larger data sets

e Efficiency depends on the sample size — A good clustering on samples may not be a good
clustering of the whole data set

cluster::clara(x, k, metric = c("euclidean", "manhattan", "jaccard"),
stand = FALSE, cluster.only = FALSE, samples = 5, trace = 0,
sampsize = min(n, 40 + 2 * k), medoids.x = TRUE, pamLike = FALSE,
keep.data = medoids.x, rngR = FALSE, correct.d = TRUE)

CLARANS = Clustering Large Applications based upon RAndomized Search

e The problem space graph of clustering

T

— A vertex is k from n numbers, ( "

— PAM searches the whole graph
— CLARA searches some random sub-graphs

) vertices in total

e CLARANS climbs hills

— Randomly sample a set and select £ medoids
— Consider neighbours of medoids as candidate for new medoids
— Use the sample set to verify

— Repeat multiple times to avoid bad samples

9.1.4 Fuzzy clustering: FANNY, FLAME

Fuzzy clustering (also known as soft clustering or soft k-means) is a form of clustering in
which each data point can belong to more than one cluster. It is different from k-means and k-
medoid clustering (known as hard or non-fuzzy clustering), where each object is affected exactly
to one cluster.

In fuzzy clustering, points close to the centre of a cluster, may be in the cluster to a higher
degree than points in the edge of a cluster. The degree, to which an element belongs to a given
cluster, is a numerical value varying from 0 to 1.

One of the most widely used fuzzy clustering algorithms is the FANNY (Fuzzy ANalysis)
C-means clustering (FCM) algorithm.

e Select an initial fuzzy pseudo-partition, i.e., assign values to all the w;;

e Repeat

— Compute the centroid of each cluster using the fuzzy pseudo-partition

— Recompute the fuzzy pseudo-partition, i.e., the w;

e Until the centroids do not change (or the change is below some threshold)
Critical Details of the Algorithm:
e Optimisation on sum of the squared error (SSE):

k n
SSE(Cy,..,Cx) = > > whd(z; ¢;)

j=11i=1
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e Computing centroids: ¢; = 2”: w%af:i/ 2”: wfj
e Updating the fuzzy pseudo—b;rtition -
1 1/(p-1) k 1/(p-1)
Y= (d(mivcj)2> /;( (i, cq) )
The characteristic of p in the Algorithm:

e When p — 1, FCM behaves like traditional k-means;
e When p is larger, the cluster centroids approach the global centroid of all data points;

e The partition becomes fuzzier as p increases.

# R

cluster::fanny(x, k, diss = inherits(x, "dist"), memb.exp = 2,
metric = c("euclidean", "manhattan", "SqEuclidean"),
stand = FALSE, iniMem.p = NULL, cluster.only = FALSE,
keep.diss = !diss && !cluster.only && n < 100,
keep.data = !diss && !cluster.only,

maxit = 500, tol = 1le-15, trace.lev = 0)

Another fuzzy clustering algorithm is the Fuzzy clustering by Local Approzimation of MEm-
berships (FLAME). It defines clusters in the dense parts of a dataset and performs cluster
assignment solely based on the neighbourhood relationships among objects. The key feature
of this algorithm is that the neighbourhood relationships among neighbouring objects in the
feature space are used to constrain the memberships of neighbouring objects in the fuzzy mem-
bership space.

9.1.5 Mixture Model: GMM

A mixture model is a mixture of k& component distributions that collectively make a mixture
distribution:
k
= aifi(x). (9.2)
=1

The «; represents a mixing weight for the ith component where Zle a; = 1. The f;(x)
components in principle are arbitrary in the sense that you can choose any sort of distribution.
For continuous case, it has the form

- [ selapa)de.
(_)

In practice, parametric distribution (e.g. gaussians), are often used since a lot work has
been done to understand their behaviour.
If we substitute each f;(x) for a gaussian we get the gaussian mixture models (GMM):

(X ==Y =k)= i) S5 (@ — p)"h).

3 o 1

Likewise, if we substitute each fi(x) for a binomial distribution, we get a binomial mizture
model (BMM).

GMM is available in R’s mclust [Scrucca et al., 2016] and mixtools (plotGMM can be used
for plotting) libraries and in Python’s sklearn.mixture submodule.
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# R

mclust::Mclust(data, G = NULL, modelNames = NULL, prior = NULL,
control = emControl(), initialization = NULL,
warn = mclust.options("warn"), x = NULL,
verbose = interactive(), ...)

# G: An integer vector specifying the numbers of mixture components
# (clusters) for which the BIC is to be calculated. The default is 1:9

# Python

sklearn.mixture.GaussianMixture(n_components=1, *
covariance_type=’full’, tol=0.001, reg_covar=1e-06, max_iter=100,
n_init=1, init_params=’kmeans’, weights_init=None, means_init=None,

precisions_init=None, random_state=None, warm_start=False,
verbose=0, verbose_interval=10)

= O WO 0 =] O Ot = o

Example 9.1.11 (1D galaxy signal). Use GMM to analyse the galaxies dataset from MASS.

Solution: Since the data is 1D, we write a script to compare the histogram to the proba-

bility densities found by the GMM:

The result is as follows.

Density

0.00

1 S T T A Ll
10 15 20 25 30 35

Velocity (Mm/s)

# https://cran.r-project.org/web/packages/sBIC/vignettes/GaussianMixtu
library (MASS)

X = galaxies/1000

library (mclust, quietly=TRUE)

pdf ("gmm_eg.pdf",width=12,height=8)

par (mfrow=c(1,2))

hist (X, prob=TRUE, ylim=c(0,0.15)); lines(density (X))

gmm.model = Mclust (X, G=4, model="V")

summary (gmm.model)

plot (gmm.model, what="density", main="", xlab="Velocity (Mm/s)")
rug (X)

res .pdf




9.1. PARTITIONING METHODS 245

Example 9.1.12 (4D data USArrest with GMM). Use standardisation and GMM to analyse
the distributions in the USArrest data.

Solution: The R script

X = scale(USArrests)

library (mclust, quietly=TRUE)
gmm.model = Mclust (X)

print (summary (gmm.model))

plot (gmm.model, what="density")

Murder

generates the following analysis report and
the projection of the distribution of 4-D data
for all pairs of variables.

Assault

UrbanPop
Gaussian finite mixture model fitted by
EM algorithm

Rape
Mclust VEI (diagonal, equal shape) model
with 3 components:

log-likelihood =n df BIC
ICL
-217.3636 50 20 -512.9677 -517.5878

Clustering table:
1 2 3
20 10 20

The EM algorithm stands for the Expectation Maximisation which tries to fit the data
with the mixture model (9.2) by finding the maximum likelihood function. In mclust: :Mclust,
the emControl provides controls on the EM algorithm to GMM.

An outline of the EM algorithm:

1. Select an initial set of model parameters
2. Repeat

(a) Expectation Step (E-step): for each object, calculate the probability that it belongs
to each distribution 1, i.e., P(x;|7)

(b) Maximisation Step (M-step): given the probabilities from the expectation step, find
the new estimates of the parameters that maximise the expected likelihood

3. Until the parameters are stable

A general implementation is given in the R’s EMCluster package.
For the Gaussian mixture model, we assume a generative process for the data as follows:

xi|c; ~ Normal(pe,, 2¢,), ¢ ~ Discrete(p)

where ¢; are one of the 1, ..., K class, p is some probability vector. The EM algorithm seeks to
maximise the likelihood

fl@r, - malp,p,2) = [ [ f@ilp, 1. %)
1=1

over all parameters p, p1, ..., ltg, 21, ..., i using the cluster assignments cy, ..., ¢, as the hidden
data. The step 2 which maximises the log-likelihood becomes
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(2a) E-step: For i =1,...,n, set

b5(k) = eV (| pu, X))
' >0 PN (@il pg, 25)

k=1,... K.

(2b) M-step: For k =1,..., K, define n;, = >_." | ¢;(k) and update the values

Nk

pe=—r =) dilk)wi, D= nik > dik) (@i — ) (i — )T
=1 =1

Mixture models (MM) are more general than k-means and FANNY clustering and the clus-
ters can be characterised by a small number of parameters. The results may satisfy the statistical
assumptions of the generative models.

However, MM need large data sets to identify the right probability densities. The worst
problems of MM are that they are computationally expensive and it is hard to estimate the
number of clusters.

9.2 Mean Shift

Mean shift is a non-parametric feature-space mathematical analysis technique for locating the
maxima of a density function. The application domains include cluster analysis in computer
vision and image processing. It is an iterative method where we start with an initial estimate
x. Let a kernel function K(x; — ) be given. This function determines the weight of nearby
points for re-estimation of the mean. Typically a Gaussian kernel on the distance to the current
estimate is used, K(z; — x) = e °I®—=l The weighted mean of the density in the window
determined by K is

ZmiGN(w) K(mi - m)mi

ZmieN(m) K(ml - $)

where N(x) is the neighbourhood of @, a set of points for which K(x; — x) # 0.
The difference m(x) — « is called mean shift. The mean-shift algorithm now sets

m(x) =

x < m(x),

and repeats the estimation until m(x) converges.

# R
LPCM::ms(X, h, subset, thr=0.01, scaled= 1, iter=200, plot=TRUE, ...)
# Python

sklearn.cluster .MeanShift (*x, bandwidth=None, seeds=None,
bin_seeding=False, min_bin_freq=1, cluster_all=True,
n_jobs=None, max_iter=300)

For clustering, consider a set of points in two-dimensional space. Assume a circular window
centred at C' and having radius r as the kernel. Mean-shift is a hill climbing algorithm which
involves shifting this kernel iteratively to a higher density region until convergence. Every shift
is defined by a mean shift vector. The mean shift vector always points toward the direction of
the maximum increase in the density. At every iteration the kernel is shifted to the centroid or
the mean of the points within it. The method of calculating this mean depends on the choice of
the kernel. In this case if a Gaussian kernel is chosen instead of a flat kernel, then every point
will first be assigned a weight which will decay exponentially as the distance from the kernel’s
centre increases. At convergence, there will be no direction at which a shift can accommodate
more points inside the kernel.
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For visual tracking, we would create a confidence map in the new image based on the colour
histogram of the object in the previous image, and use mean shift to find the peak of a confidence
map near the object’s old position. The confidence map is a probability density function on
the new image, assigning each pixel of the new image a probability, which is the probability
of the pixel colour occurring in the object in the previous image. A few algorithms, such as
kernel-based object tracking, ensemble tracking, CAMshift expand on this idea.

9.3 Affinity Propagation

In statistics and data mining, affinity propagation (AP) is a clustering algorithm based on
the concept of “message passing” between data points. Unlike clustering algorithms such as k-
means or k-medoids, AP does not require the number of clusters to be determined or estimated
before running the algorithm. Similar to k-medoids, affinity propagation finds “exemplars”,
members of the input set that are representative of clusters.

# R
apcluster::apcluster(s, x, p=NA, g=NA, maxits=1000, convits=100,
lam=0.9, includeSim=FALSE, details=FALSE, nonoise=FALSE, seed=NA)

# Python

sklearn.cluster.AffinityPropagation(*, damping=0.5, max_iter=200,
convergence_iter=15, copy=True, preference=None,
affinity=’euclidean’, verbose=False, random_state=None)

The inventors of AP showed it is better for certain computer vision and computational
biology tasks, e.g. clustering of pictures of human faces and identifying regulated transcripts,
than k-means. A study comparing AP and Markov clustering on protein interaction graph
partitioning found Markov clustering to work better for that problem.

9.4 Hierarchical Clustering

Hierarchical clustering merges or splits data successively to form a tree known as dendro-
gram [Hegland, 2004]. Two broad classes of hierarchical clustering algorithms are [Hegland,
2004]

e agglomerative: start with single points and join them together whenever they are close.
E.g ; Agglomerative Nesting (AGNES) with various linkages, BIRCH, CURE, ROCK,
Chameleon;

e divisive: move from the top down and break the clusters up when they are dissimilar.

E.g. Divisia Analysis (DIANA), MOVA.

Hierarchical clustering, spectral clustering, etc. relies on the distance matrix which will be
stated.

9.4.1 Distance Matrix / Proximity Matrix

Suppose we have n data samples x; = (@1, ,x;p), i = 1,--- ,n. Stacking the sample data x;
leads to a matrix
x] Iir T2 - Tip
X = :LtQ = Z21 e zQP
L,

Tnl In2 ' Tnp
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where z;; is the ith sample/observation for the jth variable/feature.
The distance matrix or proximity matrix between observations of data X is used in
the computation of AGNES and it can be obtained for a dissimilarity function d as

0 dig -+ din
d»y 0 dop,
D=1 _ (9.3)
dnl dn2 tee 0

where d;; = d(x;, z;), h,k=1,--- ,n.

Distance Matrix in R
The basic distance matrix in R has the form:

dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2)

The options for method are ‘euclidean’, ‘maximum’, ‘manhattan’, ‘canberra, ‘binary’, ‘minkows
The daisy function supports euclidean, manhattan and gower.

cluster::daisy(x, metric = c("euclidean","manhattan","gower"),
stand=FALSE, type=1list(), weights=rep.int(l,p), warnBin = warnType,
warnAsym = warnType, warnConst = warnType, warnType = TRUE)

When ‘stand’ is set TRUE and all ‘x’s are numeric, the measurements in ‘x’ are standardised
before calculating the dissimilarities.

Distance Matrix in Python
The Scikit-learn library has a richer variety of distance measures.

sklearn.metrics.pairwise_distances(x, Y=None, metric=’euclidean’, *,
n_jobs=None, force_all_finite=True, *xkwds)

The “metric” options include euclidean/12, manhattan/11/cityblock, cosine, braycurtis,

canberra, chebyshev, correlation, dice, hamming, jaccard, kulsinski, mahalanobis,
minkowski, rogestanimoto, russellrao, seuclidean, sokalmichener, sokalsneath, yule,
sqeuclidean.

Example 9.4.1. You are given the following observations with two variables, x; and x5 in

Example 9.1.3.

Obs

=
8
¥

T omEgoQu e

© © 00 0NN = =
O© 0 O 0N =N

Calculate the Euclidean distance between each pair of observations and construct a distance

matrix.

ki’
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Solution: Note that p =2 and n = 8 (8 observations).

dip =V (xp1 — 2p1)2 + (Th2 —2p2)2 =0, h=1,--

y T4

doy =V (21 — 211)2 + (22 —712)2 = /(1 = 1)2 4+ (2-1)2 =1

ddl \/($31—l‘11) +(I32—I12)2 \/(2—1)2+(1—1)2:1

dyy =/ (zg —2011)? + (B2 — 212)2 = V(2 - 12+ 2 1)2 =2

= V(w51 — 211)? + (w52 — 112)? = V(8 = 1)2 + (8 — 1)2 = V98

After all distances have been calculated, we have the distance matrix
df = data.frame(x1=c(1,1,2,2,8,8,9,9),x2=c(1,2,1,2,8,9,8,9))
dist (df)

1 2 3 4 5 6 7
2 1.000000
3 1.000000 1.414214
4 1.414214 1.000000 1.000000
5 9.899495 9.219544 9.219544 8.485281
6 10.630146 9.899495 10.000000 9.219544 1.000000
7 10.630146 10.000000 9.899495 9.219544 1.000000 1.414214
8 11.313708 10.630146 10.630146 9.899495 1.414214 1.000000 1.000000

Example 9.4.2. Calculate the Manhattan distance between each pair of observations from
Example 9.4.1 and construct a distance matrix.

For hierarchical clustering to work, we need the extension for “dissimilarity” between pairs
of clusters. This leads to the notion of linkage — a measure for dissimilarity between cluster
A and cluster B (let c¢x be the centroid of cluster X):
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Linkage

Update formula for d(1UJ, K)

Cluster Dissimiliarty

Minimum or
single-linkage

min{d(I, K),d(J, K)}

min{ d(a,b) : a€ A, be B}

Maximum or
complete-linkage

max{d(I, K),d(J, K)}

max{ d(a,b):a € A, b€ B}

(Unweighted) average

nrd(I, K) + nyd(J, K)

1
4] 5] 2 2 4

linkage (or UPGMA) nrtng a€AbEB
d(l, K)+d(J, K
Weighted average (7 );r (/. K) -

linkage (or WPGMA)

Centroid or UPGMC

\/n;d([, K)+nyd(J.K) ngngd(1,J)

ny+nj

(nr +ng)?

lea — call2

Median or WPGMC

dJ,K) _d(1,J)

d(l, K)
\/ PR 4

Ward

(TLI Jr?’LK)d(I, K) =+ (TLJ -+ ?’LK)d(J, K) — an(I,J)

nr+ny+ng

M”CA—C ||
[A] + |B] Bl

Minimum energy
clustering

o ZZ}Z @i — bjll2 —
TTI2 ZZj:l lai — ajll2 —
oz D=1 16 = bjll2

Except the minimum energy clustering, all linkages can be more-or-less unified in the Lance-
Wiliams combinatorial formula:

d(IUJ,K) = a(I)d(I, K) + a(J)d(J, K) + bd(I.J) + ¢

d(I,K) —d(J, K)|

where a, b and ¢ are dependent on the linkage, I, J are indices of the clusters just merged and
K is the index for other points or clusters.

Linkage a(l) a(J) b c

Minimum or 0.5 0.5 0 -0.5

single-linkage

Maximum or 0.5 0.5 0 0.5

complete-linkage

(Unweighted) average i " 0 0

linkage (or UPGMA) | ™M 7 g

Weighted average 0.5 0.5 0 0

linkage (or WPGMA)

. Uy Ty nrmny

Centroid or UPGMC - 0
ny+ny ny+ng (n1+nj)2

Median or WPGMC 0.5 0.5 —0.25 0

Ward ny+ng ng+nK ny+ny 0
ny+mng+ng nr+njyg+ng nr+mngy+ng

The Ward linkage minimises the sum of squared differences within all clusters and is similar
to the k-means objective fuction. The complete linkage minimises distance between observa-
tions of pairs of clusters, average linkage minimises the average of the distances between all
observations of paris of clusters while single linkage minimises the distance between the closest
observations of pairs of clusters.
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The root of the tree is the unique cluster that gathers all the samples, the leaves being the
clusters with only one sample.
Algomerative hierarchical clustering is available in R and Python.

# R

hclust (d, method = "complete", members = NULL)

# method = "single", "complete", "average" (=UPGMA), "ward.D", "ward.D2"
# "mcquitty" (=WPGMA), "median" (=WPGMC), "centroid" (=UPGMC)

plot(x, labels = NULL, hang = 0.1, check = TRUE, axes = TRUE,
frame.plot = FALSE, ann = TRUE, main = "Cluster Dendrogram',
sub = NULL, xlab = NULL, ylab = "Height", ...)

cluster::agnes(x, diss = inherits(x, "dist"), metric = "euclidean",
stand = FALSE, method = "average", par.method,
keep.diss = n < 100, keep.data = !diss, trace.lev = 0)

# Python

sklearn.cluster.AgglomerativeClustering(n_clusters=2, x*,
affinity=’euclidean’, memory=None, connectivity=None,
compute_full_tree=’auto’, linkage=’ward’, distance_threshold=None,
compute_distances=False)

# linkage = ’ward’, ’complete’, ’average’, ’single’

The plot will draw the dendrogram for the classification tree generated by the agglomerative
hierarchical clustering algorithm as follows:

1. Begin with n observations and a distance measure of all the pairwise dissimilarities. Treat
each observation as its own cluster.

2. Examine all inter-cluster dissimilarities and identify the pair of clusters that are least
dissimilar (most similar). Fuse the two clusters. Repeat this step until all clusters are
fused.

9.4.2 Complete Linkage, Single Linkage and Average Linkage (UPGMA)

The complete linkage defines the dissimilarity between groups of observations as
d(hk)l = max{dhg, dk,g}, [ 7& h,]{:, 1<l <n. (9.4)

The method computes all pairwise dissimilarities between the elements in a cluster and the
elements in another cluster, and considers the largest value of these dissimilarities, i.e. (9.4), as
the distance between the two clusters.

Example 9.4.3 (Wikipedia: Complete-Linkage Clustering). Based on a JC69 genetic distance
matrix computed from the 5S ribosomal RNA sequence alignment of five bacteria: Bacillus sub-
tilis (A), Bacillus stearothermophilus (B), Lactobacillus viridescens (C), Acholeplasma modicum
(D), and Micrococcus luteus (E).

A B|C D|E
0 |17 21|31 23
1710 [ 30 ]34 |21
21130 0 | 2839
3113428 | 0 |43
2312113943 0

e llw i @Rlve g

Perform complete-linkage hierarchical clustering.
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Solution: Step 1: The (nonzero) smallest distance of the table is d(A, B) = 17. Therefore,
we cluster A and B leading to the table below using the complete-linkage (9.4):

|AB|C|D|E
AB|] 0 [30]34]23
C |30 |0 28]39
D |34 |28 0 |43
E | 23 |39 430

A and B’s branch length is d(A, B) = 17

Step 2: The smallest distance of the above table is d((A4, B), F) = 23 and we cluster
(A,B) and E leading to the table below using the complete-linkage:

ABE| C|D
ABE|[ 0 [39]43
C 39 | 0|28
D 43 |28 0

(A,B) and E’s branch length is d((A, B), E) — d(A, B) =23 — 17 = 6.

Step 3: The smallest distance of the above table is d(C, D) = 28 and we cluster C and
D leading to the table below using the complete-linkage:

| ABE|CD
ABE| 0 43
cD | 43 0

Root r to (A,B,E)’s branch length is d(r, (A, B, E)) = d((A, B, E), (C,D))—d((A,B),E) =
43 — 23 = 20.

Root r to (C,D)’s branch length is d(r,(C,D)) = d((A, B, E),(C,D)) — d(C,D) =
43 — 28 = 15.

These data allows us to construct the dendrogram below (compare to the Wikipedia):

Complete-linkage cluster dendogram

Example 9.4.4 (Final Exam May 2019, Q1(b)). Table Q1(b) — i shows the data collected from
five observations with three variables, x1, o and x3.
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Observation | z1 | z2 | x3
A 6|3 | 4
B 3 2 1
C 71515
D 3 1 2
E 2 3 2

Table Q1(b) — i

Table Q1(b) — ii shows parts of the Euclidean distance matrix computed from data collected
in Table Q1(b) — i after applying standardisation.

Observation A B C D E
A 2.3880 2.2835
B 0.9082
C 1.5496 | 3.6635 3.7430
D 1.4251
E 2.2104 3.2358

Table Q1(b) — ii

(i) Based on the information given, complete the distance matrix shown in Table Q1(b) — ii.
(4 marks)

Solution: First, we compute the mean and sample standard deviation of x; using
sapply (df ,mean), sapply(df,sd):

X = (4.2, 2.8, 2.8); sx = (2.1679, 1.4832, 1.6432).

Then apply standardisation to observations B and E using scale(df):

Observation T To T3
B -0.5535 | -0.5394 | -1.0954
E -1.0148 | 0.1348 | -0.4869

Finally, we compute the Fuclidean distance between B and E and complete the dis-
tance matrix using dist(scale(df)):

dpe = V(213 — 10)% + (w23 — 221)? + (23 — 235)% = 1.0187

A B C D E
0
2.3880 0

1.5496 | 3.6635 0
2.2835 | 0.9082 | 3.7430 0
2.2104 | 1.0187 | 3.2358 | 1.4251 | O

| O Q| =] =

(ii) Group the observations using hierarchical clustering with complete linkage. Sketch the
dendrogram formed by the hierarchical clustering. Group the observations into two groups
and state the observations inside each group. (6 marks)

Solution: Step 1: d(B, D) = 0.9082
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(B,D)| A C |E
B,D)| 0
A 23880 0
C | 37430 | 15496 | 0
E | 1.4251 | 2.2104 | 3.2358 | 0

Step 2: d(BD, E) = 1.4251

(BD,E)| A |C
(BD, E) 0
A 2.3880 0
C 3.7430 | 1.5496 | 0

Step 3: d(A,C) = 1.5496 (A, C) 0

Step 4: d(AC, BDE) = 3.7430

Complete-linkage cluster dendogram (2019.05 Final)

35
L

The dendrogram illustrates the
data are “clustered” at two

25 30
L L

groups: .
Group 1 = (B, D, E); F
Group 2 = (A, C) 1 17?_‘ r

05

a

Example 9.4.5 (May 2022 Semester Final Exam, Q3(b)). Construct the dendrogram for the
hierarchical clustering with complete linkage for the data in Table 3.1.

T
2.6
1.4
2.5
1.7
2.7
24| 4
Table 3.1: Three-dimensional data for clustering.

Suppose the Minkowski distance with » = 1.5 is used and the incomplete distance table for

the points A to F is obtained as follows:

]
o

HEogoaQw =
LN RO W

TSSO I OIS RS

A B C D
B 2.2230
C 2.4607 4.3837
D 2.0120 2.0767 3.2694
E 0.1000 2.2974 2.4852 2.0801
F 1.0588 1.5874 3.1866 2.6909

(i) Construct the complete distance matrix for the points A to F using a Minkowski distance
with 7 = 1.5 on the data from the Table 3.1 by calculating the distance d(E, F'). Show
the calculation steps properly. (2 marks)
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d(B, F) = [|2.7— 24]"" + |3 — 4" + |4 — 4"5]""® = 1106745 [1.5 marks]
A B C D E F
AO
B 2.2230 0
C 2.4607 4.3837 0
D 2.0120 2.0767 3.2694 0
E 0.1000 2.2974 2.4852 2.0801 O
F 1.0588 1.5874 3.1866 2.6909 1.1067 0 [0.5 mark]

(ii) Perform the necessary steps to draw the dendrogram with proper labels for the hierarchical
clustering with complete linkage for the data from the Table 3.1. If you are able to find
the correct value for d(E, F'), use the value from part (i) to do this part. Otherwise, use
the Manhattan distance to approximate d(E, F') to work on this part. (9 marks)
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Dendrogram (Complete Linkage)

4.3837

2.6909 —

2.0767 —

1.1067 o

0.1 o —

Example 9.4.6 (May 2022 Semester Final Exam, Q3(c)). When the clustering methods men-
tioned in Example 9.1.1 and Example 9.4.5 are applied to the study of a real-world data, is
there a need to scale the data? Justify your answer. (2 marks)

Yes. There is a need to scale the data to prevent some predictors/features to dominant the
data due to the magnification of predictors/features in the distance function. .. [2 marks]

Example 9.4.7 (May 2023 Semester Final Exam, Q4(b)).
Given the unlabelled data in Table 4.2.

Obs. Tl T
A 2.37 | 1.72
B 1.03 | 6.50
C | —0.31] 3.00
D 2.22 | 2.83
E 1.55 | 4.82
F 4.14 | 2.97

Table 4.2: Unlabelled data.

Suppose the (Euclidean) distance matrix of Table 4.2 is given below:

A B C D E F
A O
B 4.964 O
Cc 2.970 3.748 0
D 1.120 3.858 2.536 0
E 3.207 1.759 2.602 2.100 O
F 2.167 4.705 4.450 1.925 3.183 0

Construct a hierarchical clustering with Euclidean distance and complete linkage and then
draw the dendrogram of the hierarchical clustering. (9 marks)
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Dendrogram (complete Linkage)

4.964 —

3.748

2.167 -

1.759 H

112 o

The single linkage defines the dissimilarity between the (h, k) groups of observations as
follows:

d(hk)l = min{dhl,dkl}, l 79 h, ]C, 1< l <n (95)

The method computes all pairwise dissimilarities between two clusters and considers the smallest
of these similarities as a linkage criterion.

Example 9.4.8. The scores (1=worst to 10=Dbest) of 8 children in three subjects were recorded.
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Chid |A|B|C|D E|F|G| H
Maths | 7|4 |6 |10 6 | 5] 9|10
Music | 5|7 810|296 ]| 9
History | 8 [ 8 | 6 | 9 | 2|4 |8 | 9

Construct a distance matrix among the children. Perform hierarchical clustering process by
using single linkage.

Solution: The distance matrix among children A to H is

0. -
3.6056 0.
3.7417 3. 0.

5.9161 6.7823 5.3852 0.

6.7823 8.0623 7.2111 11.3578 0.

6. 4.5826 2.4495 7.1414  7.3485 0.

2.2361 5.099 4.1231 4.2426 7.8102 6.4031 0.

| 5.099 6.4031 5.099 1. 10.6771 7.0711 3.3166 0.

T Wm e

Note that d(H, D) = 1 is the minimum distance. So H and D are most similar and we
“cluster” them and calculate:

e d({H,D}, A) = min{d(H, A),d(D,A)} = 5.099

e d({H,D}, B) = min{d(H, B),d(D, B)} = 6.4031

e d({H,D},C) =min{d(H,C),d(D,C)} = 5.099

e d({H,D}, F) =min{d(H, E),d(D,E)} =10.6771

e d{H,D},F)=min{d(H, F),d(D,F)} =7.0711

e d({H,D},G) =min{d(H,G),d(D,G)} = 3.3166

The step 1 distance matrix becomes

A [ O i
B |3.6056 0.
C |3.7417 3. 0.

D,H | 5099 64031 5.099 0.
E [6.7823 8.0623 7.2111 10.6771 0.
F 6. 4.5826 24495 7.0711 7.3485 0.
G [2.2361 5.099 4.1231 3.3166 7.8102 6.4031 O.]

The smallest distance in step 1 distance matrix is d(A, G) = 2.2361, therefore A and
G will be grouped together and single linkage calculations will produce a step 2 distance

matrix: ) ;
AG 0.
B 13.6056 0.
C |3.7417 3. 0.

D,H |3.3166 6.4031 5.099 0.
E |6.7823 8.0623 7.2111 10.6771 0.
F | 6. 45826 24495 7.0711 7.3485 0.}

The smallest distance in step 2 distance matrix is d(C, F) = 2.4495, therefore C and
F will be grouped together and single linkage calculations will produce a step 3 distance
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matrix:
A G 0.
B |3.6056 0.
C,F |3.7417 3. 0.
D, H |3.3166 6.4031 5.099 0.

E [6.7823 8.0623 7.2111 10.6771 0.

Note that d({4, D, G, F}, B) = min{3.6056, 4.5826}, d({4, D, G, F},C) = min{3.7417, 2.4495}.

The smallest distance in step 3 distance matrix is d({C, F'}, B) = 3, therefore {C,F'} and
B will be grouped together and single linkage calculations will produce a step 4 distance
matrix:

AG T o
B,C,F |3.6056 0.
D,H |3.3166 5.099 0.
E  |6.7823 72111 10.6771 0.

The smallest distance in step 4 distance matrix is d({ A, G}, {D, H}) = 3.3166, therefore
{A,G} and {D,H} will be grouped together and single linkage calculations will produce a
step 5 distance matrix:

AG D, HT 0.
B,C,F [3.6056 0.
E 6.7823 T7.2111 0.

The smallest distance in step 5 distance matrix is d({A,G, D, H},{B,C, F'}) = 3.6056,
therefore {A,G,D,H} and {B,C,F} will be grouped together and single linkage calculations
will produce a step 6 distance matrix:

AG,D H B,C,F 0.
E 6.7823 0.|°
Using an R script:
d.f = data.frame(
Maths=c(7 ,4 ,6 ,10 ,6 ,5 ,9 ,10),
Music=c(5 ,7 ,8 ,10 ,2 ,9 ,6 ,9 ),

Hist=c(8 ,8 ,6 ,9 ,2 ,4 ,8 ,9),
row.names=c(’A’,’B’,’C’,’D’,’E?,’F’,’G’,’H’)

)
#hc = hclust(dist(d.f),method=’single’)
#plot(hc,xlab="”,sub=“",hang=—1, axes=FALSE, ylab=“",main=””)

#title (main="Single-linkage cluster dendogram")

hc = hclust(dist(d.f),method=’average’)

plot (hc,xlab="",sub="",hang=-1, axes=FALSE, ylab="",main="")
title("Average-linkage cluster dendogram")

axis(side=2, at=c(0,hc$height), col="#F38630", labels=FALSE, 1lwd=2)
mtext (round (hc$height ,4), side=2, at=hc$height, line=1, col="#A38630",

the dendrogram can be plotted nicely as:

las=2)
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Single-linkage cluster dendogram

6.7823

3.6056
3.3166
3

2.4495
2.2361

The average linkage or Unweighted Pair Group Method with Arithmetic Mean (UPGMA)
defines distance between groups as the average of the distances between all pairs of individuals

in the two groups:
1
Ao =~ D Db
(hE) e Sy GES)
where N(;,;) and N; are the number of items in clusters S,y and Sy, respectively.

Example 9.4.9. Refer to Example 9.4.8, perform hierarchical clustering process by using (a)

(a) Complete linkage;

Solution: The minimum distance is identified to be |d(D, H) =1}

0.
3.6056 0.
3.7417 3. 0.

9.9161 6.7823 5.3852 0.
6.7823 8.0623 7.2111 11.3578 0.
6. 4.5826 2.4495 T7.1414  7.3485 0.
2.2361 5.099 4.1231 4.2426 7.8102 6.4031 0.
| 5.099 6.4031 5.099 1. 10.6771 7.0711 3.3166 0.

TOATMEHUQT e

Step 1: Merge D,H & minimum distance is | d(A, G) = 2.2361

0.
3.6056 0.
3.7417 3. 0.

0.9161 6.7823 5.3852 0.
6.7823 8.0623 7.2111 11.3578 0.

6. 4.5826 2.4495 7.1414 7.3485 0.
[2.2361  5.099 4.1231 4.2426 7.8102 6.4031 0.

-
QE_ Qe
o
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Step 2: Merge A,G & minimum distance is |d(C’, F) =2.4495 ‘

A G T 0. i
B 5.099 0.

C  14.1231 3. 0.

D,H [5.9161 6.7823 5.3852 0.

E|7.8102 8.0623 7.2111 11.3578 0.

F 164031 4.5826 2.4495 7.1414 7.3485 0.]

Step 3: Merge C,F & minimum distance is | d(B, (C, F')) = 4.5826

AG 0.
B 5.099 0.
C,F |6.4031 4.5826 0.
D,H (59161 6.7823 7.1414 0.
£ | 7.8102 8.0623 7.3485 11.3578 0.

Step 4: Merge B,(C,F) & minimum distance is |d(AG, DH) = 5.9161

A G 0.
B,(C,F) |6.4031 0.
D,H |59161 7.1414 0.
E  |7.8102 8.0623 11.3578 0.

Step 5: Merge (B,(C,F)), (D,H) & minimum distance is |d(AG, DH) = 7.1414|

AG,DH[ o.
BCF | 71414 0.
E  |11.3578 8.0623 0.

Step 6: Merge (A,G), (D.H) & minimum distance is |d(AGDHBC’F, H) =11.3578

AGDH,BCF[ 0.
L 11.3578 0.|°
Cluster Dendrogram
(3. 7. 1. 2.] e 4
0. 6. 2.2361 2
2. 5. 24495 2. "]
1. 10. 4.5826 3. : o
8 9. 59161 4 2
11. 12, 7.1414 7 7
| 4. 13. 11.3578 8.] «
REEEEEE

(b) Average linkage (https://en.wikipedia.org/wiki/UPGMA)

261
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Solution: From part (a), the minimum distance is d(D, H) = 1.
Step 1: Merge D,H; calculate new distances and find the min. dist. to be d(A,G) =
2.2361: 1

d(DH,A) = 2—(5.9161 + 5.099) ~ 5.5076,

x 1
d(DH, B) =~ 6.5927, d(DH,C)=5.2421
1
d(DH,F) = 2—(11.3578 +10.6771) =~ 11.0175,

x 1
d(DH, F) =~ T7.1063, d(DH,G) = 3.7796.

Al o ]
B | 3.6056 0.

C | 3.7417 3. 0.

D, H |[5.5076] [6.5927] [5.2421] 0.

E | 67823 80623 7.2111 [11.0175] 0.

F 6. 4.5826  2.4495 [7.1063] 7.3485 0.

G 22361 5099 41231 [3.7796] 7.8102 6.4031 0.

Step 2: Merge A,G; calculate new distances and find the min. dist. is d(C,F) =
2.4495

d(AG,B) = 7 1(3.6056+5.099) ~ 4.3523, d(AG,C) =~ 6.5927, d(AG, E) ~ 7.1063,
1 d(DH,A)+ d(DH,G
d(AG, F) ~ 3.7796, d(AG,DH) = m(dm +dang +dgp +dor) = (DH, A) ; ,G)
_ 5.5076 + 3.7796 16136
2
AG[ 0 ]
B 114.3523 0.
C  1/3.9324 3. 0.
D, H ||4.6436| 6.5927 5.2421 0.
E 7.2963| 8.0623 7.2111 11.0175 0.
F o 116.2016| 4.5826 2.4495 7.1063 7.3485 0.]

Step 3: Merge C,F; calculate new distances and find the min. dist. is d(B,CF) =
3.7913:
d(AG,C) + d(AG, F)

1
d(CF, AG) = m(dCA +deg +dra+drg) = 5 ~ 5.0670
1 d(DH,C)+ d(DH, F
d(CF;DH):m(dCD+dCH+dFD+dFH): ( ) 3 ( ) ~ 6.1742
d(CF,B) ~ 3.7913, d(CF,E) ~ 7.2798
Ac | o ]
B 4.3523 0.
C,F |[5.0670] [3.7913] 0.
D,H | 46436  6.5927 |6.1742 0.
B i 7.2963  8.0623 |7.2798| 11.0175 0._
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Step 4: Merge B,CF; calculate new distances and find the min. dist. to be d(AG, DH) =
4.6436:
1 2 % 5.0670 + 1 x 4.3523
d(BCF, AG) = o (44(CF, AG) +2d(B, AG)) = J?: X ~ 4.8288
d(BCF, DH) = 3712(4d(CF,DH) +2d(B, DH)) = 2% 6'174§ + 65927 _ 63137
1 .062 2 .2
d(BCF, E) = (dpp-+dow-+dps) = - (d(B, E)+2d(CF, E)) = 8.0623 + = 72198 L 75406
AG 0.
B,CF ||4.8288 0.
D,H | 4.6436 |6.3137 0.
E | 72963 |7.5406| 11.0175 0.
Step 5: Merge AG,DH; calculate new distances and find the min. dist. to be
d(AGDH, BCF) = 5.5713
1 4.82 31
AAGDH, BCF) = - (6d(AG, BCF)+6d(BCF, D)) = 5288 ';' 03137 _ 55713
1 2 11.01
d(AGDH, E) = ——(2d(AG. E) + 2d(DH, F)) = ’ 963; 0175 . 9.1569
AG,DH[ 0.
B,CF |]|5.5713 0.
E 9.1569| 7.5406 O.
Step 6: Merge AGDH, BCF; calculate new distances and find the min. dist. to be
d(7) =
1 4 1 .54
A(AGDHBCF, E) = —— (1d(AGDH, E)+3d(BCF, E)) = x 91569 ;f 5 X TOU00 s 642
AGDH,BCF [ 0.
E 8.4642( 0.|°
(3. 7. 1. 2.7
0. 6. 22361 2.
2. 5. 24495 2.
1. 10. 3.7913 3.
8. 9. 4.6436 4.
11. 12. 55712 7.
| 4. 13. 8.4642 8.

Example 9.4.10 (May 2023 Semester Final Exam, Q5(b)).

Given the unlabelled data in Table 5.2.
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O

o

S. X1 xT2 T3

447 | 4.71 | 3.74
3.86 | 1.89 | 5.21
5.27 | 4.72 | 2.25
3.21 | 4.30 | 2.42
4.27 | 3.41 | 3.79

Table 5.2: Unlabelled data.

Hd Q@

Suppose only part of (Euclidean) distance matrix of Table 5.2 is given:
A B C D

.238 0
.691 4.331 0
.870 3.744 2.109 O

U QW=
[ A e}

1. Complete the distance matrix to include the point E in the distance matrix by rounding
your calculations to 3 decimal places. (3 marks)

2. Construct a hierarchical clustering with Euclidean distance and average linkage using
the results from part (i) and round all your calculations to at least 3 decimal places.
(7 marks)
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3. Draw the dendrogram of the hierarchical clustering in part (ii). (2 marks)

Solution: The dendrogram is shown below:

Dendrogram (average Linkage)

3.358
2.019 H
1.909 o
1.316
- (1] [&] [a] < w
Marks are deducted for poor labelling or terribly drawn lines ............. [2 marks]

Other linkages are normally difficult to calculate manually and will not be explored.

9.4.3 BIRCH

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) is used to perform hier-
archical clustering over particularly large data-sets. With modifications it can also be used to ac-
celerate k-means clustering and Gaussian mixture modeling with the expectation-maximization
algorithm. An advantage of BIRCH is its ability to incrementally and dynamically cluster incom-
ing, multi-dimensional metric data points in an attempt to produce the best quality clustering
for a given set of resources (memory and time constraints). In most cases, BIRCH only requires
a single scan of the database.

# R
stream::DSC_BIRCH(formula = NULL, threshold, branching,
maxLeaf, maxMem = 0, outlierThreshold = 0.25)

stream.data = DSD_Gaussians(k = 3, d = 2)

BIRCH = DSC_BIRCH(threshold = .1, branching = 8, maxLeaf = 20)
update (BIRCH, stream, n = 500)

plot (BIRCH, stream)

H oH #

9.4.4 DIANA

In divisive hierarchical clustering, all data is in the same cluster initially. The largest cluster
is split until every object is separate. Because there are O(2") ways of splitting each cluster,
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heuristics are needed. DIANA (DIvisive ANAlysis) chooses the object with the maximum
average dissimilarity and then moves all objects to this cluster that are more similar to the new
cluster than to the remainder.

cluster::diana(x, diss = inherits(x, "dist"), metric = "euclidean",
stand = FALSE, stop.at.k = FALSE,
keep.diss = n < 100, keep.data = !diss, trace.lev = 0)

9.5 Spectral Clustering

Spectral clustering make use of the spectrum (eigenvalues) of the similarity matrix of the
data to perform dimensionality reduction before clustering in fewer dimensions. The similarity
matrix is provided as an input and consists of a quantitative assessment of the relative similarity
of each pair of points in the dataset. In application to image segmentation, spectral clustering
is known as segmentation-based object categorisation.

The spectral clustering algorithm can be broken down into 4 basic steps.

1. Construct a similarity /adjacency matrix A = [a;;| for the similarity graph of the data X
where a;; > 0 is the similarity between data points with indices 7 and j;

2. Determine the degree matrix D = [d;;], di; = Zj a;j and the Laplacian matrix L := D — A;
3. Compute the eigenvectors of the matrix [;

4. Using the second smallest eigenvector as input, train a k-means model and use it to classify
the data.

An implementation of the algorithm in R can be found in http://www.di.fc.ul.pt/~jpn/
r/spectralclustering/spectralclustering.html listed below.

# http://www.di.fc.ul.pt/"jpn/r/spectralclustering/spectralclustering.html

library (mlbench)
set.seed (111)
obj <- mlbench.spirals(100,1,0.025)
my.data <- 4 * obj$x
#plot (my.data)
# Step 1. Construct a similarity graph
make.similarity <- function(my.data, similarity) {
N <- nrow(my.data)
S <- matrix(rep(NA,N"2), ncol=N)
for(i in 1:N) {
for(j in 1:N) A
S[i,j] <- similarity(my.datal[i,], my.data[j,])
}
}
S
}
S <- make.similarity(my.data, function(xl, x2, alpha=1) {
exp(- alpha * norm(as.matrix(xl1-x2), type="F"))
B
# Step 2. Determine the adjacency/affinity matrix A, degree matrix D and
# the Laplacian matrix L
make.affinity <- function(S, n.neighboors=2) {
N <- length(S[,1])

if (n.neighboors >= N) { # fully connected
A <- 8
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} else {
A <- matrix(rep(0,N"2), ncol=N)
for(i in 1:N) { # for each line
# only connect to those points with larger similarity
best.similarities <- sort(S[i,], decreasing=TRUE)[1:n.neighboors]
for (s in best.similarities) {
j <- which(S[i,] == s)

Ali,j] <- S[i,j] # to make an undirected graph, i.e.
Alj,i] <- S[i,j] # the matrix becomes symmetric
¥
}
}
A
}
A <- make.affinity(S, 3) # use 3 neighboors (includes self)
D <- diag(apply(A, 1, sum)) # sum rows
U <-D - A
# matrix power operator: computes M power (M must be diagonalizable)

"%ho%" <- function(M, power)
with(eigen(M), vectors ¥%*} (values power * solve(vectors)))
k <- 2
evlL <- eigen(U, symmetric=TRUE)
Z <- evlL$vectors[,(ncol(evL$vectors)-k+1):ncol(evL$vectors)]
# Step 4. Using the second smallest eigenvector as input, train
# a k-means model and use it to classify the data.
km = kmeans(Z, centers=k, nstart=5)
plot (my.data, col=km$cluster, pch=km$cluster)

The above algorithms demonstrates the inner workings of the spectral clustering algorithm.
In real-world application, we use standard implementations listed below.

# R

kernlab::specc(x, data = NULL, na.action = na.omit, ...)

kknn::specClust(data, centers=NULL, nn = 7, method = "symmetric",
gmax=NULL, ...)

# Python

sklearn.cluster.SpectralClustering(n_clusters=8, *, eigen_solver=None,
n_components=None, random_state=None, n_init=10, gamma=1.0,
affinity=’rbf’, n_neighbors=10, eigen_tol=0.0, assign_labels=’kmeans’,
degree=3, coefO=1, kernel_params=None, n_jobs=None, verbose=False)

The following example illustrates the difference between k-means algorithm and spectral
clustering algorithm.

Example 9.5.1. Given the spiral data X generated below.

library (mlbench)

set.seed (111)

X = 4*mlbench.spirals(100,1,0.025) $x
colnames(X) = c(’x?,’y?)

Compare the clusters between k-means and spectral clustering.

Solution: By writing an R script

1 library(mlbench)
set.seed (111)
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X = 4xmlbench.spirals(100,1,0.025) $x
colnames (X) = c(’x’,’y’)

km = kmeans (X, 2)

pdf ("clust_kmean.pdf")

plot (X, col=km$cluster, pch=15+km$cluster, cex=2)
library(kernlab)

sc = specc(X, centers=2)
pdf ("clust_spectral.pdf")
plot (X, pch=15+sc,

col=sc, cex=2)

we obtain an expected clustering using spectral clustering but getting a not very satisfactory
clustering using k-means.

....... .......
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Example 9.5.2. Analyse the data in Example 9.1.8 using spectral clustering.

Solution: By following Example 9.1.8 using & = 2, 2, 4 and 7 we obtain a much more
satisfactory clusters compare to the k-means.

Spectral Clustering with k=2 Spectral Clustering with k=3
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Spectral Clustering with k=4 Spectral Clustering with k=7

&

9.6 Density-Based Methods

The drawbacks of distance-based methods (such as the partitioning methods and the hierar-
chical methods) are: (a) hard to find clusters with irregular shapes; (b) hard to specify the
number of clusters; (¢) a cluster must be dense but distance-based methods may find clusters
which are not dense.

The rationale of density-based clustering is that a cluster is composed of well-connected
dense region, while objects in sparse areas are removed as noises. The advantage of density-
based clustering is that it can filter out noise and find clusters of arbitrary shapes (as long as
they are composed of connected dense regions). It can find irregular clusters by dividing the
whole space into many small areas such that the density of an area can be estimated and dense
area is likely in a cluster. Start from a dense area, traverse connected dense areas and discover
clusters in irregular shape.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering is a
density-based clustering non-parametric algorithm: given a set of points in some space, it
groups together points that are closely packed together (points with many nearby neighbours),
marking as outliers points that lie alone in low-density regions (whose nearest neighbours are
too far away).

# R
dbscan::dbscan(x, eps, minPts=5, weights=NULL, borderPoints=TRUE, o)

Example 9.6.1. Analyse the clusters for the data in Example 9.1.8 using DBSCAN.

Solution: In contrast to partition methods in which need to specify the number of clusters.
For DBSCAN, we need to specify the ‘density’. Being too large make all points into one
cluster while being too small creates too many clusters. A sample R script analysing the
data is given below.

X = read.table("Aggregation.txt", sep="\t", header=F)
X$v3 = NULL
X = as.matrix(X)
density = c(1,1.1,1.2,1.5)
for(k in 1:1length(density)){
d = densityl[k]
sc = dbscan::dbscan(X, eps=d); print(sc)
pdf (sprintf ("aggr_dbscan’d.pdf", k))
plot (X, col=sc$cluster, pch=sc$cluster, cex=1.5,
main=sprintf ("DBSCAN with eps=%.2f",d))
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DBSCAN with eps=1.00

20 25

Vi

DBSCAN with eps=1.10

OPTICS (Ordering Points To Ide

density-based clusters in spatial data.
Hans-Peter Kriegel and Jorg Sander.

one of DBSCAN’s major weaknesses
varying density. To do so, the points

ntify the Clustering Structure) is an algorithm for finding
It was presented by Mihael Ankerst, Markus M. Breunig,
Its basic idea is similar to DBSCAN, but it addresses
. the problem of detecting meaningful clusters in data of
of the database are (linearly) ordered such that spatially

closest points become neighbours in the ordering. Additionally, a special distance is stored for
each point that represents the density that must be accepted for a cluster so that both points

belong to the same cluster.

# R
dbscan::optics(x,

eps NULL

minPts = 5, .) # difficult to use

’

Example 9.6.2. Analyse the clusters for the data in Example 9.1.8 using OPTICS.

Solution: OPTICS is more complex than DBSCAN.

library(dbscan)
density c(1,1.1,1.2,1.5)

d
op

density [k]
optics (X,

eps=d)

X = read.table("Aggregation.txt",
X$v3 = NULL
X = as.matrix(X)

for(k in 1:length(density)){

pdf (sprintf ("aggr_optics¥d.pdf"
res = extractDBSCAN (op,

sep="\t", header=F)

k))
d)

>

eps_cl
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hullplot (X, res, main=sprintf ("OPTICS with eps=%.2f",d))

OPTICS with eps=1.00 OPTICS with eps=1.10
8 3
\‘ o, e
A
Q4 i 8
X
2 - 8
N o
g o g .
o | &, , -
o] "
i

T T T T T T T
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V1 V1

OPTICS with eps=1.50

30
I
25

25
I

20
I
20

v2
15

vz
15

V1 V1

9.7 Grid-Based Methods

Grid-based clustering methods quantise the object space into a finite number of cells (hyper-
rectangles) and then perform the required operations on the quantised space. The main advan-
tage of Grid based method is its fast processing time which depends on number of cells in each
dimension in quantised space. A few grid based methods from academic research are CLIQUE
(CLustering In QUEst), STING (STatistical INformation Grid), MAFIA (Merging of Adap-
tive Intervals Approach to Spatial Data Mining), Wave Cluster and O-CLUSTER (Orthogonal
partitioning CLUSTERIng).

CLIQUE partitions the data space and finds the number of points that lie inside each cell
of the partition.

STING divides the spatial area into rectangular cells. [Wang et al., 1997]

Wave Cluster uses performs multi-resolution clustering using the wavelet method [Sheik-
holeslami et al., 1988].
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