UECM3993 PRACTICAL QUIZ MARKING GUIDE

Name:		Student ID:		Marks:	/12
Course Cor Faculty: Session:	DE & COURSE TITLE: LKC FES, UTAR JAN 2024	UECM3993 Course:	PREDICTIVE MODELLIN AM, AS, FM LIEW HOW HUI	G	
	rovided, you will ge		ovided. If you do not An answer without nec	=	
CO4: Demor	nstrate supervised and	unsupervised le	arning with statistical se	oftware	
1. Write d	own the return value of	of the R comman	nd: paste(LETTERS[6	5:13], collap	se="-") .
					(0.5 mark)
Ans.	F-G-H-I-J-K-L-M				. [0.5 mark]
32, 29			: sum((c(34, 32, 29) write down an R statist		
Ans. 7	3.9				[1.2 mark]
var(c(3))	34, 32, 29, 23, 45, 44))				.[0.3 mark]
'D1',		C3', 'C3'), c	and: table(c('C3', 'E		
Note th	at R sort labels in dict	tionary order.			(1 mark)
Ans.					
A1 2 C3 :	1 C3 D1 2 1 0 1 1 2 0 3 1				
					[1 mark]
4. Write d Ans.	own the return value of	of the R comman	nd: matrix(seq(74,41,	-3),2,6)	(1 mark)
[[1,] [2,]	,1] [,2] [,3] [,4] 74 68 62 56 71 65 59 53	[,5] [,6] 50 44 47 41			
					[1 mark]

5. Write a simple R script to generate the following table (with the correct data type for each column) without importing any library or reading data from any file.

```
Age Grade Gender Height
1
    11
             В
                      1
                            196
             В
2
     5
                      0
                            135
3
    7
             С
                      0
                            124
4
   18
             Α
                      0
                            194
5
    16
             В
                      1
                            141
             С
6
                            133
     6
                      1
```

Write down the R command(s) to obtain the following descriptive statistics of the table.

```
Grade Gender
                                     Height
     Age
        : 5.00
                         0:3
Min.
                  A:1
                                 {\tt Min.}
                                         :124.0
1st Qu.: 6.25
                  B:3
                         1:3
                                 1st Qu.:133.5
Median: 9.00
                  C:2
                                 Median :138.0
        :10.50
                                         :153.8
Mean
                                 Mean
3rd Qu.:14.75
                                 3rd Qu.:180.8
Max.
        :18.00
                                         :196.0
                                 Max.
```

Then apply min-max scaling to the numeric features and one-hot encoding for the categorical features to obtain the following table.

	(Intercept)	Age	GradeB	GradeC	Gender1	Height
1	1	0.46153846	1	0	1	1.0000000
2	1	0.00000000	1	0	0	0.1527778
3	1	0.15384615	0	1	0	0.000000
4	1	1.00000000	0	0	0	0.9722222
5	1	0.84615385	1	0	1	0.2361111
6	1	0.07692308	0	1	1	0.1250000

(2 marks)

Ans. A sample R script is listed below.

6. Given the training data with features X_1 , X_2 and the label Y in Table 3.1.

X_1	X_2	Y
-1.07	0.14	0
-0.37	0.73	0
-0.24	0.78	0
0.71	-0.8	1
0.13	-0.38	1
1.59	-0.63	1
1.72	0.36	1
2.02	0.12	1

Table 3.1: Training data with features X_1 , X_2 and a label Y.

Ans. After calculating the distances of the point we want to predict to each point in the training data, we obtain the following table.

$\overline{X_1}$	X_2	dist	rank	\overline{Y}
-1.07	0.14	2.385812	8	0
-0.37	0.73	1.907669	7	0
-0.24	0.78	1.822361	6	0
0.71	-0.8	0.827345	4	1
0.13	-0.38	1.172391	5	1
1.59	-0.63	0.51614	1	1
1.72	0.36	0.714003	2	1
2.02	0.12	0.801124	3	1

......[2.2 marks]

$$P_{k=2}(Y=0) = 0;$$
 $P_{k=2}(Y=1) = 1$
 $P_{k=5}(Y=0) = 0;$ $P_{k=5}(Y=1) = 1$

 $\dots [0.2+0.2=0.4 \text{ mark}]$

- 7. Given the Irish education transitions data with the following features
 - Sex: gender of the Irish schoolchildren aged 11 in 1967 (female, male);
 - DVRT: Drumcondra Verbal Reasoning Test Score (integers);
 - PS: Prestige score (integers);
 - TS: Type of school (primary_terminal_leaver, secondary, vocational);

and the labelled output is the Leaving. Certificate with two values — not.taken (Y = 0) or taken (Y = 1). Suppose the trained supervised learning logistic regression model has the following analysis result.

```
Call:
glm(formula = Leaving.Certificate ~ Sex + DVRT + PS + TS, family = binomial,
    data = data.train)
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
             -21.672763 730.716488
                                    -0.030 0.976339
(Intercept)
                          0.275457
Sexmale
               0.004639
                                      0.017 0.986563
DVRT
               0.038905
                          0.010020
                                      3.883 0.000103 ***
               0.025408
                          0.009013
                                      2.819 0.004818 **
              17.238768 730.715962
                                      0.024 0.981178
TSsecondary
TSvocational 14.373213 730.716053
                                      0.020 0.984307
Signif. codes:
                0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 522.87
                            on 378
                                    degrees of freedom
Residual deviance: 346.59
                           on 373
                                    degrees of freedom
  (21 observations deleted due to missingness)
AIC: 358.59
Number of Fisher Scoring iterations: 16
```

- (c) For a female student with a Drumcondra Verbal Reasoning Test Score of 114 and a pretige score of 43 with a type school from secondary, calculate the conditional probability and predict whether the Leaving Certificate is taken or not given the conditions.(1 mark)

Ans.

$$\frac{Odds(PS = x + 1)}{Odds(PS = x)} = \exp(0.02540801) = 1.025734$$
 [0.5 mark]
$$P(Y = 1|PS = x + 1) > P(Y = 1|PS = x)$$
 [0.5 mark]

Part	Sexmale	DVRT	PS	TSsecondary	TSvocational	prob	prediction	mark
(b)	1	123	43	1	0	0.809766	4.256685	[1 mark]
(c)	0	114	43	1	0	0.749079	taken	[1 mark]
-21.6728	0.0046	0.0389	0.0254	17.2388	14.3732	NA	NA	-