UECM 1703 Introduction to Scientific Computing
Topic 2: Arrays Manipulation

Lecturer: Dr Liew How Hui (i ewhh@uit ar . edu. ny)
October 2024

Programming with Topic 1's basic data types and Topic 3's imperative programming is not convinient
and efficient for numeric array data. For example, creating a sequence of sine function data for the range 0 to
4mtusing basic data types and imperative programming would be the commands shown below.

Perform ng calculation with basic data types and inperative progranmi ng
frommth inmport pi, sin

xvals = [i*0.1 for i in range(int(4*pi/0.1))]

yvals = [sin(x) for x in xvals]

Plotting

import matplotlib.pylab as plt
plt.plot(xvals, yvals)
plt.show()

The Numpy module provides conceptually simpler Numpy array data types with various arithmetic and
powerful array processing functions.

Perform ng cal culation with Nunpy

i mport nunpy as np # Must menorise
xval s np. arange(0, 4*np.pi, 0.1)

yval s np. si n(xval s)

| CO1.: perform vector and matrix operation using computer software

References:
* https://lectures.scientific-python.org/intro/numpy/index.html

1. Input-Output and File Types

An input refers to anything that computer “gets” data and store into computer memory. So “keyboard” is
an input, “mouse” is an input, “tablet” is an input, a “computer file” on our desktop is an input, etc.

An output refers to anything that computer “displays” or “stores” data from computer memory. So a
“‘computer monitor” is an output, a “printer” is an output, a “computer file” on our desktop is an output,
etc.

To illustrate a simple input-output between “keyboard” and “screen” (is “teletype terminal” a more
precise term?), we will play with the following Python commands:

width = 70

pre = "\n"*2 + "*"*width + "\n* + " "*(width-2) + "*\n*"

post = "*\np*" + " "*(width-2) + "*\n" + "*"*width

greet = "\n\nEnter your nane: "

nane = input(greet); print(pre+("Hello "+nane).center(w dth-2)+post)

The command nput in line 5 reads from “keyboard”, displays what you type on “screen” and stores
the string into the variablearne.

However, there is a major problem with “keyboard” and “screen” --- the data which is keyed in and
displayed on “screen” will disappeared once we turn off the computer. A “computer file” is something that

will remain in computer even after we have turned off a computer and is hence the best choice for storing and
retrieving data related to scientific computing.

Similar to humans speaking many different languages, computer files also “storing” many different file
formats. All file formats can be categorised into two file typestextfile type andbinary file type. The
basic operations associated with a file are “open”, “read”, “write” and “close”. The “save” function is
the same as opening file for writing and after writing data into it, close it.

Open text file for reading: f p=open("f", "rt")
Read text file: x=f p. readl i nes()
Open text file for writing: f p=open("g", "wm")
Write text file: fp.witelines(x)
Open binary file for reading: f p=open("f", "rb")
Read binary file: Mef p. read()

Open binary file for writing: f p=open("f", "wb")
Write binary file: fp.wite(x)

Close file: fp.close()

Purpose of this section:

* Know the commands to use when reading text data

* Combine with the string manipulation methods such as .split(), array indexing, int(), float(), etc. we can
extract information from text data.

2. Numpy Array Data Types
Array = multi-index, homogeneous (elements are of theame data type) data structure.

Python’s Numpy arrapunpy. ndar r ay is an n-dimensional (nD) array object which is also known
ast ensor in the tensorflow machine learning package.

2.1. Numpy Array Construction: Creating Vectors, Matrices, ...

2.1.1. Constructing arrayswith no particular pattern
1D array = Vector

Al = np.array([1.0, 3.5, 4.2, 2.3, 3.4, 1.5]) # Al double
A2 = np.array([10, 11,12, 13, 14, 15]) # Al integer
A3 = np.array([7, 19, 19, 18], dtype="double’) # Al double
A4 = np.array([True, Fal se, True, Fal se, True]) # Al'l Bool ean

2D arrays = Matrix

Bl = np.array([[7,19], [19,18]]) # brackets in brackets; integers

B2 = np.array([[7,19],[19,18]], dtype='double’) # floating points

B12 = np.array([[np.tan(np.pi/3), 3/np.sin(np.pi/4)],
[np.log(np.cos(np.pi/6)), 1+np.exp(1.5)]])

3D arrays = ArrayTensor (e.g. coloured inmage)
Cl = np.array([[[1,2],[1,4],[5 1]].[[7.2],[9,3],[8,8]]1])

#

Ci[0,:,:] Ci[1,:,:] =
1 2 7 2

1 4 9 3

5 1 8 8

#

Note that Python’s ImagelO module has a class cdllealge which is a subclass ofp. ar r ay to represent
coloured images.

Purpose of this section:

* Memorise the commandp. arr ay() which allows you to create simple 1D or 2D arrays.

* They are not for general use. For general array construction for the application in scientific computing
or financial mathematics, we need arrays with particular patterns.

2

2.1.2. Constructing arrayswith particular patterns --- identity matrices, diagonal matrices, etc.

Vector --- One dinensional (1D) array

A5 = np.zeros(10) # 10 zeros of data type double

A6 = np.ones(10) # 10 ones of data type double

A7 = np.full (10, 100) # 10 hundreds of data type integer
A8 = np.linspace(0, np. pi, num=51, endpoi nt =Tr ue)

A9 = np.arange(0,10,2) # or np.r_[0:10: 2]

Matrix --- Two dinensional (2D) array

B3 = np.zeros((2,4))

B4 = np.ones((4,2))

B5 = np.full ((3,5), 100)

B6 = np.eye(4) # 4 x 4 identity matrix
B7 = np.eye(3,?2) # 3 x 2 identity matrix

B8 = np.diag([5,7,-3,4]) # Create a diagonal matrix
B9 = np.diag(np.arange(6,2,-1))

Or: B9 = np.zeros((4,4)); np.fill _diagonal (B9, np.arange(6,2,-1))
B10 B9. di agonal () or np. di ag(B9) # CGet the diagonal of a matrix!
12 12 11 10
B1l1 = np.vander([1,3,2,5]) # 3% 32 3t 30
23 22 2v 20
5% 52 5t &0

Three di nensional (3D) arrays

C3 = np.zeros((2,4,3))
C4 = np.ones((4,2,3))
C5 = np.full((3,5,3),100)

The commandp. | i nspace is usually used in the creation of a 1-D array for the interval of a particular
functionf. In particular,

m 21 491 o
'50, 50" 50
Note that interval [G7 is cut into 50 intervals with 51 points.

A8 =0

Constructing an array with random patterns:
Random natri ces

B16 = np.randomrand(3, 2) # 3x2 random matrix uni formover [0,1)
B17 = np.random randon((3, 2)) # 3x2 random matrix uni formover [0,1)
B18 = np.random randn(3, 2) # 3x2 random matri x Normal (0, 1)

Random t hree di nensi onal arrays

C13 = np.random rand(3, 2, 4) # 7 UnifornO,1)
Cl4 = np.randomrandon((3,2,4)) # ~ Uniforn{O, 1)
Cl15 = np.random randn(3, 2, 4) # ~ Normal (0, 1)

Purpose of this section:

* Memorise the all commands which allows you to create simple 1D or 2D arrays which specific patterns
(zeros, ones, linspace, diagonals, etc.)

* Know how to construct arrays with [0,1)-uniform and standard normal distribution patterns.

2.1.3. Constructing arrays for 2D and 3D plotting (for Topic 4)

#

Gidis for vectorised evaluations of n-D scal ar/vector fields

#

Two di nensi onal grids:

Bl5a, B15b = np.nmeshgrid([1,2,3],[2,5,7,9]) # return two 4x3 natrices

[1, 2, 3] [2, 2, 2]
[1, 2, 3] [5, 5, 5]
[1, 2, 3] [7, 7, 7]
[1, 2, 3] [9, 9, 9]
Note: default indexing = 'xy' for conputer graphics (Topic 4)
#
A three dinmensional grid
#
X x Y x Z=[x1,x2] x [yl,¥y2,y3] x [z1,z2]
#
XR YR, ZR =11,2], [3,5,7], [8,9] # R for range
XP, YP, ZP = np.nmeshgrid(XR, YR ZR indexing="ij’") # P for grid points
C6 (074 C8
| | |
Y Y Y
[([[1 1] [[[3 3] [([[8 9
[1 1] [5 5] [8 9]
[11]] (7 7]] [8 9]]
[[2 2] [[3 3] [[8 9]
[2 2] [5 5] [8 9]
#[2 2]1] [7 7]11] [8 9]]]
It can be used for the conputation of the scalar field f(xy,2=x%+y?+2
#
def (X Y, Z): return X**2 + Y**2 + 7**2
f = np.vectorize(f)
arr = f(XP, YP, ZP)
#

Related: np.nmgrid[1:3,3:8:2,8:10] # ngrid does not accept |ist
Related: np.ogrid[1:3,3:8:2,8:10] # => (2,1,1), (1,3,1), (1,1,2)

2.2. Basic Array Attributes (Shape, Size)

Arrays are created with a particular shape and data type. The information or attributions associated with
arrays can be obtained from the Numpy array.

* Get the dimension of an arraj. ndi m
* Get the shape of an arrafx shape.
* Get the number of elements in an arrdy:si ze.

* Get the total number of bytes usefl: nbyt es, it is defined asA. si ze*A. it ensi ze. For exam-
ple, if there aren elements iM and all the elements are 64-bit floating numbers, then the total number
of bytes used irA to store array data is8

There are a few operations which are related to the attributes of an array:

* Transpose: It works by reversing the ‘indices’ but for real-world application, it is used to transpose a
matrix Ato A. T (or A. t r anspose()), for example:

1D transpose: No change
[a b ¢c d] --->[a b ¢ d]

2D transpose: Change a matrix to its transpose
[a b c]
[d e f] [a d g |1
[g h i] ---> [b e h k]
[k '] [¢ f i |]
[a]
[b] ---> [a b c]
[c]

* Change frorm-D array to 1-D arrayA. ravel (), A flatten()
1D ravel /flatten: No change

[a b ¢c d] --->[a b ¢ d]
2D ravel /flatten
[a b c]
[d e f] --->[a b ¢c d e f g h i]
[g h i]
* Change an array to a compatible shapet eshape((d;,d,, ---,d,))
np.array([1,3,5,7,9,5]).reshape((2,3))
[1 3]
[1 3 5 7 9 5] --->[5 7]
[9 5]

* Change an array to any shapga. r esi ze(A, (d;,d,, ---,d,))

A =np.array([1,3,5,7,9,5])
B = np.resize(A (2,2))
[1 3]
[2 3 5 7 9 5] --->[5 7]
C = np.resize(A (3,5))
[1 3 5 7 9]
[12 3 57 9 5] --->[5 1 3 5 7]
[9 5 1 3 5]

Purpose of this section:

* Memorise the all commands which allows you to check the shape of array and to manipulate shapes:
A. shape, A. T, A reshape(), etc.

2.3. Numpy Array Formatting

Get the current format: np. get _printoptions()
"Default values:"pr eci si on = 8,t hreshol d = 1000,edgei t ens = 3,1 i newi dt h =75 char-
acters per linesuppr ess = False, i.e. do not print small floating point values using scientific nota-
tion, nanstr ='nan,infstr ='inf, formatter = None (a dictionary of types to set the format-
ting options),si gn ='-, f| oat node ='maxprec.

Set the format: set _printoptions(args)
ar gs are the keywords above. We usually need to set theewi dt h for printing a nicer matrix.

Print the matrix: print(A)

Example. Print the matrix

[2/2 13 1/4 1/5 1/6 1/7 18 1/9]
[1/8 19 1/8 1/7 1/6 1/5 1/4 1/3]

using ‘printoptions’.
Sample Solution 1:

A =np.array([[1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9],
[1/8, 1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3]])
print(A)
Tenporarily set the options
with np.printoptions(precision=4, |inew dth=100):
print(A)
print(A)

Sample Solution 2:

A =np.array([[1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9],
[1/8, 1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3]])

print (A)

default _printoptions = np.get_printoptions()

Permanently set the options

np. set_printoptions(precision=4, |inew dth=100)

print (A)

np.set_printoptions(**default_printoptions)

print (A)

For an array with large variance, using a more complex ‘printoptions’ is helpful.

A = np.array([0.0123, 12e-7, 23e6])

print(A) # Al in Enggineering notations

Tenporarily set the options

with np.printoptions(formatter={"float’':'{:.4qg}’ .format}):
print(A) # Some in easier to read decimal fornat

Purpose of this section:

* Useful in writing Python script. E.g. np.printoptions(precision=6, thresh-
ol d=2000, |inew dt h=150). Itis notrequired for final exam.

* Alternatively, we may use
i mport sys
np. savet xt (sys. stdout, A, fnt="%6f")

according to https://stackoverfl ow com questi ons/ 9360103/ howto-print-a-
nunpy-array-w t hout - brackets.

2.4. Numpy Array Applications (Purpose: NOT For Exam, for knowledge)

* Array of numberscan be used to represent
- time series, audio / sound signals (mostly 1D)
- black-and-white images, grayscale images (2D)
- Colour images (3D)
+ RGB colour =M x N x 3 with values in [0,1] or 0--255;
+ RGBA colour =M x N x 4 with values in [0,1] or 0--255 with A=transparency
Note that out-of-range RGB(A) values are clipped.
* Array of characterscan be used to represent
- ASCII / Unicode arts
* Array of Booleans can be used for selection as to be discussed later.
Python tools to visualise a matrix as an image:

mat pl ot | i b. pypl ot. spy(2) # 2D array only

mat pl ot l'i b. pypl ot.i nshow(X, crmap=None, nornm=None, *, aspect=None,
i nterpol ati on=None, al pha=None, vni n=None, vmax=None, ori gi n=None,
ext ent =None, interpol ati on_stage=None, filternorn=True,
filterrad=4.0, resanpl e=None, url=None, data=None, **kwargs)

For grayscale images, use cmap="gray’, vmin=0, vmax=255.
Example. (Array of Numbers) A 4x4 pixel coloured image below can be represented as Numpy array:

P3

4 4

15

https://paul bourke. net/ dat af or mat s/ ppnt

255 0 O 100 o0 O 0 O 0 255 0 255
0 255 O 0 255 175 0O 0 O 0 0 O
o o o o0 O O 0 151v5 0 o0 O
255 0 255 0O 0 O 0 O 0 255 255 255

The following is how we can read and display the 4x4 pixel image.

i nport nunpy as np
https://liaohaohui.github.io/ UECML703/test. ppm

fp = open("test. ppni, "r")

lines =[]
whil e True:
line = fp.readline()
if not line: break # Break out of |oop when no nore |lines
W skip any enpty line and lines with are coment
if len(line)>0 and line[0] !'="#":
lines.append(line.strip())
if lines[O][0]=="P" and int(lines[0][1:])==3: # P3=Col oured i nage
W H=1lines[1].split()
W= int(W
H=int(H
m=int(lines[2])
if m== 255:

i ngarr = np.zeros((H W3), dtype="uint8)
elif m== 65535:

ingarr = np.zeros((H W3), dtype='uintl6’)
i mge_contents = [int(c) for c in " ".join(lines[3:]).split()]
for y in range(H):

for x in range(W:

ingarr[y,x,:] = image_contents[(y*3*W3*x): (y*3*W3*x+3)]
print(inmgarr)

fromPIL inport |nage
inmg = | mage. fromarray(i ngarr)

import matplotlib.pylab as plt
plt.imhowing)
plt.show()

Example. (ASCII ART) Consider a bat in ASCII art:

I\ I\
I\ (V) _ N
[.77. ' --(0.0)--"_." " .|
\ =t A= N
N
E Y

_
“A\

It can be expressed as Numpy array of ‘characters’ but it is not very useful.

aimg = npoarray([[1 0/, \\',0 L
L7770 NN, N) e e

[l T e (oo) L)

[W e = Wt e | Y]
[W N [P]

hrgs W RN "l

[R A D

3. Array Mathematical Functions and Numpy Ufuncs
When we encounter an array below:

frommath inport sin

A =np.array([sin(1), sin(2), sin(3), sin(4), sin(5), sin(6)])

B = np.array([[sin(1l), sin(2), sin(3)],

[sin(4), sin(5), sin(6)]])

we would hope t@bbreaviateit as

fA =sin(np.array([1,2,3,4,5,6]))

fB = sin(np.array([[sin(1), sin(2), sin(3)],

[sin(4), sin(5), sin(6)]1]))

However, the sine function from math module wouatanplain.

Numpy provides two solutions:
* Build the commonly use mathematical functions in. For examplenysesi n instead ofsi n
* “Vectorise’ the function (using Numpy’s universal function framework with 1 input and 1 output):

arsin = np.vectorize(sin)

* np. fronmpyfunc(func, nin, nout, *[, identity]) Note thatni n andnout are the
number of inputs and number of outputs of the functiamc respectively. In this casearsin =
np. fronpyfunc(sin, 1, 1)

Example. (Application: Plotting) By use the plotting functiops$ t . pl ot andpl t . showto draw (a) Sine
function; (b) Cosine function; and (c) floor function for the domaigi 2i].

Solution: The question does not say how small is the step size, we will just splfi[2pi] to 100 equal
intervals.

import nunpy as np, matplotlib.pylab as plt

Xr = np.linspace(-2*np.pi, 2*np.pi,101) # x range
yl = np.sin(xr)

y2 = np. cos(xr)

y3 = np. floor(xr)

plt.plot(xr, y1, xr, y2, xr, y3)
plt.show() # This is not needed in Spyder/Jupyter

If we have a computer to plot the graph, we can see that floor looks ugly, this is bgdauspl ot just join
points and we need break the domain into more intervals to make the plot of floor function nice.

Exercise. Try and see if you can define a ‘vectorise’ function for
e —e”
xz0
sinhck) = 2x '
®) ETL x=0.

so that you can use it to calculaenhc(np. | i nspace(- 2*np. pi, 2*np. pi, 101)).

[

Example. Consider the heart disease data from https://bookdown.org/brianmachut/uofm_analyt
ics_r_hw_sol_2/logreg.html by analysing the relation between X=fast_food_spend and Y=heart_disease.

One mathematical model for fitting the data is called logistic regression model:
1

P(Y=1X=x) =
(Y=1K=x= 13 expE(-10. 651330614 + 0. 002199547

By using the array processing knowledge, write a Python script to read heart_data.csv and express the
logistic regression model as Python function.

Sample Python Script Solution:

i mport nunpy as np
heart _data.csv can be downl oaded from
https://bookdown. org/ bri anmachut/uof m anal ytics r_hw sol 2/l ogreg. htm
data = np.l oadtxt("heart_data.csv", delimter=","
ski prows=1, dtype=np. doubl e)
col1l data[:, 0]
col 3 data[:, 2]
frommtplotlib.pylab inport plt
plt.plot(col3,coll1,"*")

plt.show()

Expressing |ogistic regression nodel as Python functions
def log_reg(x):
return 1.0/ (1.0+np. exp(-(-10.651330614 + 0.002199567*x)))

Purpose of this section:

* Recognise the different between a function (from a number to a number) and Numpy vectorised func
tion (operate on the array with mapping elementwise)

* In option pricing, we will encounter call option and put option which are defineaeas(0, S- K) and
max(0, K- S) respectively. Her& is usually a constant arfslcan be an array (representing a range).

10

4. Array Indexing: Sub-arrays, ... (Important)

Indexing is an important way to assess the data imn-8narray. Indexing an array with an integer / integers
will lead to the reduction of dimension by default. To keep the dimension, we either use amamge or
use an ‘extra’ index called ‘None’ to keep the dimension. We need to note that indexing ah amayives

us aview of the arrayA.

* Return a “view” of A with a given shapenf, ..., m). Note thatm, x ... x m, must be equal to
A. size: A reshape((my, ..., m))

* Return a “view” of (m;m, ..., my)-arrayA as a transpose with a shapg,(..,m,m;;: A T (alterna-
tively, np. t ranspose(A)).

Making any changes to thdéew will be reflected on the original array. If we neeccapy of the sub-array
from A, we need to use the topy() ' method or stacking commands:

* Return a “copy” of A with a specific typeA. ast ype(sonet ype) , heresonet ype can be' dou-
bl e’ ,” bool’,’int8,etc.

* Return a new array by stacking existing array(ap. hst ack (stacking array horizontally) and

np. vst ack (stacking array vertically).

np. hstack((A_1,A 2,..., Ak)) : A1A2 ... Ak
np.vstack((A_1,A 2,..., A k)) A1l

A2

A k

4.1. Usual Indexing :n, m:n, m:, m:n:k, :

* Inthis section, m and n are assumed tonoa-negative.

* Python’s index starts from O

* Python’s ending indexn n will never reacm

Example.

oo is similar to ‘take all’ (this depends on the shape of the array)

* :12 is similarto 0,1,2,3,4,5,6,7,8,9,10,11 or range(12)

* 5112 issimilarto 5,6,7,8,9,10,11 or range(5,12)

* 2:12:3 is similar to 2,5,8,11 or range(2,12,3)

* 12:2:-2 is similar to 12,10,8,6,4 (2 will not be reached) or range(12,2,-2)

Without loss of generality, we consider a 2-D array
(DAl m 1, n-1] : Indexing an element dhat(m n) (dim=0)
(IDAIm1,:]: IndexingAatmrow (dim=1)
(1 Al :, n-1] : IndexingA atn-column (dim=1)
(IV) Al mL- 1: n2, n1-1: n2] :
Indexing a sub-array o& bounded byl -row to n2-row andnl1-column ton2-column
(V) Al mL- 1: n2: ms, nl- 1: n2: ns] :
Indexing a sub-array of from mil-row to rown2 by steprms and fromnl-column to
n2-column by stems. Whennil- 1 is ignored, it assumes 0 and whe is ignored, it
assumes the last row and whems is ignored, it assumes 1. The situations are similar
for n1- 1, ns andn2.
(VDA [r1-1,...,rk-1],:][:,[c1-1,...,cl-1]]:
Indexing a sub-array A using rowsr 1, - - -, rk, columnscl, ---,cl.
Numpy provides alternative indexing functionake andput to take and assign values to a slice of an
array. They are less convenient to use, we will skip them:

11

(a) Alitem(3,4)

(b) A take(indices=[3], axis=0)

(c) A take(indices=[4], axis=1)

(d) A take(range(3,7),axis=1).take(range(1,3), axi s=0)
(d) A take([3,5,7],axis=1).take([1,3,5], axi s=0)

Example. (Final Exam Sept 2015, Q3(a)) The following vector is defined in Python
V = np.array([2,7,-3,5,0,14,-1,10, -6, 8])

What will be displayed if the following variabld®, C andD are printed.
i) B=V[[1,3,4,5,6,9]]
Solution: We first index the array:
0 1 2 3 4 5 6 7 8 9 <--indices for V
Y, 2 7-3 5 014 -110 -6 8
B=1[7 5 0 14 -1 8]
(i) C=M1[8,21,9]]
| Solution: C=1-6 -3 7 8] \
(i) D= np.array([V[[0,2,4]],V[[1,3,5]],V[[2 5,8]]])
| Solution: D = [[2, -3, 0], [7, 5 14], [-3, 14, -6]] \

Example. Consider the array generated witA = np. arange(1, 55, dt ype="doubl e’).
reshape(6, 9).

A =
1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54

Write down the output of the following commands:

(@) print(Al3,4]) Indexing (1)
(b) print(Al3,:]) Indexing (I1)
(c) print(Al:,4]) Indexing (111)
(d) print(A1:3,3:7]) Indexing (1V)
(e print(Al1:6:2,:][:,3:8:2]) Indexing (V) & (VI)
Q) print (Al 3, None]) (Itisthe same a8[None, 3])

(9) print(Al:,4,None]) orprint(A[:,4:5])

12

Example. (Final Exam Sept 2015, Q1(a)) The following matrix is defined in Python:

M =
6 9 12
4 4 15
2 1 18
-6 -4 21

R OoIN B

0w

-5

N O

2

What will be displayed if the following variablesin (i) to Cin (iii) are printed?

0 A=MI[02],:]1[:,[1,3]]
(i) B=M:,[0,3,4,65]]

(i) C=M1:3,:]

We have to be careful with the indexing in Numpy because it only créiates and does not create

copies.

Example. (View vs Copy of a sub-array) Study the following Python instructions and explain what is each

output:

i mport nunpy as np
A =np.array([[1,2,3],[4, 5 6]])

= A :,0:2]
B[0,0] =8
print("A=",A)

A =

[8 2 3]

[4 5 6]
Summary of

pyt hon. org/i ntro/ nunpy/ array_obj ect. htni

>>> a[0, 3:5]
array([3, 4])

>>> ald4:, 4:]
array([[44, 551,
[54, 5511)

>>> a[:, 2]
a([2, 12, 22, 32, 42,

>>> al2::2, ::2]
array([[20, 22, 24],
[40, 42, 44]]1)

Vi ew [Assign the ‘' copy’
o e m e e e e e e ==
| i mport nunpy as np
| A=np.array([[1,2,3],[4 5 6]])
I = A1, 0:2]. copy()
| B[0,0] =8
| print("A=",A)
| print("B=", B)
____________________________________ o e m =
I
B = | A = B =
[8 2] | [1 2 3] [8 2]
[4 5] | [4 5 6] [4 5]
I
o e m =
Numpy Indexing from https://lectures.scientific-
0 1 2 I/; 4 5
10 | 11 f12) 13 | 14 | 15
20| 21 23 [[24]| 25
521) 30 [31 |32 33|34 | 35
40| 41 43 45
50 | 51 |52 53 | 54 | 55

13

4.2. Negative Indexing: Index from End

Indexing array with the usual bounded index is often enough but Python providegative’ indexing
which is used to index an array “from last element”. For examplg,refers to the last index,n refers to
then last index. Note that going beyond index bound can cause error!

Example. Consider the following integer array:

A = [28 29 30 31 32 33 34 35

[10 11 12 13 14 15 16 17
[19 20 21 22 23 24 25 26

[37 38 39 40 41 42 43 44
[46 47 48 49 50 51 52 53

GbrhWNE
OO

What is the output of the following commands:

@ print(A-2,4])

() print(A-2,:1)

() print(Al-2, None])

(d) print(A:,-4])

() print(A:,-4:-5:-1])

® print(A1:-3,3:-4])

(@0 print(AlL1:-21:2,:][:,2:-2:2])

Solution:

(@) 41 (second last row, fifth column)

(b) [37 38 39 40 41 42 43 44 45] (1D) (second last row)

(c) [[37 38 39 40 41 42 43 44 45]] (different from part (b) in terms of dimension, this2b,
i.e. a 1x9 ‘matrix’)

(d) [15, 24, 33, 42, 51] (fourth last column = sixth columrD)

() [[15] [24] [33] [42] [51]] (2D)

([[13 14] [22 23]] (second row to the row before the last third remd fourth column to before
the last fourth column)

(90 [[21 23 25] [39 41 43]] (second and fourth ronand third, fifth and seventh columns)

Purpose of this section and previous section:

*

You must memorise and understand :, 1:, :9, ::2, -1, 9::-1, -1::-1, 1:9:2, etc. Just be careful that the

last index will not be reached.

14

4.3. Usual Indexing vs For-L oops

Indexing will perform array operations internally similar to for-loops and therefore can be used to express for
loops into array indexing patterns.

Example. (Combining Programming and Array Indexing in Solving Differential Equations Numerically) In
applying finite difference approximation to the type 1 ODE-BVP:

Y09 + pOJY(X) +a(y(x) =r(X), a<x<b, y(@) =y, y(b) =y,

we obtain matrix
hl 0 h0 ce 0
- 5 p(xl) (hzq(xl) - 2) 1+ 5 p(Xl) T 0

O -
OooOooodgdd
O
|
Q

ho . h 0
1- > P(X,-1) (hzq(xn—l) -2) 1+ > P(Xy-1)
0 0 0 0 1

o

O

O
I
o o o e o e o

O

Write a Python script to generate the matrix C.

Sample Solution 1: By using forloop, we have
Cl = np.eye(n+l)

X
h
for

= a
= (b-a)/n
i in range(1,n):
X = x+h
Cl[i,i-1] 1.0-p(x)*h/ 2.0

Ci[i,i 1] h**2*q(x)-2.0

Cl[i, i +1] 1.0+p(x)*h/ 2.0
Sample Solution 2: By using array indexing, we have
C2 = np.eye(n+l)
idx = np.r_[1:n]
h = (b-a)/n
X = a + h*idx
C2[i dx, i dx- 1]
C2lidx,idx]
C2[i dx, i dx+1]

1.0-p(x)*h/ 2.0 # Using elenentwi se arithnetic: idx-1
h**2*q(x)-2.0
1.0+p(x)*h/ 2.0

Example. (Combining Programming and Array Indexing in Technical Analysis of Financial Data) In the
past, it is possible for us to download a lot of stock price data from Yahoo!Finance. However, Yahoo!Finance
is providing less and less stock price data for data and is transforming itself to pay-per-use service. The stock
price data of Telekom Malaysia (a listed company which provides the most expensive broadband service in
South East Asia) below was downloaded a few years ago.

Dat e, Open, Hi gh, Low, d ose, Vol une, Adj C ose

2016-12-30, 6. 06, 6. 09, 5. 81, 5. 95, 5842300, 5. 95

2016- 12-29, 6. 05, 6.12,5. 98, 6. 06, 6777900, 6. 06

2016-12-28, 5. 96, 6. 06, 5. 96, 6. 03, 2503700, 6. 03

2016- 12-27,5.93,5. 99, 5. 92,5. 99, 922400, 5. 99

2016- 12- 26, 5. 95, 5. 95, 5. 95, 5. 95, 000, 5. 95

2016- 12-23,5.91,5.97,5.91, 5. 95, 838100, 5. 95

2016-12-22,5.97,5. 97, 5. 92, 5. 95, 1065000, 5. 95

2016- 12- 21, 6. 02, 6. 02, 5. 92, 5. 95, 3405900, 5. 95

2016- 12- 20, 5. 95, 6. 07, 5. 94, 5. 98, 3101400, 5. 98

2016-12-19,5. 97, 6. 00, 5. 91, 5. 95, 2006000, 5. 95

2016-12-16, 5. 90, 5. 96, 5. 89, 5. 95, 3975600, 5. 95

2016-12-15,5. 91, 5. 95, 5. 90, 5. 90, 3987400, 5. 90

2016-12-14,5. 96, 6. 00, 5. 93, 5. 95, 5128000, 5. 95

2016- 12-13, 6. 04, 6. 05, 5. 94, 5. 96, 4111000, 5. 96

2016-12-12, 6. 03, 6. 03, 6. 03, 6. 03, 000, 6. 03

15

2016-12-09, 6. 11, 6. 11, 6. 01, 6. 03, 1573000, 6. 03

2016- 12-08, 6. 16, 6. 20, 6. 11, 6. 11, 3189800, 6. 11

2016-12-07, 6. 13, 6. 15, 6. 09, 6. 11, 4564800, 6. 11

2016-12-06, 6. 12, 6. 15, 6. 09, 6. 12, 2976600, 6. 12

2016-12-05, 6. 15, 6. 19, 6. 13, 6. 14, 3303800, 6. 14

2016-12-02, 6. 15, 6. 22, 6. 09, 6. 13, 2134000, 6. 13

2016-12-01, 6. 17, 6. 24, 6. 14, 6. 15, 6188400, 6. 15
By using the closing price, write a Python program to calculate
* the price difference between the next day and today for December 2016;
* the three-day (moving) average for December 2016.
Sample Solution 1:
i mport nunpy as np
dcl ose = np.array([6.15, 6.13, 6.14, 6.12, 6.11, 6.11, 6.03,

6.03, 5.96, 5.95, 5.9, 5.95, 5.95, 5.98,
5.95, 5.95, 5.95, 5.95, 5.99, 6.03, 6.06, 5.95])

price_diff = np.zeros(dcl ose. size-1)
novi ng3 = np. zeros(dcl ose. si ze- 2)
for today in range(price_diff.size):

next _day = today + 1

price_diff[today] = dcl ose[next_day]-dcl ose[today]
for today in range(noving3.size):

next _day = today + 1

next _2day = today + 2

nmovi ng3[t oday] = (dcl ose[today] +dcl ose[next _day] +dcl ose[next _2day])/3
print("Price difference between next day and today for Decenber 2016: ")
print(price_diff)
print("3-D noving average for Decenber 2016:", novi ng3)
Sample Solution 2:

i mport nunpy as np
dcl ose = np.array([6.15, 6.13, 6.14, 6.12, 6.11, 6.11, 6.03,

6.03, 5.96, 5.95, 5.9, 5. .95 5.95, 5.98,

5.95, 5.95, 5.95, 5.95, 5.99, 6.03, 6.06, 5.95])
price _diff = np.diff(dcl ose)
idx = np.r_[:(dcl ose. size-2)]
movi ng3 = (dcl ose[i dx] +dcl ose[i dx+1] +dcl ose[i dx+2])/3.0
print("Price difference between next day and today for Decenber 2016: ")
print(price_diff)
print("3-D noving average for Decenber 2016:", novi ng3)

You can also use the information from https://rosettacode.org/wiki/Averages/Simple_moving_average to
write a better Python script.

Example. (More Complex Array Indexing) Write a Python functiepi r al (n) to generate an x n clock-
wise spiral matrix using Python. For exampsgi r al (5) gives

[0 1 2 3 4]
[15 16 17 18 5]
[14 23 24 19 6]
[13 22 21 20 7]
[12 11 10 9 8]

Sample Solution: It is inspired by https://rosettacode.org/wiki/Spiral_matrix

16

def spiral (n, n=None):
_n,_m=(n,m if mis not None else (n,n)
_nl,_mM=0,0
dx,dy = 0,1 # Starting increnents
X,y =0,0 # Starting |ocation
i mport nunmpy as np
nmyarray = np.zeros((_n,_n),dtype="int’)
for i in range(_n*_m:
nyarray[x,y] =
nx, ny = x+dx, y+dy # (dx,dy) = direction to update array
if nl<=nx< n and _ml <=ny<_m
X,y = nx,ny
el se:
if dx==0 and dy==1:
_nl+=1; dx,dy=1,0
elif dx==1 and dy==0:
_m=1; dx,dy=0,-1
elif dx==0 and dy==-1
_n-=1; dx,dy=-1,0
elif dx==-1 and dy== O:
_m +=1; dx, dy=0, 1
el se:
return None # Should not reach this state
X,y = x+dx, y+dy
return nyarray

17

5. Arithmetic, Logical and Relational Operations

The basic arithmetic and logical operations for “numbers” suchkas, x, / , power, not, and, or, equality,
etc. are generalised to operate on “arrays”.elentwise arithmetic and logical operations.

5.1. Elementwise Arithmetic Operations and Broadcasting

The basic arithmetie, -, x, / and power fotwo arrays of the same shape A andB are just element-wise
addition, subtraction, multiplication, division and power of numbers in the array as:

* - A: elementwise negation

1-D exanpl e | 2-D exanple
_________________________ U
A=[1.2 1.3 1.4] | A=[3.2 -53]

| [-5.5 4.0]
-A=1]-1.2 -1.3 -1.4] | -A=1] -3.2 5.3]

| [5.5 -4.0]
_________________________ o

* A + B, A - B:elementwise addition and subtraction

1-D exanpl e | 2-D exanple
......................... oo o e =
A=] 1.2 1.3 1.4] | A= 1 -2]
I [-3 4]
B=[2.1 2.3 3.4] | =[8 7]
I [-6 -5]
A+B = | A+B =
[3.3 3.6 4.8] [[9 5]
I [-9 -1]
A-B = | A-B =
[-0.9 -1.0 -2.0] | [7 -9]
I [3 9]
......................... o e e e e e e e e e e e e e e e — . — - -

* A* B,A/ B,/A ** B:elementwise multiplication, division and ‘power’

1- D exanpl e | 2-D exanple
_________________________ o e m =
A= 1.3 1.2 1.4] | A= 8 -7]
I [-6 5]
B = 2 3 4] | B=[4 2]
I [-3 -4]
A*B = | A*B =
[2.6 3.6 5.6] [[32 -14]
[[18 -20]
AB = | AB=
[0.65 0.4 0.35] | [2. -3.5]
| [2. -1.25]
A**abs(B) = | A**abs(B) =
[1.69 1.728 3.8416] | [4096 49]
[[-216 625]
......................... oo o e =

Together with the ufunc, the array arithmetic allows us to handle computations liké sir¢ 2):
np.sin(x**2 + x + 2)

Example. Write a Python script to plot the functions

X3
V1=t 3X*-1, y,=2sirx, Yy,;=sin(X)

in one diagram for the rang& <= X <=TL

18

Sample Solution:
i mport nunpy as np, matplotlib.pylab as plt

X = np.arange(-np.pi, np.pi, 0.0001)
yl = x*x*x/2 + 3*x*x - 1

y2 = 2*np. sin(x)

y3 = np. sin(2*x)

plt.plot(x,np.vstack((yl,y2,y3)).T); plt.show)

Numpy's elementwise arithmetic can work on arrays witmpatible shapes throughbroadcasting (see
https://lectures. scientific-python.org/intro/ nunpy/operations. htnl #broad-

casti ng). For example, shape (3,4) and shape (4,) are compatible but not shape (3,4) against shape (2,) or
shape (3,). Consider

* A = np. arange(1, 13).reshape(3, 4)

* B = np.array([5,4,8]) (Shape=(3,)

* Cl = np.array([9,4,8,7]) (Shape=(4,)),C2 = np.array([9, 4]) (Shape =(2,)

* A + ClisOKbutA + BandA + C2 arenot OK. However, reshapinB to (3,1) will make it com-
patible withA.

By expandingA, B, C1 andC2, we can see:
[1 2 3 4]

A+Cl=[5 6 7 8]+ 9 4 8 7]
[9 10 11 12]
[1+9 2+4 3+8 447]
=[549 6+4 7+8 847]
[949 10+4 1148 12+7]
[1 2 3 4]
A+C: [5 6 7 8 1+[9 4] ???
[9 10 11 12]
[2 2 3 4]
A+ B [5 6 7 8] +[5 4 8] ?2?2?
[9 10 11 12]

1 2 3 4] [5]
A+ B.reshape((3,1)) : [5 6 7 8] +][4]
[9 10 11 12] [8]

Example. Write down two Python commands which allows us to transform the left matria the right
matrix B using index operations and array arithmetic:

[2 2 3 4] [1 2 3 4]
A=[5 6 7 8]1---> 0 -4 -8 -12] =8B
[9 10 11 12] [0 -8 -16 -24]
Sample Solution:
All1,:] =A1,:] - 5*AI0, :]
Al2,:] =A2:]1 - 9*A0, :]

Purpose of this section:

* Just take care not to confuse elementwise matrix multiplication * with matrix multiplication @ and also
try to practise with the arithmetic broadcasting operations. The array indexing and array arithmetic is
used a lot in scientific computing as in the above example.

19

5.2. Logical Operations

“Boolean arrays” arise when we ‘“‘compare” number arrays. The logical operations for Boolean arrays are
similar to the arithmetic operations for numeric arrays. They are just the generalisation of logical operations
from Boolean values (True, False) to Boolean arrays (arrays of True and/or False) of compatible arrays)

Let C andD be Boolean array of the same shape, the element-wise negation, conjunction and disjunc-
tion for the Boolean array are:

* Check and make sure th&t dt ype andD. dt ype arebool .
* ~ C: elementwise negation

* C & D: elementwise conjunction

* C | D:elementwise disjunction

In Numpy, the logical operations also work ¢wo arrays of the compatible shape. For example,
Shape (2,3) and shape (3,) are compatible but not shape (2,)

* C =np.array([[True, False, True], [False, True, False]]) (Shape=2x3)
* D1 = np.array([True, False]) (Shape=2)

* D2 = np.array([Fal se, False, True]) (Shape=3)

* C & D2isOKbutC & D1 isnot OK

Note that Python allows us to use * and+ to denote”, & and| respectively. However, it is not recom-
mended to prevent confusion because Boolean will be converted to integers when other arithmetic operations
are involved.

np. al | (B) returns true whell values inB are true.np. any(B) returns true whemhereis one
truevaluein B. These two are reduction operations for Boolean array.

Example. (Final Exam Sept 2015, Q2(a)(iv)) What will display if the following commands are executed?
np. array([not Fal se, False, not True]) & np.array([True]*3) (2 marks)
| Solution: = [True False False] & [True True True] = [True False False] \

Example. Find the index of the ‘True’ value for [False, True, False, False True].
np. wher e([Fal se, True, Fal se, False, True])

Purpose of this section:

* There is not a lot to say about Boolean arrays. They will be obtained when we employ a predicate on an
arrayA (e.g. A<=100) or when we employ array relational operations (gB).

5.3. Rdational Operations

Let A andB be arrays of compatible shape. The ordering or real numbers allows us to compare numbers by
the relational operations ==, !=, <, <=, > and >=.

Example. (Final Exam Sept 2013, Q1(c)) Giventhat= np. array([1, 3,4,2,5,0,-3]) andy =
np.array([6, 3, 2,4,1,0, 6]), list the results of the following commands (i) to (iii):

i) x - 2*(y>3)

Solution: Let T denote True an8 denote False. The calculation is as follows.
=x-2*[T FFTFFT]

=x-[2 002 0 0 2]

=[-13 4050 -5]

(i) (x!=0) & (y==0)

Solution: Let T denote True an8 denote False. The calculation is as follows.
[TTTTTFT &[FFFFFTF

=[FFFFFFF

(i) (x==y) | (y<x)

Solution:

I[F F T F T F F

20

5.4. Fancy Indexing with Boolean Array (and List)

The “Boolean” array for an arrayA generated with the use of relational operations (or more general predi-
cates) can be used as a kindaricy indexing calledBoolean indexing for A.

This kind of indexing is widely used in statistics, image processing, signal processing, etc. because it
allows us tosdlect the array data of interest.

Example. Consider the 2-D array

[-1 2 1 -3]
A=[2 -4 -4 0]
[O 0o -1 -2]

Write the Python commands to
1. list all the values irA which arenon-negative.
2. replace the negative valuesArby - 10.

Sample Solution:
1. We select those array elements which are =0:
[-1>=0 2>=0 1>=0 -3>=0] [F T T F] [2 1]
[2>=0 -4>=0 -4>=0 0>=0] --> [T F F T] -->[2 0]
[0>=0 0>=0 -1>=0 -2>=0] [T T F F] [O O]
-->[2 1 2 0 0 0]
Answer : Al A>=0] # or Al7(A<0)]
2. A[A<0] = -10 Here’s how it works for assignment:
[-2, 2, 1, -3] [T, F, F, T [-10, 2, 1, -10]
[2! _4! _4! 0] [F1 T; T1 F] --> [2, '10, '10, O]
[O, O, -1, -2] [F, F, T, T] [O, 0, -10, -10]

Example. (Final Exam Sept 2013, Q1(b) with modification) Write a Python script to perform the following
actions:

* Generate a 2-by-3 array of random numbers using ned command and,

* Move through the array, element by element, and set any value that is less than 0.2 to 0 and any value
that is greater than or equal to 0.2 to 1.

Solution:
Open up a notepad (or Spyder), type in the following text and then save it:

i mport nunpy as np
A = np.randomrand(2,3) # A 2x3 array of random nunbers

A[A<0.2] =0
Al A>=0.2] = 1

Run the above script a few times and explain what do you observe?

Example. Extract from the arrayB=np. array([3, 4, 6, 10, 24, 89, 45, 43, 46, 99, 100]) those
numbers

* which are not divisible by 3;

* which are divisible by 5;

* which are divisible by 3 and 5;

* which are divisible by 3 and set them to 42.

Sample Solution:
def is _divisible by(n): return |anbda x: x %n ==

udi v3 = np.fronmpyfunc(is_divisible by(3),1,1)

print("Not divisible by 3 =>", B[udiv3(B).astype(’ bool’)])
udi v5 = np.fronmpyfunc(is_divisible by(5),1,1)
print("Divisible by 5 =>", B[udiv5(B).astype(’ bool’)])
print("Divisible by 3 and 5 =>", B[udiv3(B).astype(’ bool’) &

21

udi v5(B) . astype(’ bool’)])
B[udi v3(B). astype(’' bool’)] = 42

Example. (Simple Image Processing) We can regard an array of Boolb&oéthe same shape as a number
arrayA like a new layer above the arrdy called amask.

Consider a heathcliff imagé below:

0 10 20 30 40 50 60

The Boolean indexing can be used to extract the red, green and blue components of a coloured image.

fromPIL inport |nmage

i mport nunpy as np

import matplotlib.pylab as plt

https://1iaohaohui.github.io/ UECML703/ heathcliff2.]jpg
f = I mage. open("heat hcliff2.jpg")

orig = np.array(f)

fig, (ax0, axl, ax2) = plt.subplots(nrows=1, ncol s=3)
ax0. hist(orig[:,:,0])

ax0.set _title("Red")

axl. hist(orig[:,:,1])

axl.set _title("Geen")

ax2. hist(orig[:,:,2])

ax2.set _title("Blue")

fig.tight layout()

plt.show()

fig, (ax0, axl, ax2) = plt.subplots(nrows=1, ncol s=3)
arr = orig.copy()
arr[:,:,1:] =0 # red

img = Inmage. fromarray(arr)
ax0. i mshow(i ng)

arr = orig.copy()
arr[:,:,[0,2]] = 0 # green
inmg = Image. fromarray(arr)
axl.imshow(i ng)

arr = orig.copy()
arr[:,:,:2] =0 # blue

img = Inage. fromarray(arr)
ax2. i mshow(i ng)

fig.tight layout()
plt.show()

We can also use the Boolean indexing to mask part of the image. For example, we can use it to create a
‘elliptic frame’ (in black) as follows.

using Boolean indexing (and array grid broadcasting)

22

arr = orig.copy()

Using np.ogrid allows array indexing and broadcasting for cal cul ation

X, Yy = np.ogrid[:arr.shape[0],:arr.shape[1]]

centre = np.array(arr.shape)/2

mask _ellip = (x-centre[0])**2/centre[0] **2+(y-centre[1])**2/centre[1] **2>1.0
arr[mask _ellip,:] =0

plt.imshow arr)

plt.savefig("heathcliff2_ell.eps")

plt.show()
In the practical, try to convert the coloured image 3-D array to gray colour 2-D array using the formula below

gray = 0.298%ed + 0. 5870green+ 0. 114Mlue
The Boolean indexing can also be used in thresholding to select regions the boundaries of a character.

Summary of Numpy Fancy Indexing from https://lectures.scientific-
pyt hon. org/i ntro/ nunpy/ array_obj ect. ht m

>>> a[(e,1,2,3,4), (1,2,3,4,5)] o " 3
array([1, 12, 23, 34, 45]) 1 4|5
>>> a[3:, [0,2,5]] 10 | 11 13 (14 | 15
array([[30, 32, 35],
(40, 42, 45] 20 |21 |22 23| 24 | 25
(36, 32, 5511) 30)| 31 |32| 33 | 34|35
>>> mask = np.array([1,0,1,0,0,1], dtype=bool)
>>> a[mask, 2] 40| 41 (J42]| 43 | 44 §45
array([2, 22, 521) 50| 51 53 | 54 ||55

Note that in the above exampl] (0, 1, 2, 3,4), (1,2,3,4,5)] isthesameas[[0, 1, 2, 3, 4],
[1,2,3,4,5]] and both means np.array([a[0,1], a[l1,2], a[2,3], a[3,64],
a[4,5]]).

23

6. Numeric Array Reduction Operations

When we want to work on the elements of arrays along saxieor multiple axes, we can regard esluc-
ing the array data to some values. We will explore some classes of reduction operations below.

‘Reduction’ Operationsfor Filtering and Construction

* np. choose(J, A) picksA[J[i]] intoJ. It complementsip. conpress(), np. sel ect (),
np. extract (), etc.

* np. put mask(A, rmask, val ues): works similar to Boolean masking. Closely related to

np. take(),np. pl ace(),np. put(),np. copyto().
np. put mask(A, A<0, 0) # Same as AJA<0] =0

* np. correl ate(x, y) correlates two 1-D arrays
min(j,K) .
z;= 5 XYiuis 1=0,---,K+M
i=max(-M,0)
* np. convol ve(x, y) convolves twadl-D arrays
min(j,K)

z;= 5 XY, J=0,---,maxK, M)

i=max(-M,0)

Herex andy are twol-D arrays withK = x. si ze-1 andM =y. si ze-1. The last two items are used
in signal processing.

Ordering ‘Reduction’ Operations

* np. max, np. m n: returns the largest value and the smallest value

* pt p: return the range of values, i.e. the difference of maximum and minimum

* np. ar gnax, np. ar gm n: returns the index of the largest value and the smallest value
* sort : return a sorted copy of an array

* np. ar gsort : return indices of sorted array

* sear chsort ed: find indices where elements should be inserted to maintain order

Statitical ‘Reduction’ Operations
* np. sum(X) : Itis used for summation. WheXis the datax,, x,, - - -, X,, the sum returns
Xp+ X+ -+ X,
Together with array mathematical functions (Ufuncs), the for loop from Topic 1.:
fQA+f2)+f@)+ - +f(n)

can be written as

f(np.r _[1:(n+1)]).sum) # or np.sum(f(np.r_[1:(n+1)))
Relatednp. cunsum np. pr od, np cunpr od, ...

* np. mean(X) : The mean iX = 1t K

np. aver age(X, wei ght s=W) generallses mean and allows weigted mean.
* np. medi an(X): Find the median of datA.
* np. var (X) (andnp. st d(X) = yvar(X)): By default, it is thepopulation variance (and standard

deviation)
-2+ ...+ —-X)2
Var[X] = X - Y :
Note that for sample variance (and sample population), the needs to be changed to—-1 (set
ddof =1).

* np. cov(X) : Compute the covariance matrix of dataXrbased on the mathematical formulation:
Co[X] = E[(X - E[X])(X - E[X])"].

24

6.1. Ordering and Statistical ‘Reduction’ Operations (for Statistics)

In this section, we first look at the ordering reduction operations (min, max, ptp, ...) and the statistical reduc
tion operations (sum, prod, mean, var, std, cumsum, ...) for a simple 2D array. We then look at the past year
questions which uses reduction operations combining with other array operations in the earlier sections.
Example. (General and Statistical ‘Reduction’ Operations) Consider the array

[6 9 12 4 3 0]
M= [4 4 15 2 1 1]
[2 1 18 -5 8 2]
[-6 -4 21 1 -5 2]

Let us investigate the reduction operations min, max, range, sum, prod, cumsum, cumprod, mean, var (popu-
lation variance), std (population standard deviation), etc. along the whole array, along the row and along the
column.

Solution: Let's investigate how the axis work with the various given reduction operations.
M= np.array([[6, 9, 12, 4, 3, 0],
[4, 4, 15, 2, 1, 1],
[2, 1, 18, -5, 8, 2],
[-6, -4, 21, 1, -5, 2]])

Reduction operations along the whole array

M mn() # -6

M max() # 21

M pt p() # 27

M sum() # 96 (all nunbers add)
M prod() # 0 (all nunbers multiply)
M cunsun() # 6, 6+9, 6+9+12,

M cunpr od() # 6, 6*9, 6*9*12,

M nmean() # 4.0

M var () # 46. 25

M std() # 6.800735254367722

#

NOTE: There is a ‘nan’ version for the above commands which
ski ps nan, e.g. np.nanmean(x), np.nanvar(x), etc.

#

Reduction operations along the rows (axis = 1)

M m n(axi s=1) #1 0, 1, -5, -6]

M mex(axi s=1) # [12, 15, 18, 21]

M pt p(axi s=1)

M sum(axis=1) # It will sumalong the rowreturn 1-D array

M prod(axi s=1, keepdi ms=1) # use keepdins=1l if we want 2-D array
M cunmsun(axi s=1) #[6,6+9,...], [4,4+44,...], [2,2+1,...],

M cunpr od(axi s=1) #[6,6%9,...], [4,4*4,...], [2,2*1,...],

M nmean(axi s=1)

M var (axi s=1) # for sanple variance, use ddof=1

M st d(axi s=1)

Reduction operations along the colums (axis = 0)
M m n(axi s=0)

M max(axi s=0)

M pt p(axi s=0)

M sum(axi s=0, keepdi ns=1)
M pr od(axi s=0)

M cumsun(axi s=0)

M cunpr od(axi s=0)

M nmean(axi s=0)

M var (axi s=0)

M st d(axi s=0)

25

Example. (Final Exam Sept 2015, Q1(b)(i)) Write down and explain the value€ &r the following
commands

i mport nunpy as np
np.array([4, 6, 8], dt ype='"doubl e’)
np.array([2,0,4])

A
B
C = np. sunm(A/ B)

| Solution: C = sun([4/2 6/0 8/4]) = sum([2 Inf 2]) = Inf

L essons lear ned: Be careful about the division by zero. We may get infinity.

Example. (Final Exam Oct 2018, Q1(b)) The dot product of two vecters= (X;X,..., X,) and
Y=Y, s Y,), X0, is defined as

XY=XY; XY, + - oo + XY,
The angled between two arrays is defined by the following relation
co9 = L
VX XTY.Y

Implement aPython function t het a to calculate the angl® (in degree) if you are given two arrays

a=[al, a2, a3, a4] andb=[bl, b2, b3, b4]. You must write down the proper import statements. If
you use the Numpy module, you must prefix the Numpy functions witip."” or marks will be heavily
deducted. Use scientific calculator to find the return value of the Python command
theta([1,2,3,4],[2,1, 3, 4]) to 4 decimal places.

Sample Solution: In 2018, Numpy is not as popular and not as advanced and the lecturer has not mastered

np. dot () P:
frommath inport degrees, acos, sqgrt # 1 mar k
Able to define a function and return a val ue: 1.5 marks

Correct translation of mathematical fornula to Python: 2.5 marks
def theta(x, y):

We are using the single-line for loop from Topic 1

The size of x and y may be different, so we need to

check it in real-world programming but it is fine

to assune x and y the sane size in exam

num = sum(x[i]*y[i] for i in range(len(x)))
sxx = sqrt(sum(x[i]*x[i] for i in range(len(x))))
syy = sqrt(sum(y[i]l*y[i] for i in range(len(y))))

return degrees(acos(num sxx/syy))

print(theta([1,2,3,4],[2,1,3,4]))
The question also test the understanding of manual calculation and the use of calculator:

6 = cos? 2+2+9+16 [1 mark]
\/14+2¢+32+42x\/24+1¢(;32+42
— -1 29 _ 180° _ -
= coslgo-—o.258922 x=qr—=14.835% [2+1=3 mar ks]

Sample Solution: Since 2020, Numpy becomes advanced with the introduction of @ for np.matmul; a sim
ple answer is given below.
Appropriate inport when witing scripts 1 mar k

i mport nunpy as np
def theta(x, y):

return np.degrees(np.arccos(x@/ np.sqrt(x@)/np.sqrt(y@)))
print(theta(np.array([1,2,3,4]),np.array([2,1,3,4])))

26

Example. (Final Exam Oct 2018, Q1(a), CO1) The output of the Python commands below

>>> jnport nunmpy as np
>>> A = np.arange(1, 36).astype(’'float’).reshape(5,7)
>>> print(A)

2. 3. 4. 5 6.
9. 10. 11. 12. 13. 1
16. 17. 18. 19. 20. 2
. 23. 24. 25. 26. 27. 28.
[29. 30. 31. 32. 33. 34. 35.]]

Use the above information to write down the output to the following Python commands for item (i) to item
(iv).
() print(AL2, :])

Solution: [15. 16. 17. 18. 19. 20. 21.]
@i print(A1:4,3:5])

Solution:

[[11. 12.]
[18. 19.]
[25. 26.]]
(i) print(Al2:4,4:6].nmean())

Solution: A[2:4,4:6] - [[19., 20.], [26., 27.]]

19+20+26+27_ 23.0

T .

RN

—r———
N =
N O100

(iv) print(Al:, 2]>10)
Solution: [Fal se Fal se True True True]

(v) Write down the Python command ¢ount the number of elements liwho are larger than 20.
Solution: (A>20) . sun()

Example.

(@) Write down the Python command to subtract the each column of a mdalyxthe mean of the data of
each column vector.
] A - A nean(axi s=0) \

(b) The ‘shortest’ Python command to subtract the each row of a matoixthe mean of the data of each
row vector is probably

(AT- Aman(l)).T
Do you know other slightly longer Python command which achieves the same outcoAt for
A - A nean(axi s=1, keepdi ms=True)

A - A nean(1l).reshape(-1,1)

Example. (Final Exam Sept 2019, Q1)

(a) Given [4 9 8 0 2 9]
[3 1 9 1 2 8]

A=[7 2 2 3 7 8]

[3 5 0o 7 9 7]

[9 4 6 7 9 8]

Use the above information &xecute the following Python commands for item (i) to item (iv) and write
down the output of the execution.
(i) print(A:,1])
Solution: [9 1 2 5 4]
(i) print(A1:4,[1,2,3]])
Solution:
[[1 9 1]
[2 2 3]
[50 7]]

27

(i) print (A A<5].sum())
Solution: (4+0+2)+(3+1+1+2)+(2+2+3)+(3+0)+4=27

(iv) print(A[:4,:3].sun(axis=0))
Solution: [4+3+7+3,9+1+2+5,8+9+2+0]=[17,17,19]

(v) Write down the Python command which gives the mean of rowsarfterexecution.
Solution: pri nt (A. mean(axi s=1)))

(vi) Write down the warning message that the command
print(All1,:]/A0,:].astype(np.float64)) will raise when it is executed.
Solution: SinceA[0, 3] is zero, a division by zero error will be produced.

(b) Use Numpy array operations suchras ar ange, etc. to write a computer program in no more than 3
lines and without using any semicolon to print the following output:

1 1 1 1
2 4 8 16
3 9 27 81
4 16 64 256
5 25 125 625
6 36 216 1296
7 49 343 2401
8 64 512 4096
9 81 729 6561
10 100 1000 10000

Sample Solution:
coll = np.arange(1, 11).reshape(10, 1) # [1.5 marks]
B = np. hstack((col 1, col 1**2, col 1**3, col1**4)) # [2 mar ks]
print (B) #[0.5 mark]

Example. (Write program script using Numpy array) The following function is used to generate a moving
sequence (with a particular window size, by default 4) for a one-dimensionalarray

def rolling(a, w ndow=4):
n = a.size
newarray = np.zeros((n-w ndow+l, wi ndow))
for i in range(n-w ndow+l):
newarray[i,:] = a[i:i+w ndow]
return newarray

When the one-dimensional arrayXs= [X; X, X3 Xs.. - ., X,], the return moving sequence obl | i ng(x)
with a widow size 4 is

[[X1, X5, X3 Xal, [X2, X3 Xa X5], + - s [Xn-3s Xn-2 Xn-1, Xn]]-

) Ifa=np.array([1.1, 1.34, 1.17, 1.06, 1.06, 0.94]), write down the output of
Python commandol | i ng(a) .
Solution:
array([[1.1, 1.34, 1.17, 1.06],
[1.34, 1.17, 1.06, 1.06],
[1.17, 1.06, 1.06, 0.94]])

(i) Define a Python functiomovi ng_aver age to calculate moving average a@fwith a window of 4
which returns the following array:

Xp+Xp + X3+ Xy Xp+ X5+ X4+ X5 Xn3 + Xpp + Xpg T X
7] ; 7 ey 7}
based on the moving sequencel | i ng(x). Write down the output of the Python command
print (novi ng_aver age(a)) wherea is given in part (i).

"
1

28

Solution: By using Numpy array method, we have

def noving_average(x,w=4): return rolling(x,w.nman(axis=1)
Alternatively, a less elegant method is to used for loop:

def novi ng_average(x, w=4):

retval = np.zeros(x.size-wtl)
data = rolling(x,w
for i in range(retval.size):

retval[i] = np.nean(datali])
return retval
The output ofrovi ng_average(a) is [1. 1675, 1.1575, 1.0575]

(i) Explain how to calculate moving variance afin part (i) with a window of 4.
[Solution: rol Ting(a) . var (axi s=1) \

Example. (Final Exam Oct 2018, Q2(b), CO3) The following function from a program script is useghto g
erate a moving sequence for a one-dimensional array

def rolling(a, w ndow=4):
n = a.size
newarray = np.zeros((n-w ndowt+l, wi ndow))
for i in range(n-w ndow+l):
newarray[i,:] = a[i:i+w ndow
return newarray

When the one-dimensional arrayXs= [X; X, X3 Xg.. - . , X,], the return moving sequence bl | i ng(x) is

[[Xl,XZ,X3,X4]! [XZ,X3,X4,X5]1 sy [Xn—3, Xn—2’ Xn—l! Xn]]
() Ifa = np.array([0.95, 0.87, 0.87, 0.98, 1.04, 1.08]), write down the output of
rolling(a).
Solution:

array([[0.95, 0.87, 0.87, 0.98],
[0.87, 0.87, 0.98, 1.04],
[0.87, 0.98, 1.04, 1.08]])

(i) Define a Python functiomovi ng_aver age to calculate moving average a@fwith a window of 4

which returns the following array:

[X1+X2+X3+X4 Xp+ X3+ X4+ X5 Xn-3 + Xpp + Xpg T X
4 ' 4 T 4

based on the moving sequencel | i ng(x). Write down the output of the Python command
print (noving_average(a)) wherea is given in part (i).
Sample Solution: By using Numpy array method, we have

def noving_average(x, w=4):

return rolling(x,w.nan(axis=1)

Alternatively, a less elegant method is to use the for loop:

def noving_average(x, w=4):

"
1

retval = np.zeros(X.size-wtl)
data = rolling(x,w
for i in range(retval.size):

retval[i] = np.nean(datali])
return retval
The output ofmovi ng_average(a) is [0. 9175, 0.94, 0.9925].

(i) Explain how to calculate moving variance afin part (i) with a window of 4.

Solution: rol | i ng(a) . var (axi s=1)

The following example is taken from Scipy just to illustrate howl+eorld Python program is written
using Numpy.

Example. ((Final Exam Oct 2023, Magic Square using Integer Array)) Using numpy integer array, a magic
square can be made simpler. The Python function to check if an object is a magic square can be simplified as
follows.

29

def is_magi c_square(arr):
sunms_fromevery row = arr.sunaxi s=1)
sunms_from every col = arr.sunaxi s=0)
#Two di agonal s
diagl = np.diag(arr).sum) # Using reduction *‘suni

diag2 = np.diag(arr[:,::-1]).sum)

return di agl==di ag2 and \
np.all (sunms_fromevery_row == diagl) and \
np.all (sums_fromevery_col == diagl)

me[[7, 12, 1, 14], [2, 13, 8, 11], [16, 3, 10, 5], [9, 6, 15, 4]]
print(is_magic_square(np.array(n)))
print(is_magic_square(np.array([[2, 7, 6], [9, 5, 1], [4, 3, 8]1)))
print(is_magic_square(np.array([[2, 7, 6], [9, 5, 1], [4, 3, 7]1)))

The generation of magic square algorithm from Topic 1 can be simplified as follows.
def magi c_sqr_net hodl(n):

if n %2 ==20: return None # Only works with odd n
magi c_square = np.zeros((n,n))
cnt, i, j =1, 0, n/l/2

while cnt <= n**2:
magi c_square[i,j] = cnt
cnt += 1
newi, new = (i-1)%, (j+1)%
i f magi c_square[new , new]:
i +=1
el se:
i,] = newi, new
return magi c_square

Example. (scipy.stats.gmean) The geometric mean implementation in Scipy is listed below.
def gnmean(a, axis=0, dtype=None, wei ghts=None):
r"""Conpute the weighted geonetric nmean along the specified axis.

The wei ghted geonetric nmean of the array :math:“a_i‘ associated to weights

cmath:*wi' is:
n
0S w;lna, U
e i=1 O
AR
0" o
and, with equal weights, it gives:
n
: [&-
i=1

Par anmet er s
a: array_like
Input array or object that can be converted to an array.
axis : int or None, optiona
Axi s al ong which the geonetric nmean is conputed. Default is O.
If None, conpute over the whole array
dtype : dtype, optiona
Type to which the input arrays are cast before the calculation is
per f or ned.
wei ghts : array_|like, optional
The ‘weights' array nust be broadcastable to the sanme shape as
Default is None, which gives each value a weight of 1.0.

a .

a .

Ret ur ns

30

gnean : ndarray
See ‘dtype’ paraneter above.

nunpy. nean : Arithnetic average
nunpy. average : Wi ghted average
hmean : Harnoni ¢ nean

Ref er ences

[1] "Weighted Geonetric Mean", *W ki pedi a*,
https://en.w ki pedi a. org/ wi ki / Wi ght ed_geon®etri c_nean.

[2] Gossman, J., Grossman, M, Katz, R, "Averages: A New Approach",
Ar chi nredes Foundati on, 1983

>>> from scipy.stats inport gnean

>>> grmean([1, 4])

2.0

>>> gnean([1, 2, 3, 4, 5 6, 7])
3.3800151591412964

>>> gnean([1, 4, 7], weights=[3, 1, 3])
2.80668351922014

a = np.asarray(a, dtype=dtype)

if weights is not None:
wei ghts = np. asarray(wei ghts, dtype=dtype)

with np.errstate(divide="ignore’):
log a = np.log(a)

return np.exp(np.average(log a, axis=axis, weights=weights))

Note the programming techniques used:

* Function with default values

* Defining ‘help documentation’ for a function using
* If statement

* Array mathematical functions and reduction operations.

31

7. Geometric Operations

In this section, we introduces operations which are related to geometry such as length (and the generalisation,
norm), angle, matrix product (related to linear transformations), etc. They can be expressed as the reduction
operations mentioned earlier.

7.1. Geometric Operationsfor Vectors
Thelength of a vector

X =V -+
can be obtained usirgci py. | i nal g. norn(x[, ord, axis, keepdins]).
Theangle between a vectox and a vectoy (in radian) is given by theot-product:

XEy:le1+X2y2+ +Xnyn'

The Numpy operations which allow us to perform dot product on x and y inct@e np. nat nul (x, y),
np. dot (X, y) and np. vdot (x, V).
Example. (Geometric Operations on Vectors) Find lengths and angle the vectors x and y:

X = np.array([3,-1, 2,-4])
y = np.array([5, 7, 3, 1])

Sample Solution:

i mport nunpy as np

fromscipy inmport linalg

xl ength = linal g. nor m x) # earlier: np.sqgrt(x@)
ylength = linal g. nornmy) # earlier: np.sqrt(y@)
angle x_ y = np.arccos((x@)/ x|l engt h/ yl engt h)

Example. (Final Exam Oct 2018, Q1(b)) The dot product of two vectors= (X;X,..., X,) and
Y= (1Y - ¥ X ¥, is defined as

XLV =Xy + XY, + - -+ XY, = [X]ly|cod.
The angled between two arrays is defined by the following relation
cod = Xy :
TXX X7y [y

Implement aPython function t het a to calculate the angl® (in degree) if you are given two arrays

a=[al, a2, a3, a4] andb=[bl, b2, b3, b4]. You must write down the proper import statements. If
you use the Numpy module, you must prefix the Numpy functions witlp.”” or marks will be heavily
deducted. Use scientific calculator to find the return value of the Python command
theta([1,2,3,4],[2,1, 3, 4]) to4decimal places.

Try to work out the answer using dot product and vector norms.

Sample Solution:
i mport nunpy as np
fromscipy inmport linalg # [1 mark]
def theta(x, y): # [1 mark]
num = np. array(x).dot(y) # [1 mark]
den = linal g.norm(x)*linalg.normly) # [1 mark]
return np. degrees(np.arccos(num den)) # [1 mark]

32

7.2. Operationsfor Matrices

Apart from the elementwise arithmetic mentioned eatrlier, the following are some operations specific to
matrices:

* A@ ornp. mat mul (A, B): Matrix product of two arrays.

* np. dot (A, B): Dot productZl,J,j] = 5 A[l,KB[J,k, j] of AandB. It is equivalent to matrix
multiplication. ‘

* np.linalg. matrix_power (A, n) :Raise asquare matrix to the (integer) power

* np. kron(A, B) : Kronecker product of two arrays, giving,[B.

Example. (Linear Algebra Operations on 2-D arrays) Consider the matrices

[1 2] [7 8]
A=[3 4] B = |] cC=[3 -2]
[5 6] [8 7]

Find the matrix producAB, the ‘matrix productBC, the matrix poweB* and the Kronecker produ&®B
using Python.

Sample Solution:

np.array([[1, 2],[3, 4],[5, 6]])

np.array([[7, 8],[8, 7]1)
np.array([3,-2])

@B or np.matnul (A, B) or np.dot(A, B)
[23, 22]

A x B = [53, 52]
[83, 82]

Note: Python will cleverly regard C as colum matri x
when B (2x2 matrix) is nultiplied to C
@cC # [5, 10]

WHHF HHFHRD> OW>

B @B @B @B or np.linalg.matrix_power (B, 4)

[25313 25312]

B4 =Bx BxBxB=]|]

[25312 25313]

np. kron(A, B)

[7, 8, 14, 16]
[1B, 2B] [8, 7, 16, 14]
Kronecker product A (x) B =] 3B, 4B] =[21, 24, 28, 32]
[5B, 6B] [24, 21, 32, 28]
[35, 40, 42, 48]
[40, 35, 48, 42]

Example. Explain which of the Python/Numpy instruction is most appropriate achieved the following
results.

(@) Generate the multiplication tables for 1 to 9 using Python'’s linear algebra operations.
Sample Solution: We can use the elementwise arithmetic to achieve this:

np.r_[1:10].reshape((9,-1)) * np.r_[1:10] # or
np. kron(np.r_[1:10].reshape((9,-1)), np.r_[1:10])

1 - .
(b) LetA= # 10ysento generate a matrix like this

1 20
[6 8 10 3 4 5]
[10 8 6 5 4 3]
[3 4 5 6 8 10]
[

5 4 3 10 8 6]
Sample Solution: There are many answers to this but requires us to observe that

33

@534 15’345

0 3D 3
03 4 2@
DE543D 43
A =np.array([[2,1],[1,2]])
B =np.array([[3,4,5],[5,4,3]])

np. kron(A, B)

Example. (Final Exam Sept 2019, Q2) Given the matrix

(@)

(b)

[1 2]
M=[3 4]
[5 6]

Execute the following Python commands for item (i) to item (v) and write down the output of the exe-
cution.

@ print(M* M

Solution: 1 4
9 16
25 36
@ print(M@MT)
Solution: 5 11 17

11 25 39
17 39 61

(iiy print(M[2,1,0,1, 2] :10:,[1,0,0,1]])

Solution: M [2,1,0,1 2],.] M[2,1,0,1,2],:]1[:,[1,0,0,1]]
[5 6] [6 5 5 6]
[3 4] [4 3 3 4]
[1 21 ----- > [2 1 1 2]
[3 4] [4 3 3 4]
[5 6] [6 5 5 6]
(v) print(M:2,:]1==M[2,1],:])
Solution: [1 2] [5 6] [False False]
[] == 1 1 -> 1
[3 4] [3 4] [True True]
(v) print((M<3)|(M-4))
Solution: [1<3 2<3] [1>4 2>4] [True True]
[3<3 4<3] or [3>4 4>4]| =] False False]
[5<3 6<3] [54 6>4 | [True True]
Write a Python program with no more than 3 lines to produce the following matricesvirom
[-2.5 -1.5] [-2 -2] [-0.5 0.5]
M1=[-0.5 0.5] M2 = 0 0] M3 =[] -0.5 0.5]
[1.5 2.5] [2 2] [-0.5 0.5]

by using the Numpy vector operation in the Python computer software. Not<hais Msubtracted
by the mean of all values iM M 2 is a matrix such that each column Mbeing subtracted by the
mean of corresponding columil 3 is a matrix such that each row Mbeing subtracted by the mean
of corresponding row. Note that your program must work wheis changed to an arbitramn x n
matrix.

Sample Solution:
ML = M- M mean() #[1 mark]
M = M- M nean(axis=0)) # [2 marks]
M8 = M- M nmean(axi s=1, keepdi ns=Tr ue) # [2 marks]

34

8. Linear Algebra Solvers(To be covered in Topic 5)
In science and engineering, we often encounter the equations involving matrices calliegdheystem or
thelinear algebra problem:

AX=B (LS)

whereA is anm x n matrix, X is ann x k matrix andB is anm x k matrix. X is unknown whereas andB
need to be given.

8.1. When m=nand Aisinvertible
(LS) can be solved using

fromscipy inmport linalg
X = linal g.solve(A B) # linalg.inv(A) @B is not recomended

Thel i nal g. sol ve should be able to solve (LS) with = n<<10* using the Gaussian elimination method
(and Cholesky method when the matfxs positive definite). For any larger matrix, we may need the sparse
matrix solvers.

Example. Write down the Python script to solve the following problem:

[-2 11] [x11 x12] [19 1]

[1 [| =1]
[17 -19] [x21 x22] [3 2]

Sample Solution:

fromscipy inmport linalg # Mentioned earlier

A =np.array([[-2,11],[17,-19]])
B =np.array([[19,1],[3,2]])

X = linalg.solve(A B)
print("X=",X)

The solution is

X = [2.64429530 0.27516779]
[2.20805369 0.14093960]

Example. (Final Exam Sept 2014, Q4(a)) Given the linear system
3%, + 7X, — 2X3 + 3%, — X5 = 37

4x, + 3x5 = 40

5X3 — 4X, + X5 = 12

2%, + X3 + 4%, + 3x; = 14

5%, + 8x5 = 20
Write a Python script to solve the linear system.
Sample Solution:
i mport nunpy as np
fromscipy inmport linalg
A =np.array([[3, 7, -2, 3, -1],
[41 01 01 01 3] 1
[01 01 51 _41 1])
[21 01 91 41 3] il
[0, O, O, 5 8]1])
x = linal g.solve(A [37, 40, 12, 14, 20])

35

Example. (Final Exam Sept 2020 during MCO, Q1)
(a) Given thatA stores the following matrix

[4 0 O 0O 015 8 1 0 0]
[o0 6 0O 0O O 6 24 6 1 0]
[o 0 6 0 0 1 8 15 4 4]
[1. 0 0O 3 0 O 8 4 18 5]
[2 3 0 0 5 0 0 8 6 24]
[29 3 1 0 0 5 0 0 3 7]
[317 5 6 0 0 7 0 0 2]
[4 4 17 3 4 0 0 6 0 0]
[O 8 2 25 4 0 0 O 8 0]
[o 0 7 116 0 0 0 0 7]

() Write down the output of the Python commaAf: , [3, 5, 2, 4]] . Determine if it is the same
asAl [3,5, 2, 4]] and explain the difference.
Solution:
[[O 15

H
NNURPOO®OO
AS

N
RPUOITWOOOWOOo
OO0 OUIOOPFrO

7 16]]
Al:,[3,5,2,4]] andA[[3,5, 2,4]] are different because the former picks the columns
while the later pick the rows.

(i) Write the Python command to pick all the odd rows and even columns A@md write down the
output of your command.
Solution: A[::2,1::2] -> [0 24 1]

0 8 18]

0 0 3]

17 4 0 0]

[0 716 0 0]]

(i) Write the Python command to pick the intersection of the second, fifth, third columns and of the
eighth, fifth and seventh rows in the given order and write down the output of your command.
Solution: A[:,[1,4,2]1[[7,4,6],:] -> [[4 4 17]

~rORFRO
Nk, OO

[
[
[2
[

[3 5 0]
[17 O 5]]
(iv) Write the Python command to arrange the given mafrixito the following diagonally dominant
form:

[15 8 1 0 0 4 O O 0 0]
[6 24 6 1 0 O 6 0 0 0]
[1 8 15 4 4 0 O 6 0 0]
[0O 8 4 18 5 1 0 0 3 0]
[0O O 8 6 24 2 3 0 0 5]
[5 0 0 3 7 29 3 1 0 0]
[0 7 0 O 2 3 17 5 6 0]
[0O O 6 0 0 4 4 17 3 4]
[o o0 o 8 0 o0 8 2 25 4]
[0O O o0 O 7 0 O 7 1 16]

Solution: A[:,[5,6,7,8,9,0,1, 2,3,4]]

(v) Forannxnmatrix A, it is said to bediagonally dominanif for each row the absolute value of the
diagonal element is larger than the sum of the absolute value of the rest of the elements in the
row:

la, | > > |aij|, i=1,2,...n.

i=Li% |

%

Write a Python functiom s_di ag_dom n(A) which determines whether the matis diagp-
nally dorminant. The function with return True if the matuxis diagonally dorminant, False if
the matrixA is not diagonally dorminant, and None if the matrix is not square.
Sample Solution:
def is_diag _donin(A):
N = A shape[0]
for i in range(N):

S = sum(abs(Ali,j]) for j inrange(N) if j !'=1i)
if abs(Ali,i]) <= S
print("i=",i)

return Fal se
return True

#inport ql
#print (i s_diag_donin(ql. AA))
(b) Given that three 3 x 3 matrices

[5 8 8] [2 2 -2] [-2 -8 8]
P=[6 -9 -8] Q=[7 8 -2] R=[-8 -5 8]
[6 -5 1] [0 2 2] [6 -9 4]

(i) Write down the Python command to find the inverse matriQpfQ 2.
Solution: The Python command to fin@ ! is
np.linalg.inv(Q
or
np. linal g.solve(Q np. eye(Q shape[0])).

The output is

-1.25 0.5 -0.75

0.875 -0.25 0. 625
-0.875 0.25 -0.125

(i) Write down the Python command to find matiixif P2LQ = R. Write down thematrix L.
Solution: L = (P®)'RQ?
L linalg.inv(P@@) @R @linalg.inv(Q
L linalg.solve(np.linalg. matrix_power(P,3),R@inalg.inv(Q
The matrixL is
0.08603119 -0.04214438 0.07957573
0. 21360577 -0.09753974 0.18129806
-0. 24895274 0.11235113 -0.20818642

(i) Suppose the 3 x 3 matricds F, G, H satisfies

P Qa'_F Fo
@ RO G HO

First, find the matrixH by writing down the appropriate Python commands. Then, write down the
appropriate Python command(s) to show that

(R-QP'Q)™ =H.
Solution: After from sci py i nport 1|inal g, the command
H=1linalg.inv(R - Q@inalg.inv(P) @
allows us to obtain
[0.26819736 -0.15480007 -0.07891041]
H =1 0.69421553 -0.3532685 -0. 42828374]
[1.00692917 -0.48176952 -0.51330189]

37

8.2. When m# nor Aisnot invertible

Mathematicians have solved the general linear system (LS) with no restrictions (except that that they cannot
be too large because computer memory is limitedjreemdn (the price to pay is a longer computation time)
using the SVD method or QR method leading to the following functions in Python:

fromscipy inmport linalg

X =linalg.lstsq(A B) # linalg.pinv(A) @B is not reconmended
Note that X may not be a solution but a ‘least square solution’ of the linear system (LS).
Example. Write down the Python script to solve the following problem:

[x11 x12]
[-2 11] [1 =019 1]
[x21 x22]

Sample Solution:

A =np.array([[-2,11]])

B = np.array([[19,1]])

X, _,Rank, Sing = linalg.lstsq(A B)

print("X=",X) # Many solutions but only one return

Example. Solve the Least Square Problem:

[-2 11] [x11 x12] [19 1]

[17 -19] [x21 x22] = [3 2]

[6 6] [6 7]
Note: Be carefull i nal g. sol ve will not work.
Sample Solution:

A =np.array([[-2,11],[17,-19],[6,6]])

B np.array([[19,1],[3,2],[6,7]])
X, Err,Rank, Sing = linalg.lstsq(A B)
print("X=",X)

print (" Residue=", Err)

38

8.3. Special (Dense) Matricesand Sparse Matrices
For some linear system with special square matrices such da¢pltz matrix:

By by by o by by o

O
@ a; by - - bbb
%3 a a - .. B
D- D
O . . . a b 0O

%nan—lan—z e aog

It can be generated using
linalg.toeplitz([al, a2, a3, ..., an], [bO, b1, b2, ..., bm)

Mathematicians have developed special algorithms to speed up the solution of linear systepewith s
cial matrices.

* linal g.solve toeplitz(c_or_cr, b, check finite=True)

* Other special cases are ignored.

Example. Construct a Toeplitz matrix from the 1-D arrags[2, 3, 4, 5] andb=[500, 6, 7, 8, 9, 10] .
Sample Solution:

>>> print(linalg.toeplitz([2,3,4,5],[500,6,7,8,9,10]))

[2, 6, 7, 8 9, 10]
[3, 2, 6, 7, 8 9]
[4, 3, 2, 6, 7, 8]
[5, 4, 3, 2, 6, 7]

Example. (Toeplitz System) Write a script usimg nal g. t oepl i t z to solve the linear system:

[1 -1 -2 -3] [1]
[3 1 -1 -2] [2]
[6 3 1 -1]Jy=1[2]
[10 6 3 1] [5]

Sample Solution: When the Toeplitz matrixi nal g. t oeplitz(c, r) is characterised by andr, we
can write down the following commands.

¢ = np.array([1, 3,6,10]) # first colum of left matrix
r =np.array([1,-1,-2,-3]) # first row of left matrix
b =np.array([1,2,2,5]) # right colum matrix

x = linalg.solve_toeplitz((c, r), b)

Some square matrices like the tridiagonal matrices have a lot zeros and sparse matrix is a good repre-
sentation and special solvers can be applied.
Example. (Sparse Matrix Solver)

i mport nunpy as np

from scipy inmport sparse
N = 10

idx = np.r_[O0:N

vl = 3*idx**2 +(idx/2)
v2 = -(6*idx**2 - 1)
v3 = 3*idx**2 -(idx/2)
A = sparse. spdi ags(np.vstack((vl,v2,v3)),(-1,0,1),N,N).tocsc()
B =np.r_[NO:-1]
X = sparse.linal g.spsol ve(A B)
Refer to https://lectures.scientific-

pyt hon. or g/ advanced/ sci py_sparse/ i ndex. ht ml for more Scipy functions related sparse
matrix.

39

9. Eigenvalue Problemsand Matrix Functions

Eigenvalues are important in science and engineering because they are linkedesdtiance frequencies,
characteristic functions, etc. The eigenvalue problem Ax= A xhas the following matrix form:

AX = XA (EP)
Here Aisan nx nmatrix. (EP) can be solved using:

fromscipy inmport linalg
ei genval ues, eigenvectors = linalg.eig(A

returning the eigenvalues (the diagonalsdfand the normalised right eigenvectors as the columns fofr
the square arraf. For a special case whefeis a Hermitian or symmetrid,i nal g. ei gh(A) has a faster
algorithm.

A (right) generalised matrix eigenvalue problem has the form:
AX = BXA (GEP)
It can be solved using
ei genval ues, eigenvectors = linalg.eig(A B).

Example. Write down the Python script to solve the following eigenvalue problem:

[-2 11]
[] v = lanbda v
[17 -19]

Sample Solution:

fromscipy inmport linalg
A =np.array([[-2,11],[17,-19]])

| anbdas, eigenvectors = linalg.eig(A
print("/\=",1 anbdas)
print("X=", ei genvectors)

9.1. Linear Matrix Equations

There are a few matrix equations from linear control theory, signal processing, filtering, model red
image restoration, decoupling techniques for ordinary and partial differential equations below and the
tive solvers in Python are listed.

Sylvester equations:
AX+BX=C

are solved witH i nal g. sol ve_syl vester (A, B, C) using the Bartels-Stewart algorithm.
A continuous-time algebraic Riccati equation (CARE):

XA+ APX - XBR'B"X+Q=0
islinal g.sol ve_continuous_are(A, B, Q R, E S, ...]) inPython.
A discretetime algebraic Riccati equation (DARE):
APXA-X - (A"XB)(R+B"XB)(B"XA +Q=0
islinal g.solve discrete are(A, B, Q R, E S, bal anced]) in Python.
A continuoustime Lyapunov equation:
AX+XA" =Q

islinal g.sol ve_conti nuous_I| yapunov(A, Q inPython.
A discrete-time Lyapunov equation:

AXA" =X +Q=0

uiction,
respec-

islinal g.solve _discrete_|yapunov(A, {, nethod]) inPython.

40

9.2. Matrix Functionsand Matrix Equations
A more generahonlinear matrix problem has the form:

f(X)=0 (ME)

whereX and 0 aren x n square matrices. There is no simple / unified solution technique to this problem. A
special case of (ME) has a quadratic left hand side leading to a ‘quadratic matrix equation’:

AX?+BX+C=0
whereX, A, B, C, 0 are alln x n matrices. For example,

[-2 11] [19 1] [0 13] [O 0]
[] X2+ [] X + [1 =1]
[17 -19] [3 2] [-13 13] [O 0]

whereX is a 2 x 2 matrix.
The f(X) in (ME) can be amatrix function defined by the Taylor series for matrix of the form

o K
(00=5 g

Python has the exponential, logarithm, trigonometric and hyperbolic matrix functions such as
l'inal g.expm linalg.logmlinalg.sinmlinalg.cosmlinalg.tanmlinalg.sinhm
l'i nal g. coshmandl i nal g. t anhm

Example. (Final Exam Sept 2021 during MCO, Q1(d)) Given a 2 x 2 matrix

A=l 1 -0.15
.1 10
Let X be a 2 x 2 matrix with entrieg;, i,j = 1,2. You are investigating the difference between the matrix
exponential function
1 1 1 1
mx) = 2 3 byl Ky oo
exp (X)—|2+X+TX +§x +EX+ +WX+

and the elementwise exponential function

N @XM e>(12D
eXp(X) |]3X21 eX22|:J
(i) Write down the Python commands for calculating @) and exp. Run the Python commands and
write down the output of the commands. Then, write down the differend@ &p— exp@).
Solution: The Python commands are respectively
* expl™(A): linalg.expm(A)
* exp(A): np.exp(A)
The outputs are respectively
[[2.70470174 -0.27137536] [[2.71828183 0.90483742]
[0.27137536 2.70470174]] [1.10517092 2.71828183]]
and the difference is
[[-0.01358009 -1.17621278]
[-0.83379556 -0.01358009]]

(i) Write down the Python command to find the difference

1 1
mj 1. — A— 2 _ 3
exg™(A) -1,- A TA ﬁA
and write down the difference.
Solution: The Python command to find the difference is

linalg.expm(A) - np.eye(2) - A- 0.5*A@\ - 1/6* AGA\GA

and the output is
[[0.04803508 -0.02154203]
[0.02154203 0.04803508]]

41

10. Inline Functions, Anonymous Functions

Python does not have inline functions. Another implementation of Python called PyPy will inline functions
automatically.

The lambda notion for function is tr@onymous function in Python:
| ambda x: an_expression_of x ..

It is usually used when we don't need to give an operation a function name.
Example. Sorting list strings reversely based on the characters and the number.

import re
table data = ["vlanl", "usb0", "ethl", "vlan4", "vlan20"]
sorted(tabl e_data, key=lanbda v:
[re.findall(r’([a-2z]+)', V), -int(re.findall(r’(\d+)’, v)[O0])],
rever se=True)

Purpose of Section 8 and Section 9:

* We are trying to use examples to illustrate how to transform certain scientific problem to arrays and
then to use the right numerical methods to get a reasonable solution/model to the scientific problem.

Purpose of (this) Section 10:

* Inline functions is for improve speed but Python is only fast when the underlying C or Cpleinen-
tations are used. Anonymous functions are used when we want to do perform a data transformation for
some computer algorithms (e.g. sorted).

42

11. Practical Topic: Arraysand Built-in Functions

Work through the examples in Sections 2.1 to 2.3, 3, 4.1 to 4.2, 5.1 to 5.4paadti -
cal 2_array. py.

If time permits, try to construct statistical tables using Numpy array and built-in functions or Scipy sta-
tistical functions. For example, write down the Python program using array command(s) for constructing
standard normal distribution cumulative table (less than Z) Ilike the one shown in
htt ps://en.w ki pedi a. org/ wi ki / St andard_nornal _tabl e.

To understand the popularity of Python in scientific computing, the C++ programmt bl 2. cc
below using boost and armadillo linear algebra library is listed below for comparison.

#i ncl ude <iostreanp

#i ncl ude <i omani p>

#i ncl ude <string>

#i ncl ude <boost/mat h/ di stributions. hpp>
#i ncl ude <armadil | o>

usi ng nanespace std;

const int prec = 5;

const int cw = prec + 3; /1 colum width for printing table
const char nl[2] = "\n";

const string sepleft{" | "};

const string septop(cw4, ' '); [/ 0.xy occupies 4 places

int main() {
const doubl e xs=0.0, xe=3.9, inc=0.1;
const int N=int(round((xe-xs)/0.1))+1, M-10;
arma: :mat s_table(N, M; /1 statistiscal table
cout << s_table.n_rows << " x " << s_table.n_cols << nl;

/1 Print Top Tabl e Header
cout << string(5, ' ’); /'l left |abel colum
for(int i=0; i<M i++)

cout << septop << fixed << setprecision(2) << 0.01*i;
cout << nl << string(4, '-’') << '+ << string(Mcw, '-") << nl;
boost:: mat h: : normal _di stributi on<> nornd;
for(int i=0; i<N, i++) {

for(int j=0; j<M | ++)

s_table(i,j) = cdf(nornd, 0.21*i + 0.01*j);
}

}
/1 https://stackoverfl ow com questions/ 63357023/ pri nt -
/1 doubl e-dat a-type-wi t h-a-preci si on-upt o-4-deci mal - pl aces-armadi |l | o
for(int row=0; rowN, rowt+){
cout << setprecision(l) << row0.1 << sepleft;
cout . preci sion(prec);
cout.setf(ios::fixed);
s_table.row(row).raw print(cout);

43

12. Practical Topic: Advanced Array and Matrix

According to https://en.w ki pedi a. org/ wi ki / Fi nanci al _engi neeri ng, financial
engineering is a multidisciplinary field involving the application of mathematical finance and computational
finance in the practice of finance. Itis complex because it is trying to design financial products, in particular,
complex financial derivatives are very difficult priced.

In this section, we explore the simplest financial derivative callecEineopean options. Two typical
European options afeur opean call options andEuropean put options. The former has a payoff
payoff(§ K) = maxS;(w) - K, 0)
and the later has a payoff

payoff(§ K) = maxK - Sy(w), 0)
whereS; is the price of the underlying asset at tifi@nd the constarK is the strike price.

Note that aEuropean Option is just a contract between a seller and a buyer so that the buyer has the
right to exercise the option ONLY at the expiration date. There is a contract between a seller and a buyer
so that the buyer has théght to exercise the option at ANY time up to expiration date and it is called an
American Option.

12.1. Practical Exercise

For a strike priceK = 50 andS; for the range 40 to 60, plot the diagram foayoff(S, K) againstS;
using the technique mentioned earlier.

44

12.2. Binomial Options Pricing Modd (BOPM) with a Single-Period

The binomial tree modd (see https://en.w ki pedi a. org/w ki / Bi no-
m al _options_prici ng_nodel) is a kind of computational method for the valuation of options using
a "discretetime" (lattice based) model of the varying price over time of the underlying financial instrument.

Binomial Options Pricing

Time H Underlying AssetH OptionH Replicate
t=0 O S o C 0 A S+B
t=T 0§ S, 0Cqy C, O0ePTA §+€™B=C, e°"A §+€™B=C,

whereC, = payoff(S,, K), C4 = payoff(S,,K), D is the dividend yield rate of the underlying asset.
Solving the replicate, gives
o1,C.—C o1, 2Ci —SC
A=ePT(ZL_—9y B=gPT(zd TH7uy
S-S S-S

and after rearranging, we have

(r-D)T _ _ Ar-D)T
e d)Cu N (u e

u-d u-d

C=A S+B=¢€"T[(¥Cal

whereS, = uSandS, = dSand we can let

e(r—D)T_d
P=—=3

the option priceC becomes
C=e"[pC,+(1-p)Cy] (OP)

Note that in CoxRoss-Rubinstein binomial tree model, additional assumptions are roadee®" and
d=e9h,

Example. Assuming the risfree interest rate is 0.25 (annually compounding). For a non-divident paying
stock with a current stock price of 50. It is know that the price at the end of 12 months will either be 100 or
25, determine the value of the European call option to buy the stock at a strike 50.

Sample Solution:

i mport nunpy as np
def payoff(S, K):
return np. max([S-K, 0])

T =1 # 12 nonths = 1 year

SO0 = 50

Su = 100

Sd = 25

K =50

D =0 # zero-dividend

r = np.log(l + 0.25) # convert to force of interest
u = Su/ SO

d =8S8d/ SO

p = (np.exp(r*T)-d)/(u-d)

C = np.exp(-r*T)*(p*payoff(Su, K) + (1-p)*payoff(Sd,K))
print(f"The value of the European call optionis {C")

45

12.3. Multi-Period Binomial Options Pricing M odel

LetS, = uS§ andS; =dS,. The multi-period BOPM with a periold such thanh =T has the following
table.

Multi-Period Binomial Options Pricing

Time [] Underlying Asset [Option H Option Replicate
t=0 DSO %o 0 A S) +B
t=h oS S 0Cs Cu 0e™"A §+e"B=C,; e”A S +e"B=C,
t=2h O S Sw 0Cad Cua Cu a--
t=nh=T OSq g ccore.. Sy OCqq g eereees Cuuy O...

Example. Consider anon-dividend-paying stock with a current stock price of 41. Suppose the risk-free force
of interest rate is 8%, try to generate the two-period binomial treewvitti. 2870 andl = 0. 8419 which can
be used to estimate the value of a 1-year European put option with a strike price 43.

Sample Solution: By searching a bit from Internet, I found
htt ps://gi thub. conlf Brucewuzhang/ Fi nanci al - Engi neeri ng- and- ri sk- manage-
nment - |1 -/ . The Jupyter notebook has something useful but the implementation is for Cox-Ross-Rubinstein
binomial tree model
def binom al _tree(T, SO, u,d,n):

tree = np.zeros((n+l, n+l))

h =T/n

for i in range(n+l):

for j in range(i+1):
tree[i,j]=(d**(i-j))*(u**j)*S0
return tree

G ven

T =1 # l-year

n =2 # 2-period nodel

SO = 41

D =0 # non-di vi dend- payi ng
r = 0.08

K =43

u = 1.2870

d = 0.8419

S tree = binomal _tree(T, SO, u,d, n)
print(S_tree)
The output is as follows
[[41. 0. 0.]
[34.5179 52. 767 0.
[29. 06062001 44.4245373 67.911129]]
To determine the price of the option, we need to calculate the payothbdiollowing will not work:
np. max(K - S tree, 0) # wrong
The correct answer that give us the correct payoff is
def payoff_put(S):
return np. max([K-S, 0])

f = np.vectorize(payoff_put) # Vectorise the payoff
For European put option, we ONLY need to calculate the payoff at Tirhecause this is when the con-
tract is exercised:
f(S_tree[n,:])
The pricing can be calculated using (OP) by going backwards which is beyond this course.

46

