
UECM1703 Introduction to Scientific Computing
Topic 2: Arrays Manipulation

Lecturer: Dr Liew How Hui (liewhh@utar.edu.my)
October 2024

Programming with Topic 1’s basic data types and Topic 3’s imperative programming is not convinient
and efficient for numeric array data. For example, creating a sequence of sine function data for the range 0 to
4πusing basic data types and imperative programming would be the commands shown below.

Performing calculation with basic data types and imperative programming
from math import pi, sin
xvals = [i*0.1 for i in range(int(4*pi/0.1))]
yvals = [sin(x) for x in xvals]

Plotting
import matplotlib.pylab as plt
plt.plot(xvals, yvals)
plt.show()

The Numpy module provides conceptually simpler Numpy array data types with various arithmetic and
powerful array processing functions.

Performing calculation with Numpy
import numpy as np # Must memorise
xvals = np.arange(0, 4*np.pi, 0.1)
yvals = np.sin(xvals)

CO1: perform vector and matrix operation using computer software

References:

* https://lectures.scientific-python.org/intro/numpy/index.html

1. Input-Output and File Types
An input refers to anything that computer ‘‘gets’’ data and store into computer memory. So ‘‘keyboard’’ is
an input, ‘‘mouse’’ is an input, ‘‘tablet’’ is an input, a ‘‘computer file’’ on our desktop is an input, etc.

An output refers to anything that computer ‘‘displays’’ or ‘‘stores’’ data from computer memory. So a
‘‘computer monitor’’ is an output, a ‘‘printer’’ is an output, a ‘‘computer file’’ on our desktop is an output,
etc.

To illustrate a simple input-output between ‘‘keyboard’’ and ‘‘screen’’ (is ‘‘teletype terminal’’ a more
precise term?), we will play with the following Python commands:

width = 70
pre = "\n"*2 + "*"*width + "\n*" + " "*(width-2) + "*\n*"
post = "*\n*" + " "*(width-2) + "*\n" + "*"*width
greet = "\n\nEnter your name: "
name = input(greet); print(pre+("Hello "+name).center(width-2)+post)

The commandinput in line 5 reads from ‘‘keyboard’’, displays what you type on ‘‘screen’’ and stores
the string into the variablename.

However, there is a major problem with ‘‘keyboard’’ and ‘‘screen’’ --- the data which is keyed in and
displayed on ‘‘screen’’ will disappeared once we turn off the computer. A ‘‘computer file’’ is something that

1

will remain in computer even after we have turned off a computer and is hence the best choice for storing and
retrieving data related to scientific computing.

Similar to humans speaking many different languages, computer files also ‘‘storing’’ many different file
formats. All file formats can be categorised into two file types ---text file type andbinary file type. The
basic operations associated with a file are ‘‘open’’, ‘‘read’’, ‘‘write’’ and ‘‘close’’. The ‘‘save’’ function is
the same as opening file for writing and after writing data into it, close it.

Open text file for reading: fp=open("f", "rt")
Read text file: x=fp.readlines()
Open text file for writing: fp=open("g", "wt")
Write text file: fp.writelines(x)
Open binary file for reading: fp=open("f", "rb")
Read binary file: M=fp.read()
Open binary file for writing: fp=open("f", "wb")
Write binary file: fp.write(x)
Close file: fp.close()

Purpose of this section:

* Know the commands to use when reading text data
* Combine with the string manipulation methods such as .split(), array indexing, int(), float(), etc. we can

extract information from text data.

2. Numpy Array Data Types
Array = multi-index, homogeneous (elements are of thesame data type) data structure.

Python’s Numpy arraynumpy.ndarray is an n-dimensional (nD) array object which is also known
astensor in the tensorflow machine learning package.

2.1. Numpy Array Construction: Creating Vectors, Matrices, ...

2.1.1. Constructing arrays with no particular pattern
1D array = Vector
A1 = np.array([1.0, 3.5, 4.2, 2.3, 3.4, 1.5]) # All double
A2 = np.array([10,11,12,13,14,15]) # All integer
A3 = np.array([7, 19, 19, 18], dtype=’double’) # All double
A4 = np.array([True,False,True,False,True]) # All Boolean

2D arrays = Matrix
B1 = np.array([[7,19], [19,18]]) # brackets in brackets; integers
B2 = np.array([[7,19],[19,18]], dtype=’double’) # floating points
B12 = np.array([[np.tan(np.pi/3), 3/np.sin(np.pi/4)],

[np.log(np.cos(np.pi/6)), 1+np.exp(1.5)]])

3D arrays = ArrayTensor (e.g. coloured image)
C1 = np.array([[[1,2],[1,4],[5,1]],[[7,2],[9,3],[8,8]]])
#
C1[0,:,:] C1[1,:,:] =
1 2 7 2
1 4 9 3
5 1 8 8
#

Note that Python’s ImageIO module has a class calledImage which is a subclass ofnp.array to represent
coloured images.
Purpose of this section:

* Memorise the commandnp.array() which allows you to create simple 1D or 2D arrays.
* They are not for general use. For general array construction for the application in scientific computing

or financial mathematics, we need arrays with particular patterns.

2

2.1.2. Constructing arrays with particular patterns --- identity matrices, diagonal matrices, etc.

Vector --- One dimensional (1D) array
A5 = np.zeros(10) # 10 zeros of data type double
A6 = np.ones(10) # 10 ones of data type double
A7 = np.full(10,100) # 10 hundreds of data type integer
A8 = np.linspace(0,np.pi,num=51,endpoint=True)
A9 = np.arange(0,10,2) # or np.r_[0:10:2]

Matrix --- Two dimensional (2D) array
B3 = np.zeros((2,4))
B4 = np.ones((4,2))
B5 = np.full((3,5),100)
B6 = np.eye(4) # 4 x 4 identity matrix
B7 = np.eye(3,2) # 3 x 2 identity matrix
B8 = np.diag([5,7,-3,4]) # Create a diagonal matrix
B9 = np.diag(np.arange(6,2,-1))
Or: B9 = np.zeros((4,4)); np.fill_diagonal(B9, np.arange(6,2,-1))
B10 = B9.diagonal() or np.diag(B9) # Get the diagonal of a matrix!

13 12 11 10

B11 = np.vander([1,3,2,5]) # 33 32 31 30

23 22 21 20

53 52 51 50

Three dimensional (3D) arrays
C3 = np.zeros((2,4,3))
C4 = np.ones((4,2,3))
C5 = np.full((3,5,3),100)

The commandnp.linspace is usually used in the creation of a 1-D array for the interval of a particular
function f. In particular,

A8 = 0,___π

50,
___2π

50
, . . . , ____49π

50
, π.

Note that interval [0,π] is cut into 50 intervals with 51 points.

Constructing an array with random patterns:
Random matrices
B16 = np.random.rand(3, 2) # 3x2 random matrix uniform over [0,1)
B17 = np.random.random((3,2)) # 3x2 random matrix uniform over [0,1)
B18 = np.random.randn(3, 2) # 3x2 random matrix Normal(0,1)

Random three dimensional arrays
C13 = np.random.rand(3,2,4) # ˜ Uniform[0,1)
C14 = np.random.random((3,2,4)) # ˜ Uniform[0,1)
C15 = np.random.randn(3,2,4) # ˜ Normal(0,1)

Purpose of this section:

* Memorise the all commands which allows you to create simple 1D or 2D arrays which specific patterns
(zeros, ones, linspace, diagonals, etc.)

* Know how to construct arrays with [0,1)-uniform and standard normal distribution patterns.

3

2.1.3. Constructing arrays for 2D and 3D plotting (for Topic 4)

#
Grid is for vectorised evaluations of n-D scalar/vector fields
#
Two dimensional grids:
B15a, B15b = np.meshgrid([1,2,3],[2,5,7,9]) # return two 4x3 matrices
[1, 2, 3] [2, 2, 2]
[1, 2, 3] [5, 5, 5]
[1, 2, 3] [7, 7, 7]
[1, 2, 3] [9, 9, 9]
Note: default indexing = ’xy’ for computer graphics (Topic 4)

#
A three dimensional grid
#
X x Y x Z = [x1,x2] x [y1,y2,y3] x [z1,z2]
#
XR, YR, ZR = [1,2], [3,5,7], [8,9] # R for range
XP, YP, ZP = np.meshgrid(XR, YR, ZR,indexing=’ij’) # P for grid points
C6 C7 C8
| | |
V V V

[[[1 1] [[[3 3] [[[8 9]
[1 1] [5 5] [8 9]
[1 1]] [7 7]] [8 9]]

[[2 2] [[3 3] [[8 9]
[2 2] [5 5] [8 9]
[2 2]]] [7 7]]] [8 9]]]

#
It can be used for the computation of the scalar field f (x, y, z) = x2 + y2 + z2

#
def f(X, Y, Z): return X**2 + Y**2 + Z**2
f = np.vectorize(f)
arr = f(XP, YP, ZP)
#
Related: np.mgrid[1:3,3:8:2,8:10] # mgrid does not accept list
Related: np.ogrid[1:3,3:8:2,8:10] # => (2,1,1), (1,3,1), (1,1,2)

4

2.2. Basic Array Attributes (Shape, Size)
Arrays are created with a particular shape and data type. The information or attributions associated with
arrays can be obtained from the Numpy array.
* Get the dimension of an array:A.ndim.
* Get the shape of an array:A.shape.
* Get the number of elements in an array:A.size.
* Get the total number of bytes used:A.nbytes, it is defined asA.size*A.itemsize. For exam-

ple, if there aren elements inA and all the elements are 64-bit floating numbers, then the total number
of bytes used inA to store array data is 8n.

There are a few operations which are related to the attributes of an array:
* Transpose: It works by reversing the ‘indices’ but for real-world application, it is used to transpose a

matrixA to A.T (or A.transpose()), for example:

1D transpose: No change
[a b c d] ---> [a b c d]

2D transpose: Change a matrix to its transpose
[a b c]
[d e f] [a d g j]
[g h i] ---> [b e h k]
[j k l] [c f i l]

[a]
[b] ---> [a b c]
[c]

* Change fromn-D array to 1-D array:A.ravel(), A.flatten()

1D ravel/flatten: No change
[a b c d] ---> [a b c d]

2D ravel/flatten
[a b c]
[d e f] ---> [a b c d e f g h i]
[g h i]

* Change an array to a compatible shape:A.reshape((d1, d2, . . . , dr))

np.array([1,3,5,7,9,5]).reshape((2,3))
[1 3]

[1 3 5 7 9 5] ---> [5 7]
[9 5]

* Change an array to any shape:np.resize(A,(d1, d2, . . . , dr))

A = np.array([1,3,5,7,9,5])
B = np.resize(A, (2,2))

[1 3]
[1 3 5 7 9 5] ---> [5 7]

C = np.resize(A, (3,5))
[1 3 5 7 9]

[1 3 5 7 9 5] ---> [5 1 3 5 7]
[9 5 1 3 5]

Purpose of this section:

* Memorise the all commands which allows you to check the shape of array and to manipulate shapes:
A.shape, A.T, A.reshape(), etc.

5

2.3. Numpy Array Formatting
Get the current format: np.get_printoptions()

"Default values:"precision = 8, threshold = 1000,edgeitems = 3, linewidth = 75 char-
acters per line,suppress = False, i.e. do not print small floating point values using scientific nota-
tion, nanstr = ’nan’, infstr = ’inf’, formatter = None (a dictionary of types to set the format-
ting options),sign = ’-’, floatmode = ’maxprec’.

Set the format: set_printoptions(args)
args are the keywords above. We usually need to set thelinewidth for printing a nicer matrix.

Print the matrix: print(A)

Example. Print the matrix

[1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9]
[1/8 1/9 1/8 1/7 1/6 1/5 1/4 1/3]

using ‘printoptions’.
Sample Solution 1:

A = np.array([[1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9],
[1/8, 1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3]])

print(A)
Temporarily set the options
with np.printoptions(precision=4, linewidth=100):

print(A)
print(A)

Sample Solution 2:

A = np.array([[1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9],
[1/8, 1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3]])

print(A)
default_printoptions = np.get_printoptions()
Permanently set the options
np.set_printoptions(precision=4, linewidth=100)
print(A)
np.set_printoptions(**default_printoptions)
print(A)

For an array with large variance, using a more complex ‘printoptions’ is helpful.

A = np.array([0.0123, 12e-7, 23e6])
print(A) # All in Enggineering notations
Temporarily set the options
with np.printoptions(formatter={’float’:’{:.4g}’.format}):

print(A) # Some in easier to read decimal format

Purpose of this section:

* Useful in writing Python script. E.g. np.printoptions(precision=6, thresh-
old=2000, linewidth=150). It is not required for final exam.

* Alternatively, we may use
import sys
np.savetxt(sys.stdout, A, fmt="%.6f")
according to https://stackoverflow.com/questions/9360103/how-to-print-a-
numpy-array-without-brackets.

6

2.4. Numpy Array Applications (Purpose: NOT For Exam, for knowledge)

* Array of numbers can be used to represent
- time series, audio / sound signals (mostly 1D)
- black-and-white images, grayscale images (2D)
- Colour images (3D)

+ RGB colour =M × N × 3 with values in [0,1] or 0--255;
+ RGBA colour =M × N × 4 with values in [0,1] or 0--255 with A=transparency
Note that out-of-range RGB(A) values are clipped.

* Array of characters can be used to represent
- ASCII / Unicode arts

* Array of Booleans can be used for selection as to be discussed later.
Python tools to visualise a matrix as an image:

matplotlib.pyplot.spy(Z) # 2D array only
matplotlib.pyplot.imshow(X, cmap=None, norm=None, *, aspect=None,
interpolation=None, alpha=None, vmin=None, vmax=None, origin=None,
extent=None, interpolation_stage=None, filternorm=True,
filterrad=4.0, resample=None, url=None, data=None, **kwargs)

For grayscale images, use cmap=’gray’, vmin=0, vmax=255.
Example. (Array of Numbers) A 4x4 pixel coloured image below can be represented as Numpy array:

P3
4 4
15
https://paulbourke.net/dataformats/ppm/
255 0 0 100 0 0 0 0 0 255 0 255
0 255 0 0 255 175 0 0 0 0 0 0
0 0 0 0 0 0 0 15 175 0 0 0

255 0 255 0 0 0 0 0 0 255 255 255

The following is how we can read and display the 4x4 pixel image.
import numpy as np
https://liaohaohui.github.io/UECM1703/test.ppm
fp = open("test.ppm", "r")
lines = []
while True:

line = fp.readline()
if not line: break # Break out of loop when no more lines
We skip any empty line and lines with are comment
if len(line)>0 and line[0] != ’#’:

lines.append(line.strip())
if lines[0][0]=="P" and int(lines[0][1:])==3: # P3=Coloured image

W, H = lines[1].split()
W = int(W)
H = int(H)
m = int(lines[2])
if m == 255:

imgarr = np.zeros((H,W,3), dtype=’uint8’)
elif m == 65535:

imgarr = np.zeros((H,W,3), dtype=’uint16’)
image_contents = [int(c) for c in " ".join(lines[3:]).split()]
for y in range(H):

for x in range(W):
imgarr[y,x,:] = image_contents[(y*3*W+3*x):(y*3*W+3*x+3)]

print(imgarr)

from PIL import Image
img = Image.fromarray(imgarr)

7

import matplotlib.pylab as plt
plt.imshow(img)
plt.show() __________________________

Example. (ASCII ART) Consider a bat in ASCII art:

/\ /\
/ \’._ (_/) _.’/ \
|.’’._’--(o.o)--’_.’’.|
_ / ‘;=/ " \=;‘ \ _/
‘__| ___/ |__/‘

jgs \(_|_)/
" ‘ "

It can be expressed as Numpy array of ‘characters’ but it is not very useful.

aimg = np.array([[’ ’,’/’,’\\’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’/’,’\\’," "],

[’/’,’ ’,’\\’, "’", ’.’,’_’,’ ’,’ ’,’ ’,’(’,’\\’,’_’,’/’,’)’,’ ’,’ ’,’ ’,’_’,’.’, "’", ’/’,’ ’,’\\’],

[’|’,’.’, "’", "’", ’.’,’_’, "’", ’-’,’-’,’(’,’o’,’.’,’o’,’)’,’-’,’-’, "’", ’_’,’.’, "’", "’", ’.’,’|’],

[’ ’,’\\’,’_’,’ ’,’/’,’ ’,’‘’,’;’,’=’,’/’,’ ’,’"’,’ ’,’\\’,’=’,’;’,’‘’,’ ’,’\\’,’ ’,’_’,’/’," "],

[’ ’,’ ’,’ ’,’‘’,’\\’,’_’,’_’,’|’,’ ’,’\\’,’_’,’_’,’_’,’/’,’ ’,’|’,’_’,’_’,’/’,’‘’," "," "," "],

[’j’,’g’,’s’,’ ’,’ ’,’ ’,’ ’,’ ’,’\\’,’(’,’_’,’|’,’_’,’)’,’/’," "," "," "," "," "," "," "," "],

[’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’"’,’ ’,’‘’,’ ’,’"’," "," "," "," "," "," "," "," "," "]])

8

3. Array Mathematical Functions and Numpy Ufuncs
When we encounter an array below:

from math import sin
A = np.array([sin(1), sin(2), sin(3), sin(4), sin(5), sin(6)])
B = np.array([[sin(1), sin(2), sin(3)],

[sin(4), sin(5), sin(6)]])

we would hope toabbreaviate it as

fA = sin(np.array([1,2,3,4,5,6]))
fB = sin(np.array([[sin(1), sin(2), sin(3)],

[sin(4), sin(5), sin(6)]]))

However, the sine function from math module wouldcomplain.
Numpy provides two solutions:

* Build the commonly use mathematical functions in. For example, usenp.sin instead ofsin
* ‘Vectorise’ the function (using Numpy’s universal function framework with 1 input and 1 output):

arsin = np.vectorize(sin)

* np.frompyfunc(func, nin, nout, *[, identity]) Note thatnin andnout are the
number of inputs and number of outputs of the functionfunc respectively. In this case,arsin =
np.frompyfunc(sin,1,1)

Example. (Application: Plotting) By use the plotting functionsplt.plot andplt.show to draw (a) Sine
function; (b) Cosine function; and (c) floor function for the domain [−2i, 2i].
Solution: The question does not say how small is the step size, we will just split [−2pi, 2pi] to 100 equal
intervals.

import numpy as np, matplotlib.pylab as plt
xr = np.linspace(-2*np.pi,2*np.pi,101) # x range
y1 = np.sin(xr)
y2 = np.cos(xr)
y3 = np.floor(xr)
plt.plot(xr, y1, xr, y2, xr, y3)
plt.show() # This is not needed in Spyder/Jupyter

If we have a computer to plot the graph, we can see that floor looks ugly, this is becauseplt.plot just join
points and we need break the domain into more intervals to make the plot of floor function nice.

Exercise. Try and see if you can define a ‘vectorise’ function for

sinhc(x) =


 _______ex − e−x

2x
,

1,

x ≠ 0,

x = 0.

so that you can use it to calculatesinhc(np.linspace(-2*np.pi,2*np.pi,101)).

[]
Example. Consider the heart disease data from https://bookdown.org/brianmachut/uofm_analyt-
ics_r_hw_sol_2/logreg.html by analysing the relation between X=fast_food_spend and Y=heart_disease.

One mathematical model for fitting the data is called logistic regression model:

P(Y = 1|X = x) = _____________________________________1

1 + exp(−(−10. 651330614 + 0. 002199567x))

9

By using the array processing knowledge, write a Python script to read heart_data.csv and express the
logistic regression model as Python function.
Sample Python Script Solution:

import numpy as np
heart_data.csv can be downloaded from
https://bookdown.org/brianmachut/uofm_analytics_r_hw_sol_2/logreg.html
data = np.loadtxt("heart_data.csv", delimiter=",",

skiprows=1, dtype=np.double)
col1 = data[:,0]
col3 = data[:,2]
from matplotlib.pylab import plt
plt.plot(col3,col1,"*")
plt.show()

Expressing logistic regression model as Python functions
def log_reg(x):

return 1.0/(1.0+np.exp(-(-10.651330614 + 0.002199567*x)))

Purpose of this section:

* Recognise the different between a function (from a number to a number) and Numpy vectorised func-
tion (operate on the array with mapping elementwise)

* In option pricing, we will encounter call option and put option which are defined asmax(0,S-K) and
max(0,K-S) respectively. HereK is usually a constant andS can be an array (representing a range).

10

4. Array Indexing: Sub-arrays, ... (Important)
Indexing is an important way to assess the data in ann-D array. Indexing an array with an integer / integers
will lead to the reduction of dimension by default. To keep the dimension, we either use a rangem:n:s or
use an ‘extra’ index called ‘None’ to keep the dimension. We need to note that indexing an arrayA on gives
us aview of the arrayA.
* Return a “view” of A with a given shape (m1,. . . , mk). Note thatm1 × . . . × mk must be equal to

A.size: A.reshape((m1,...,mk)).
* Return a “view” of (m1,m2,. . . ,mk)-arrayA as a transpose with a shape (mk,. . . ,m2,m1): A.T (alterna-

tively, np.transpose(A)).

Making any changes to theview will be reflected on the original array. If we need acopy of the sub-array
from A, we need to use the ‘.copy()’ method or stacking commands:
* Return a “copy” ofA with a specific type:A.astype(sometype), heresometype can be’dou-

ble’, ’bool’, ’int8’, etc.
* Return a new array by stacking existing array(s):np.hstack (stacking array horizontally) and

np.vstack (stacking array vertically).

np.hstack((A_1,A_2,...,A_k)) : A_1 A_2 ... A_k

np.vstack((A_1,A_2,...,A_k)) : A_1
A_2
.
.
A_k

4.1. Usual Indexing :n, m:n, m:, m:n:k, :

* In this section, m and n are assumed to benon-negative.
* Python’s index starts from 0
* Python’s ending indexm:n will never reachn
Example.
* : is similar to ‘take all’ (this depends on the shape of the array)
* :12 is similar to 0,1,2,3,4,5,6,7,8,9,10,11 or range(12)
* 5:12 is similar to 5,6,7,8,9,10,11 or range(5,12)
* 2:12:3 is similar to 2,5,8,11 or range(2,12,3)
* 12:2:-2 is similar to 12,10,8,6,4 (2 will not be reached) or range(12,2,-2)__________________________

Without loss of generality, we consider a 2-D arrayA.
(I) A[m-1,n-1] : Indexing an element ofA at(m,n) (dim=0)
(II) A[m-1,:] : IndexingA atm-row (dim=1)
(III) A[:,n-1] : IndexingA atn-column (dim=1)
(IV) A[m1-1:m2,n1-1:n2] :

Indexing a sub-array ofA bounded bym1-row tom2-row andn1-column ton2-column
(V) A[m1-1:m2:ms,n1-1:n2:ns] :

Indexing a sub-array ofA from m1-row to row-m2 by stepms and fromn1-column to
n2-column by stepns. Whenm1-1 is ignored, it assumes 0 and whenm2 is ignored, it
assumes the last row and whenms is ignored, it assumes 1. The situations are similar
for n1-1, ns andn2.

(VI) A[[r1-1,...,rk-1],:][:,[c1-1,...,cl-1]] :
Indexing a sub-array ofA using rowsr1, . . . , rk, columnsc1, . . . , cl.

Numpy provides alternative indexing functionstake andput to take and assign values to a slice of an
array. They are less convenient to use, we will skip them:

11

(a) A.item(3,4)
(b) A.take(indices=[3],axis=0)
(c) A.take(indices=[4],axis=1)
(d) A.take(range(3,7),axis=1).take(range(1,3),axis=0)
(d) A.take([3,5,7],axis=1).take([1,3,5],axis=0)

Example. (Final Exam Sept 2015, Q3(a)) The following vector is defined in Python

V = np.array([2,7,-3,5,0,14,-1,10,-6,8])

What will be displayed if the following variablesB, C andD are printed.
(i) B = V[[1,3,4,5,6,9]]

Solution: We first index the arrayV:
0 1 2 3 4 5 6 7 8 9 <-- indices for V

V = 2 7 -3 5 0 14 -1 10 -6 8
B = [7 5 0 14 -1 8]

(ii) C = V[[8,2,1,9]]
Solution: C = [-6 -3 7 8]

(iii) D = np.array([V[[0,2,4]],V[[1,3,5]],V[[2,5,8]]])
Solution: D = [[2, -3, 0], [7, 5, 14], [-3, 14, -6]]

Example. Consider the array generated withA = np.arange(1,55,dtype=’double’).
reshape(6,9).

A =
1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54

Write down the output of the following commands:
(a) print(A[3,4]) Indexing (I)
(b) print(A[3,:]) Indexing (II)
(c) print(A[:,4]) Indexing (III)
(d) print(A[1:3,3:7]) Indexing (IV)
(e) print(A[1:6:2,:][:,3:8:2]) Indexing (V) & (VI)
(f) print(A[3,None]) (It is the same asA[None,3])
(g) print(A[:,4,None]) or print(A[:,4:5])

12

Example. (Final Exam Sept 2015, Q1(a)) The following matrix is defined in Python:

M =
6 9 12 4 3 0
4 4 15 2 1 1
2 1 18 -5 8 2
-6 -4 21 1 -5 2

What will be displayed if the following variablesA in (i) to C in (iii) are printed?
(i) A = M[[0,2],:][:,[1,3]]

(ii) B = M[:,[0,3,4,5]]

(iii) C = M[1:3,:]

We have to be careful with the indexing in Numpy because it only createviews and does not create
copies.
Example. (View vs Copy of a sub-array) Study the following Python instructions and explain what is each
output:

Assign the ‘view’ | Assign the ‘copy’
------------------------------------+-------------------------------------
import numpy as np | import numpy as np
A = np.array([[1,2,3],[4,5,6]]) | A = np.array([[1,2,3],[4,5,6]])
B = A[:,0:2] | B = A[:,0:2].copy()
B[0,0] = 8 | B[0,0] = 8
print("A=",A) | print("A=",A)
print("B=",B) | print("B=",B)
------------------------------------+-------------------------------------

|
A = B = | A = B =
[8 2 3] [8 2] | [1 2 3] [8 2]
[4 5 6] [4 5] | [4 5 6] [4 5]

|
------------------------------------+-------------------------------------

Summary of Numpy Indexing from https://lectures.scientific-
python.org/intro/numpy/array_object.html

13

4.2. Negative Indexing: Index from End
Indexing array with the usual bounded index is often enough but Python provides‘‘Negative’’ indexing
which is used to index an array ‘‘from last element’’. For example,-1 refers to the last index,-n refers to
then last index. Note that going beyond index bound can cause error!
Example. Consider the following integer array:

[10 11 12 13 14 15 16 17 18]
[19 20 21 22 23 24 25 26 27]

A = [28 29 30 31 32 33 34 35 36]
[37 38 39 40 41 42 43 44 45]
[46 47 48 49 50 51 52 53 54]

What is the output of the following commands:
(a) print(A[-2,4])

(b) print(A[-2,:])

(c) print(A[-2,None])

(d) print(A[:,-4])

(e) print(A[:,-4:-5:-1])

(f) print(A[1:-3,3:-4])

(g) print(A[1:-1:2,:][:,2:-2:2])

Solution:
(a) 41 (second last row, fifth column)
(b) [37 38 39 40 41 42 43 44 45] (1D) (second last row)
(c) [[37 38 39 40 41 42 43 44 45]] (different from part (b) in terms of dimension, this is2D,

i.e. a 1x9 ‘matrix’)
(d) [15, 24, 33, 42, 51] (fourth last column = sixth column,1D)
(e) [[15] [24] [33] [42] [51]] (2D)
(f) [[13 14] [22 23]] (second row to the row before the last third rowand fourth column to before

the last fourth column)
(g) [[21 23 25] [39 41 43]] (second and fourth rowsand third, fifth and seventh columns)

Purpose of this section and previous section:

* You must memorise and understand :, 1:, :9, ::2, ::-1, 9::-1, -1::-1, 1:9:2, etc. Just be careful that the
last index will not be reached.

14

4.3. Usual Indexing vs For-Loops
Indexing will perform array operations internally similar to for-loops and therefore can be used to express for
loops into array indexing patterns.
Example. (Combining Programming and Array Indexing in Solving Differential Equations Numerically) In
applying finite difference approximation to the type 1 ODE-BVP:

y..(x) + p(x)y.(x) + q(x)y(x) = r(x), a < x < b, y(a) = ya, y(b) = yb

we obtain matrix

C =










 1

1 − __h

2
p(x1)

.

.

0

0

0

0

(h2q(x1) − 2)

.

.

.
. . .

0

0

1 + __h

2
p(x1)

.

.

.

1 − __h

2
p(xn−1)

0

. . .

. . .

.

.

.

(h2q(xn−1) − 2)

0

0

0

.

.

0

1 + __h

2
p(xn−1)

1 










, xi = a + i ⋅ h, h = _____b − a

n
.

Write a Python script to generate the matrix C.
Sample Solution 1: By using for-loop, we have
C1 = np.eye(n+1)
x = a
h = (b-a)/n
for i in range(1,n):

x = x+h
C1[i,i-1] = 1.0-p(x)*h/2.0
C1[i,i] = h**2*q(x)-2.0
C1[i,i+1] = 1.0+p(x)*h/2.0

Sample Solution 2: By using array indexing, we have
C2 = np.eye(n+1)
idx = np.r_[1:n]
h = (b-a)/n
x = a + h*idx
C2[idx,idx-1] = 1.0-p(x)*h/2.0 # Using elementwise arithmetic: idx-1
C2[idx,idx] = h**2*q(x)-2.0
C2[idx,idx+1] = 1.0+p(x)*h/2.0 __________________________

Example. (Combining Programming and Array Indexing in Technical Analysis of Financial Data) In the
past, it is possible for us to download a lot of stock price data from Yahoo!Finance. However, Yahoo!Finance
is providing less and less stock price data for data and is transforming itself to pay-per-use service. The stock
price data of Telekom Malaysia (a listed company which provides the most expensive broadband service in
South East Asia) below was downloaded a few years ago.

Date,Open,High,Low,Close,Volume,Adj Close
2016-12-30,6.06,6.09,5.81,5.95,5842300,5.95
2016-12-29,6.05,6.12,5.98,6.06,6777900,6.06
2016-12-28,5.96,6.06,5.96,6.03,2503700,6.03
2016-12-27,5.93,5.99,5.92,5.99,922400,5.99
2016-12-26,5.95,5.95,5.95,5.95,000,5.95
2016-12-23,5.91,5.97,5.91,5.95,838100,5.95
2016-12-22,5.97,5.97,5.92,5.95,1065000,5.95
2016-12-21,6.02,6.02,5.92,5.95,3405900,5.95
2016-12-20,5.95,6.07,5.94,5.98,3101400,5.98
2016-12-19,5.97,6.00,5.91,5.95,2006000,5.95
2016-12-16,5.90,5.96,5.89,5.95,3975600,5.95
2016-12-15,5.91,5.95,5.90,5.90,3987400,5.90
2016-12-14,5.96,6.00,5.93,5.95,5128000,5.95
2016-12-13,6.04,6.05,5.94,5.96,4111000,5.96
2016-12-12,6.03,6.03,6.03,6.03,000,6.03

15

2016-12-09,6.11,6.11,6.01,6.03,1573000,6.03
2016-12-08,6.16,6.20,6.11,6.11,3189800,6.11
2016-12-07,6.13,6.15,6.09,6.11,4564800,6.11
2016-12-06,6.12,6.15,6.09,6.12,2976600,6.12
2016-12-05,6.15,6.19,6.13,6.14,3303800,6.14
2016-12-02,6.15,6.22,6.09,6.13,2134000,6.13
2016-12-01,6.17,6.24,6.14,6.15,6188400,6.15

By using the closing price, write a Python program to calculate

* the price difference between the next day and today for December 2016;
* the three-day (moving) average for December 2016.
Sample Solution 1:
import numpy as np
dclose = np.array([6.15, 6.13, 6.14, 6.12, 6.11, 6.11, 6.03,

6.03, 5.96, 5.95, 5.9, 5.95, 5.95, 5.98,
5.95, 5.95, 5.95, 5.95, 5.99, 6.03, 6.06, 5.95])

price_diff = np.zeros(dclose.size-1)
moving3 = np.zeros(dclose.size-2)
for today in range(price_diff.size):

next_day = today + 1
price_diff[today] = dclose[next_day]-dclose[today]

for today in range(moving3.size):
next_day = today + 1
next_2day = today + 2
moving3[today] = (dclose[today]+dclose[next_day]+dclose[next_2day])/3

print("Price difference between next day and today for December 2016: ")
print(price_diff)
print("3-D moving average for December 2016:", moving3)
Sample Solution 2:

import numpy as np
dclose = np.array([6.15, 6.13, 6.14, 6.12, 6.11, 6.11, 6.03,

6.03, 5.96, 5.95, 5.9, 5.95, 5.95, 5.98,
5.95, 5.95, 5.95, 5.95, 5.99, 6.03, 6.06, 5.95])

price_diff = np.diff(dclose)
idx = np.r_[:(dclose.size-2)]
moving3 = (dclose[idx]+dclose[idx+1]+dclose[idx+2])/3.0
print("Price difference between next day and today for December 2016: ")
print(price_diff)
print("3-D moving average for December 2016:", moving3)

You can also use the information from https://rosettacode.org/wiki/Averages/Simple_moving_average to
write a better Python script. __________________________

Example. (More Complex Array Indexing) Write a Python functionspiral(n) to generate ann × n clock-
wise spiral matrix using Python. For example,spiral(5) gives

[0 1 2 3 4]
[15 16 17 18 5]
[14 23 24 19 6]
[13 22 21 20 7]
[12 11 10 9 8]

Sample Solution: It is inspired by https://rosettacode.org/wiki/Spiral_matrix

16

def spiral(n,m=None):
_n,_m = (n,m) if m is not None else (n,n)
_nl,_ml=0,0
dx,dy = 0,1 # Starting increments
x,y = 0,0 # Starting location
import numpy as np
myarray = np.zeros((_n,_m),dtype=’int’)
for i in range(_n*_m):

myarray[x,y] = i
nx,ny = x+dx, y+dy # (dx,dy) = direction to update array
if _nl<=nx<_n and _ml<=ny<_m:

x,y = nx,ny
else:

if dx==0 and dy==1:
_nl+=1; dx,dy=1,0

elif dx==1 and dy==0:
_m-=1; dx,dy=0,-1

elif dx==0 and dy==-1:
_n-=1; dx,dy=-1,0

elif dx==-1 and dy== 0:
_ml+=1; dx,dy=0,1

else:
return None # Should not reach this state

x,y = x+dx,y+dy
return myarray

17

5. Arithmetic, Logical and Relational Operations
The basic arithmetic and logical operations for ‘‘numbers’’ such as+, -, x, /, power, not, and, or, equality,
etc. are generalised to operate on ‘‘arrays’’. aselementwise arithmetic and logical operations.

5.1. Elementwise Arithmetic Operations and Broadcasting
The basic arithmetic+, -, x, / and power fortwo arrays of the same shape A andB are just element-wise
addition, subtraction, multiplication, division and power of numbers in the array as:
* -A: elementwise negation

1-D example | 2-D example
-------------------------+--------------------------------
A = [1.2 1.3 1.4] | A = [3.2 -5.3]

| [-5.5 4.0]
-A = [-1.2 -1.3 -1.4] | -A = [-3.2 5.3]

| [5.5 -4.0]
-------------------------+--------------------------------

* A + B, A - B: elementwise addition and subtraction

1-D example | 2-D example
-------------------------+--------------------------------
A = [1.2 1.3 1.4] | A = [1 -2]

| [-3 4]
B = [2.1 2.3 3.4] | B = [8 7]

| [-6 -5]
A+B = | A+B =

[3.3 3.6 4.8] | [9 5]
| [-9 -1]

A-B = | A-B =
[-0.9 -1.0 -2.0] | [7 -9]

| [3 9]
-------------------------+--------------------------------

* A * B, A / B, A ** B: elementwise multiplication, division and ‘power’

1-D example | 2-D example
-------------------------+--------------------------------
A = [1.3 1.2 1.4] | A = [8 -7]

| [-6 5]
B = [2 3 4] | B = [4 2]

| [-3 -4]
A*B = | A*B =

[2.6 3.6 5.6] | [32 -14]
| [18 -20]

A/B = | A/B =
[0.65 0.4 0.35] | [2. -3.5]

| [2. -1.25]
A**abs(B) = | A**abs(B) =
[1.69 1.728 3.8416] | [4096 49]

| [-216 625]
-------------------------+--------------------------------

Together with the ufunc, the array arithmetic allows us to handle computations like sin(x2 + x + 2):

np.sin(x**2 + x + 2)

Example. Write a Python script to plot the functions

y1 = ___x3

2
+ 3x2 − 1, y2 = 2sinx, y3 = sin(2x)

in one diagram for the range-π<= x <= π.

18

Sample Solution:

import numpy as np, matplotlib.pylab as plt
x = np.arange(-np.pi, np.pi, 0.0001)
y1 = x*x*x/2 + 3*x*x - 1
y2 = 2*np.sin(x)
y3 = np.sin(2*x)
plt.plot(x,np.vstack((y1,y2,y3)).T); plt.show()

Numpy’s elementwise arithmetic can work on arrays withcompatible shapes throughbroadcasting (see
https://lectures.scientific-python.org/intro/numpy/operations.html#broad-
casting). For example, shape (3,4) and shape (4,) are compatible but not shape (3,4) against shape (2,) or
shape (3,). Consider
* A = np.arange(1,13).reshape(3,4)

* B = np.array([5,4,8]) (Shape = (3,))
* C1 = np.array([9,4,8,7]) (Shape = (4,)),C2 = np.array([9,4]) (Shape = (2,))
* A + C1 is OK butA + B andA + C2 arenot OK. However, reshapingB to (3,1) will make it com-

patible withA.
By expandingA, B, C1 andC2, we can see:

[1 2 3 4]
A + C1 = [5 6 7 8] + [9 4 8 7]

[9 10 11 12]
[1+9 2+4 3+8 4+7]

= [5+9 6+4 7+8 8+7]
[9+9 10+4 11+8 12+7]

[1 2 3 4]
A + C2 : [5 6 7 8] + [9 4] ???

[9 10 11 12]
[1 2 3 4]

A + B : [5 6 7 8] + [5 4 8] ???
[9 10 11 12]

[1 2 3 4] [5]
A + B.reshape((3,1)) : [5 6 7 8] + [4]

[9 10 11 12] [8]

Example. Write down two Python commands which allows us to transform the left matrixA to the right
matrix B using index operations and array arithmetic:

[1 2 3 4] [1 2 3 4]
A = [5 6 7 8] ---> [0 -4 -8 -12] = B

[9 10 11 12] [0 -8 -16 -24]

Sample Solution:

A[1,:] = A[1,:] - 5*A[0,:]
A[2,:] = A[2,:] - 9*A[0,:]

Purpose of this section:

* Just take care not to confuse elementwise matrix multiplication * with matrix multiplication @ and also
try to practise with the arithmetic broadcasting operations. The array indexing and array arithmetic is
used a lot in scientific computing as in the above example.

19

5.2. Logical Operations
“Boolean arrays” arise when we ‘‘compare’’ number arrays. The logical operations for Boolean arrays are
similar to the arithmetic operations for numeric arrays. They are just the generalisation of logical operations
from Boolean values (True, False) to Boolean arrays (arrays of True and/or False) of compatible arrays)

Let C andD be Boolean array of the same shape, the element-wise negation, conjunction and disjunc-
tion for the Boolean array are:
* Check and make sure thatC.dtype andD.dtype arebool.
* ˜C: elementwise negation
* C & D: elementwise conjunction
* C | D: elementwise disjunction

In Numpy, the logical operations also work ontwo arrays of the compatible shape. For example,
Shape (2,3) and shape (3,) are compatible but not shape (2,)
* C = np.array([[True, False, True], [False, True, False]]) (Shape = 2x3)
* D1 = np.array([True, False]) (Shape = 2)
* D2 = np.array([False, False, True]) (Shape = 3)
* C & D2 is OK butC & D1 is not OK
Note that Python allows us to use-, * and+ to denotẽ , & and| respectively. However, it is not recom-
mended to prevent confusion because Boolean will be converted to integers when other arithmetic operations
are involved.

np.all(B) returns true whenall values inB are true.np.any(B) returns true whenthere is one
true value in B. These two are reduction operations for Boolean array.
Example. (Final Exam Sept 2015, Q2(a)(iv)) What will display if the following commands are executed?
np.array([not False, False, not True]) & np.array([True]*3) (2 marks)
Solution: = [True False False] & [True True True] = [True False False]__________________________

Example. Find the index of the ‘True’ value for [False, True, False, False True].
np.where([False, True, False, False, True]) ______________________

Purpose of this section:

* There is not a lot to say about Boolean arrays. They will be obtained when we employ a predicate on an
arrayA (e.g. A<=100) or when we employ array relational operations (e.g.A<B).

5.3. Relational Operations
Let A andB be arrays of compatible shape. The ordering or real numbers allows us to compare numbers by
the relational operations ==, !=, <, <=, > and >=.
Example. (Final Exam Sept 2013, Q1(c)) Given thatx = np.array([1,3,4,2,5,0,-3]) and y =
np.array([6,3,2,4,1,0,6]), list the results of the following commands (i) to (iii):

(i) x - 2*(y>3)
Solution: Let T denote True andF denote False. The calculation is as follows.
= x-2*[T F F T F F T]
= x-[2 0 0 2 0 0 2]
= [-1 3 4 0 5 0 -5]

(ii) (x!=0) & (y==0)
Solution: Let T denote True andF denote False. The calculation is as follows.
[T T T T T F T] & [F F F F F T F]
= [F F F F F F F]

(iii) (x==y) | (y<x)
Solution:
= [F T F F F T F]|[F F T F T F F]
= [F T T F T T F] __________________________

20

5.4. Fancy Indexing with Boolean Array (and List)
The ‘‘Boolean’’ array for an arrayA generated with the use of relational operations (or more general predi-
cates) can be used as a kind offancy indexing calledBoolean indexing for A.

This kind of indexing is widely used in statistics, image processing, signal processing, etc. because it
allows us toselect the array data of interest.
Example. Consider the 2-D array

[-1 2 1 -3]
A = [2 -4 -4 0]

[0 0 -1 -2]

Write the Python commands to
1. list all the values inA which arenon-negative.
2. replace the negative values inA by -10.
Sample Solution:

1. We select those array elements which are ≥0:
[-1>=0 2>=0 1>=0 -3>=0] [F T T F] [2 1]
[2>=0 -4>=0 -4>=0 0>=0] --> [T F F T] --> [2 0]
[0>=0 0>=0 -1>=0 -2>=0] [T T F F] [0 0]

--> [2 1 2 0 0 0]

Answer: A[A>=0] # or A[˜(A<0)]

2. A[A<0] = -10 Here’s how it works for assignment:
[-1, 2, 1, -3] [T, F, F, T] [-10, 2, 1, -10]
[2, -4, -4, 0] [F, T, T, F] --> [2, -10, -10, 0]
[0, 0, -1, -2] [F, F, T, T] [0, 0, -10, -10]

Example. (Final Exam Sept 2013, Q1(b) with modification) Write a Python script to perform the following
actions:
* Generate a 2-by-3 array of random numbers using therand command and,
* Move through the array, element by element, and set any value that is less than 0.2 to 0 and any value

that is greater than or equal to 0.2 to 1.
Solution:

Open up a notepad (or Spyder), type in the following text and then save it:

import numpy as np
A = np.random.rand(2,3) # A 2x3 array of random numbers
A[A<0.2] = 0
A[A>=0.2] = 1

Run the above script a few times and explain what do you observe?__________________________

Example. Extract from the arrayB=np.array([3,4,6,10,24,89,45,43,46,99,100]) those
numbers
* which are not divisible by 3;
* which are divisible by 5;
* which are divisible by 3 and 5;
* which are divisible by 3 and set them to 42.
Sample Solution:
def is_divisible_by(n): return lambda x: x % n == 0

udiv3 = np.frompyfunc(is_divisible_by(3),1,1)
print("Not divisible by 3 =>", B[˜udiv3(B).astype(’bool’)])
udiv5 = np.frompyfunc(is_divisible_by(5),1,1)
print("Divisible by 5 =>", B[udiv5(B).astype(’bool’)])
print("Divisible by 3 and 5 =>", B[udiv3(B).astype(’bool’) &

21

udiv5(B).astype(’bool’)])
B[udiv3(B).astype(’bool’)] = 42 __________________________

Example. (Simple Image Processing) We can regard an array of Booleans,M, of the same shape as a number
arrayA like a new layer above the arrayA, called amask.

Consider a heathcliff imageA below:

0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

80

= (, ,)

The Boolean indexing can be used to extract the red, green and blue components of a coloured image.

from PIL import Image
import numpy as np
import matplotlib.pylab as plt
https://liaohaohui.github.io/UECM1703/heathcliff2.jpg
f = Image.open("heathcliff2.jpg")
orig = np.array(f)
fig, (ax0, ax1, ax2) = plt.subplots(nrows=1, ncols=3)
ax0.hist(orig[:,:,0])
ax0.set_title("Red")
ax1.hist(orig[:,:,1])
ax1.set_title("Green")
ax2.hist(orig[:,:,2])
ax2.set_title("Blue")
fig.tight_layout()
plt.show()

fig, (ax0, ax1, ax2) = plt.subplots(nrows=1, ncols=3)
arr = orig.copy()
arr[:,:,1:] = 0 # red
img = Image.fromarray(arr)
ax0.imshow(img)
arr = orig.copy()
arr[:,:,[0,2]] = 0 # green
img = Image.fromarray(arr)
ax1.imshow(img)
arr = orig.copy()
arr[:,:,:2] = 0 # blue
img = Image.fromarray(arr)
ax2.imshow(img)
fig.tight_layout()
plt.show()

We can also use the Boolean indexing to mask part of the image. For example, we can use it to create a
‘elliptic frame’ (in black) as follows.

0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

80

using Boolean indexing (and array grid broadcasting)

22

arr = orig.copy()
Using np.ogrid allows array indexing and broadcasting for calculation
x, y = np.ogrid[:arr.shape[0],:arr.shape[1]]
centre = np.array(arr.shape)/2
mask_ellip = (x-centre[0])**2/centre[0]**2+(y-centre[1])**2/centre[1]**2>1.0
arr[mask_ellip,:] = 0
plt.imshow(arr)
plt.savefig("heathcliff2_ell.eps")
plt.show()

In the practical, try to convert the coloured image 3-D array to gray colour 2-D array using the formula below:

gray = 0. 2989red+ 0. 5870green+ 0. 1140blue

The Boolean indexing can also be used in thresholding to select regions the boundaries of a character.__________________________

Summary of Numpy Fancy Indexing from https://lectures.scientific-
python.org/intro/numpy/array_object.html

Note that in the above example,a[(0,1,2,3,4), (1,2,3,4,5)] is the same asa[[0,1,2,3,4],
[1,2,3,4,5]] and both means np.array([a[0,1], a[1,2], a[2,3], a[3,4],
a[4,5]]).

23

6. Numeric Array Reduction Operations
When we want to work on the elements of arrays along someaxis or multiple axes, we can regard asreduc-
ing the array data to some values. We will explore some classes of reduction operations below.

‘Reduction’ Operations for Filtering and Construction

* np.choose(J, A) picksA[J[i]] into J. It complementsnp.compress(), np.select(),
np.extract(), etc.

* np.putmask(A, mask, values): works similar to Boolean masking. Closely related to
np.take(), np.place(), np.put(), np.copyto().

np.putmask(A, A<0, 0) # Same as A[A<0] = 0

* np.correlate(x,y) correlates two 1-D arrays

zj = ∑
min(j,K)

i=max(j−M,0)

xi y j+i , j = 0, . . . , K + M

* np.convolve(x,y) convolves two1-D arrays

zj = ∑
min(j,K)

i=max(j−M,0)

xi y j−i , j = 0, . . . , max(K, M)

Herex andy are two1-D arrays withK = x.size−1 andM = y.size−1. The last two items are used
in signal processing.

Ordering ‘Reduction’ Operations

* np.max, np.min: returns the largest value and the smallest value
* ptp: return the range of values, i.e. the difference of maximum and minimum
* np.argmax, np.argmin: returns the index of the largest value and the smallest value
* sort: return a sorted copy of an array
* np.argsort: return indices of sorted array
* searchsorted: find indices where elements should be inserted to maintain order

Statistical ‘Reduction’ Operations

* np.sum(X): It is used for summation. WhenX is the datax1, x2, . . . , xn, the sum returns

x1 + x2 + . . . + xn.

Together with array mathematical functions (Ufuncs), the for loop from Topic 1:

f (1) + f (2) + f (3) + . . . + f (n)

can be written as
f(np.r_[1:(n+1)]).sum() # or np.sum(f(np.r_[1:(n+1)))

Related:np.cumsum, np.prod, np.cumprod, ...

* np.mean(X): The mean isX
__

= ____________x1 + . . . + xn
n .

np.average(X, weights=W) generalises mean and allows weigted mean.
* np.median(X): Find the median of dataX.
* np.var(X) (andnp.std(X) = √ var(X)): By default, it is thepopulation variance (and standard

deviation)

Var[X] = _______________________(x1 − X
__

)2 + . . . + (xn − X
__

)2

n
.

Note that for sample variance (and sample population), then needs to be changed ton − 1 (set
ddof=1).

* np.cov(X): Compute the covariance matrix of data inX based on the mathematical formulation:

Cov[X] = E[(X − E[X])(X − E[X])H].

24

6.1. Ordering and Statistical ‘Reduction’ Operations (for Statistics)
In this section, we first look at the ordering reduction operations (min, max, ptp, ...) and the statistical reduc-
tion operations (sum, prod, mean, var, std, cumsum, ...) for a simple 2D array. We then look at the past year
questions which uses reduction operations combining with other array operations in the earlier sections.
Example. (General and Statistical ‘Reduction’ Operations) Consider the array

[6 9 12 4 3 0]
M = [4 4 15 2 1 1]

[2 1 18 -5 8 2]
[-6 -4 21 1 -5 2]

Let us investigate the reduction operations min, max, range, sum, prod, cumsum, cumprod, mean, var (popu-
lation variance), std (population standard deviation), etc. along the whole array, along the row and along the
column.
Solution: Let’s investigate how the axis work with the various given reduction operations.
M = np.array([[6, 9, 12, 4, 3, 0],

[4, 4, 15, 2, 1, 1],
[2, 1, 18, -5, 8, 2],
[-6, -4, 21, 1, -5, 2]])

Reduction operations along the whole array
M.min() # -6
M.max() # 21
M.ptp() # 27
M.sum() # 96 (all numbers add)
M.prod() # 0 (all numbers multiply)
M.cumsum() # 6, 6+9, 6+9+12, ...
M.cumprod() # 6, 6*9, 6*9*12, ...
M.mean() # 4.0
M.var() # 46.25
M.std() # 6.800735254367722
#
NOTE: There is a ‘nan’ version for the above commands which
skips nan, e.g. np.nanmean(x), np.nanvar(x), etc.
#

Reduction operations along the rows (axis = 1)
M.min(axis=1) # [0, 1, -5, -6]
M.max(axis=1) # [12, 15, 18, 21]
M.ptp(axis=1)
M.sum(axis=1) # It will sum along the row return 1-D array
M.prod(axis=1, keepdims=1) # use keepdims=1 if we want 2-D array
M.cumsum(axis=1) # [6,6+9,...], [4,4+4,...], [2,2+1,...], ...
M.cumprod(axis=1) # [6,6*9,...], [4,4*4,...], [2,2*1,...], ...
M.mean(axis=1)
M.var(axis=1) # for sample variance, use ddof=1
M.std(axis=1)

Reduction operations along the columns (axis = 0)
M.min(axis=0)
M.max(axis=0)
M.ptp(axis=0)
M.sum(axis=0, keepdims=1)
M.prod(axis=0)
M.cumsum(axis=0)
M.cumprod(axis=0)
M.mean(axis=0)
M.var(axis=0)
M.std(axis=0) __________________________

25

Example. (Final Exam Sept 2015, Q1(b)(i)) Write down and explain the values ofC for the following
commands

import numpy as np
A = np.array([4,6,8],dtype=’double’)
B = np.array([2,0,4])
C = np.sum(A/B)

Solution: C = sum([4/2 6/0 8/4]) = sum([2 Inf 2]) = Inf

Lessons learned: Be careful about the division by zero. We may get infinity.__________________________

Example. (Final Exam Oct 2018, Q1(b)) The dot product of two vectorsx = (x1,x2,. . . , xn) and
y = (y1, y2, . . . , yn), x ⋅ y, is defined as

x. y = x1y1 + x2y2 + . . . + xnyn.

The angleθ between two arrays is defined by the following relation

cosθ = _________x. y

√ x. x√ y. y
.

Implement aPython function theta to calculate the angleθ (in degree) if you are given two arrays
a=[a1,a2,a3,a4] andb=[b1,b2,b3,b4]. You must write down the proper import statements. If
you use the Numpy module, you must prefix the Numpy functions with ‘‘np.’’ or marks will be heavily
deducted. Use scientific calculator to find the return value of the Python command
theta([1,2,3,4],[2,1,3,4]) to 4 decimal places.
Sample Solution: In 2018, Numpy is not as popular and not as advanced and the lecturer has not mastered
np.dot()P:
from math import degrees, acos, sqrt # 1 mark
Able to define a function and return a value: 1.5 marks
Correct translation of mathematical formula to Python: 2.5 marks
def theta(x, y):

We are using the single-line for loop from Topic 1
The size of x and y may be different, so we need to
check it in real-world programming but it is fine
to assume x and y the same size in exam
num = sum(x[i]*y[i] for i in range(len(x)))
sxx = sqrt(sum(x[i]*x[i] for i in range(len(x))))
syy = sqrt(sum(y[i]*y[i] for i in range(len(y))))
return degrees(acos(num/sxx/syy))

print(theta([1,2,3,4],[2,1,3,4]))

The question also test the understanding of manual calculation and the use of calculator:

θ = cos−1 _________________________________2 + 2 + 9 + 16
√ 12 + 22 + 32 + 42 × √ 22 + 12 + 32 + 42

[1 mark]

= cos−1 ___29
30 = 0. 258922 ×_____180o

π = 14. 8351o [2+1=3 marks]

Sample Solution: Since 2020, Numpy becomes advanced with the introduction of @ for np.matmul, a sim-
ple answer is given below.
Appropriate import when writing scripts 1 mark
import numpy as np
def theta(x, y):

return np.degrees(np.arccos(x@y/np.sqrt(x@x)/np.sqrt(y@y)))

print(theta(np.array([1,2,3,4]),np.array([2,1,3,4])))

26

Example. (Final Exam Oct 2018, Q1(a), CO1) The output of the Python commands below

>>> import numpy as np
>>> A = np.arange(1,36).astype(’float’).reshape(5,7)
>>> print(A)

is

[[1. 2. 3. 4. 5. 6. 7.]
[8. 9. 10. 11. 12. 13. 14.]
[15. 16. 17. 18. 19. 20. 21.]
[22. 23. 24. 25. 26. 27. 28.]
[29. 30. 31. 32. 33. 34. 35.]]

Use the above information to write down the output to the following Python commands for item (i) to item
(iv).
(i) print(A[2,:])

Solution: [15. 16. 17. 18. 19. 20. 21.]

(ii) print(A[1:4,3:5])
Solution:
[[11. 12.]
[18. 19.]
[25. 26.]]

(iii) print(A[2:4,4:6].mean())
Solution: A[2:4,4:6] → [[19., 20.], [26., 27.]]
_______________19 + 20 + 26 + 27

4 = 23. 0

(iv) print(A[:,2]>10)
Solution: [False False True True True]

(v) Write down the Python command tocount the number of elements inA who are larger than 20.
Solution: (A>20).sum()

Example.
(a) Write down the Python command to subtract the each column of a matrixA by the mean of the data of

each column vector.
A - A.mean(axis=0)

(b) The ‘shortest’ Python command to subtract the each row of a matrixA by the mean of the data of each
row vector is probably

(A.T - A.mean(1)).T
Do you know other slightly longer Python command which achieves the same outcome forA?

A - A.mean(axis=1, keepdims=True)

A - A.mean(1).reshape(-1,1)

Example. (Final Exam Sept 2019, Q1)
(a) Given [4 9 8 0 2 9]

[3 1 9 1 2 8]
A = [7 2 2 3 7 8]

[3 5 0 7 9 7]
[9 4 6 7 9 8]

Use the above information toexecute the following Python commands for item (i) to item (iv) and write
down the output of the execution.
(i) print(A[:,1])

Solution: [9 1 2 5 4]

(ii) print(A[1:4,[1,2,3]])
Solution:

[[1 9 1]
[2 2 3]
[5 0 7]]

27

(iii) print(A[A<5].sum())
Solution: (4 + 0 + 2) + (3 + 1 + 1 + 2) + (2 + 2 + 3) + (3 + 0) + 4 = 27

(iv) print(A[:4,:3].sum(axis=0))
Solution: [4 + 3 + 7 + 3, 9 + 1 + 2 + 5, 8 + 9 + 2 + 0] = [17, 17, 19]

(v) Write down the Python command which gives the mean of rows inA afterexecution.
Solution: print(A.mean(axis=1)))

(vi) Write down the warning message that the command
print(A[1,:]/A[0,:].astype(np.float64)) will raise when it is executed.
Solution: SinceA[0,3] is zero, a division by zero error will be produced.

(b) Use Numpy array operations such asnp.arange, etc. to write a computer program in no more than 3
lines and without using any semicolon to print the following output:

1 1 1 1
2 4 8 16
3 9 27 81
4 16 64 256
5 25 125 625
6 36 216 1296
7 49 343 2401
8 64 512 4096
9 81 729 6561
10 100 1000 10000

Sample Solution:
col1 = np.arange(1,11).reshape(10,1) # [1.5 marks]
B = np.hstack((col1, col1**2, col1**3, col1**4)) # [2 marks]
print(B) # [0.5 mark]

Example. (Write program script using Numpy array) The following function is used to generate a moving
sequence (with a particular window size, by default 4) for a one-dimensional arraya.

def rolling(a, window=4):
n = a.size
newarray = np.zeros((n-window+1,window))
for i in range(n-window+1):

newarray[i,:] = a[i:i+window]
return newarray

When the one-dimensional array isx = [x1,x2,x3,x4,. . . , xn], the return moving sequence ofrolling(x)
with a widow size 4 is

[[x1,x2,x3,x4], [x2,x3,x4,x5], . . . , [xn−3, xn−2, xn−1, xn]].

(i) If a = np.array([1.1, 1.34, 1.17, 1.06, 1.06, 0.94]), write down the output of
Python commandrolling(a).
Solution:
array([[1.1 , 1.34, 1.17, 1.06],

[1.34, 1.17, 1.06, 1.06],
[1.17, 1.06, 1.06, 0.94]])

(ii) Define a Python functionmoving_average to calculate moving average ofx with a window of 4
which returns the following array:

[______________x1 + x2 + x3 + x4

4
, ______________x2 + x3 + x4 + x5

4
, . . . , __________________xn−3 + xn−2 + xn−1 + xn

4
]

based on the moving sequencerolling(x). Write down the output of the Python command
print(moving_average(a)) wherea is given in part (i).

28

Solution: By using Numpy array method, we have
def moving_average(x,w=4): return rolling(x,w).mean(axis=1)
Alternatively, a less elegant method is to used for loop:
def moving_average(x,w=4):

retval = np.zeros(x.size-w+1)
data = rolling(x,w)
for i in range(retval.size):

retval[i] = np.mean(data[i])
return retval

The output ofmoving_average(a) is [1.1675, 1.1575, 1.0575]

(iii) Explain how to calculate moving variance ofa in part (i) with a window of 4.
Solution: rolling(a).var(axis=1)

Example. (Final Exam Oct 2018, Q2(b), CO3) The following function from a program script is used to gen-
erate a moving sequence for a one-dimensional array

def rolling(a, window=4):
n = a.size
newarray = np.zeros((n-window+1,window))
for i in range(n-window+1):

newarray[i,:] = a[i:i+window]
return newarray

When the one-dimensional array isx = [x1,x2,x3,x4,. . . ,xn], the return moving sequence ofrolling(x) is

[[x1,x2,x3,x4], [x2,x3,x4,x5], . . . , [xn−3, xn−2, xn−1, xn]].

(i) If a = np.array([0.95, 0.87, 0.87, 0.98, 1.04, 1.08]), write down the output of
rolling(a).
Solution:

array([[0.95, 0.87, 0.87, 0.98],
[0.87, 0.87, 0.98, 1.04],
[0.87, 0.98, 1.04, 1.08]])

(ii) Define a Python functionmoving_average to calculate moving average ofx with a window of 4
which returns the following array:

[______________x1 + x2 + x3 + x4

4
, ______________x2 + x3 + x4 + x5

4
, . . . , __________________xn−3 + xn−2 + xn−1 + xn

4
]

based on the moving sequencerolling(x). Write down the output of the Python command
print(moving_average(a)) wherea is given in part (i).
Sample Solution: By using Numpy array method, we have

def moving_average(x,w=4):
return rolling(x,w).mean(axis=1)

Alternatively, a less elegant method is to use the for loop:
def moving_average(x,w=4):

retval = np.zeros(x.size-w+1)
data = rolling(x,w)
for i in range(retval.size):

retval[i] = np.mean(data[i])
return retval

The output ofmoving_average(a) is [0.9175, 0.94, 0.9925].
(iii) Explain how to calculate moving variance ofa in part (i) with a window of 4.

Solution: rolling(a).var(axis=1)
The following example is taken from Scipy just to illustrate how real-world Python program is written

using Numpy. __________________________

Example. ((Final Exam Oct 2023, Magic Square using Integer Array)) Using numpy integer array, a magic
square can be made simpler. The Python function to check if an object is a magic square can be simplified as
follows.

29

def is_magic_square(arr):
sums_from_every_row = arr.sum(axis=1)
sums_from_every_col = arr.sum(axis=0)
#Two diagonals
diag1 = np.diag(arr).sum() # Using reduction ‘sum’
diag2 = np.diag(arr[:,::-1]).sum()
return diag1==diag2 and \

np.all(sums_from_every_row == diag1) and \
np.all(sums_from_every_col == diag1)

m=[[7, 12, 1, 14], [2, 13, 8, 11], [16, 3, 10, 5], [9, 6, 15, 4]]
print(is_magic_square(np.array(m)))
print(is_magic_square(np.array([[2, 7, 6], [9, 5, 1], [4, 3, 8]])))
print(is_magic_square(np.array([[2, 7, 6], [9, 5, 1], [4, 3, 7]])))

The generation of magic square algorithm from Topic 1 can be simplified as follows.
def magic_sqr_method1(n):

if n % 2 == 0: return None # Only works with odd n
magic_square = np.zeros((n,n))
cnt, i, j = 1, 0, n//2
while cnt <= n**2:

magic_square[i,j] = cnt
cnt += 1
newi, newj = (i-1)%n, (j+1)%n
if magic_square[newi,newj]:

i += 1
else:

i, j = newi, newj
return magic_square __________________________

Example. (scipy.stats.gmean) The geometric mean implementation in Scipy is listed below.
def gmean(a, axis=0, dtype=None, weights=None):

r"""Compute the weighted geometric mean along the specified axis.

The weighted geometric mean of the array :math:‘a_i‘ associated to weights
:math:‘w_i‘ is:

exp






∑

n

i=1

wi lnai

∑
n

i=1

wi 



,

and, with equal weights, it gives:

n √ ∏
n

i=1

ai .

Parameters

a : array_like

Input array or object that can be converted to an array.
axis : int or None, optional

Axis along which the geometric mean is computed. Default is 0.
If None, compute over the whole array ‘a‘.

dtype : dtype, optional
Type to which the input arrays are cast before the calculation is
performed.

weights : array_like, optional
The ‘weights‘ array must be broadcastable to the same shape as ‘a‘.
Default is None, which gives each value a weight of 1.0.

Returns

30

gmean : ndarray

See ‘dtype‘ parameter above.

See Also

numpy.mean : Arithmetic average
numpy.average : Weighted average
hmean : Harmonic mean

References

.. [1] "Weighted Geometric Mean", *Wikipedia*,

https://en.wikipedia.org/wiki/Weighted_geometric_mean.
.. [2] Grossman, J., Grossman, M., Katz, R., "Averages: A New Approach",

Archimedes Foundation, 1983

Examples

>>> from scipy.stats import gmean
>>> gmean([1, 4])
2.0
>>> gmean([1, 2, 3, 4, 5, 6, 7])
3.3800151591412964
>>> gmean([1, 4, 7], weights=[3, 1, 3])
2.80668351922014

"""

a = np.asarray(a, dtype=dtype)

if weights is not None:
weights = np.asarray(weights, dtype=dtype)

with np.errstate(divide=’ignore’):
log_a = np.log(a)

return np.exp(np.average(log_a, axis=axis, weights=weights))

Note the programming techniques used:
* Function with default values
* Defining ‘help documentation’ for a function using""" ... """.
* If statement
* Array mathematical functions and reduction operations.

31

7. Geometric Operations
In this section, we introduces operations which are related to geometry such as length (and the generalisation,
norm), angle, matrix product (related to linear transformations), etc. They can be expressed as the reduction
operations mentioned earlier.

7.1. Geometric Operations for Vectors
Thelength of a vector

|x| = √ x2
1 + x2

2 + . . . + x2
n

can be obtained usingscipy.linalg.norm(x[, ord, axis, keepdims]).
Theangle between a vectorx and a vectory (in radian) is given by thedot-product:

x ⋅ y = x1y1 + x2y2 + . . . + xnyn.

The Numpy operations which allow us to perform dot product on x and y includex@y, np.matmul(x,y),
np.dot(x,y) and np.vdot(x, y).
Example. (Geometric Operations on Vectors) Find lengths and angle the vectors x and y:

x = np.array([3,-1, 2,-4])
y = np.array([5, 7, 3, 1])

Sample Solution:

import numpy as np
from scipy import linalg
xlength = linalg.norm(x) # earlier: np.sqrt(x@x)
ylength = linalg.norm(y) # earlier: np.sqrt(y@y)
angle_x_y = np.arccos((x@y)/xlength/ylength)

Example. (Final Exam Oct 2018, Q1(b)) The dot product of two vectorsx = (x1,x2,. . . , xn) and
y = (y1,y2,. . . ,yn), x ⋅ y, is defined as

x ⋅ y = x1y1 + x2y2 + . . . + xnyn = |x||y|cosθ.

The angleθ between two arrays is defined by the following relation

cosθ = ____________x ⋅ y

√ x ⋅ x × √ y ⋅ y
.

Implement aPython function theta to calculate the angleθ (in degree) if you are given two arrays
a=[a1,a2,a3,a4] andb=[b1,b2,b3,b4]. You must write down the proper import statements. If
you use the Numpy module, you must prefix the Numpy functions with ‘‘np.’’ or marks will be heavily
deducted. Use scientific calculator to find the return value of the Python command
theta([1,2,3,4],[2,1,3,4]) to 4 decimal places.

Try to work out the answer using dot product and vector norms.

Sample Solution:

import numpy as np
from scipy import linalg # [1 mark]
def theta(x, y): # [1 mark]

num = np.array(x).dot(y) # [1 mark]
den = linalg.norm(x)*linalg.norm(y) # [1 mark]
return np.degrees(np.arccos(num/den)) # [1 mark]

32

7.2. Operations for Matrices
Apart from the elementwise arithmetic mentioned earlier, the following are some operations specific to

matrices:
* A@B or np.matmul(A, B): Matrix product of two arrays.
* np.dot(A, B): Dot productz[I , J, j] = ∑

k

A[I , k]B[J, k, j] of A andB. It is equivalent to matrix

multiplication.
* np.linalg.matrix_power(A, n) : Raise a square matrix to the (integer) powern.
* np.kron(A,B) : Kronecker product of two arrays, giving [aij ...kB].
Example. (Linear Algebra Operations on 2-D arrays) Consider the matrices

[1 2] [7 8]
A = [3 4] B = [] C = [3 -2]

[5 6] [8 7]

Find the matrix productAB, the ‘matrix product’BC, the matrix powerB4 and the Kronecker productAxOB
using Python.
Sample Solution:

A = np.array([[1, 2],[3, 4],[5, 6]])
B = np.array([[7, 8],[8, 7]])
C = np.array([3,-2])

A @ B or np.matmul(A, B) or np.dot(A, B)
[23, 22]
A x B = [53, 52]
[83, 82]

Note: Python will cleverly regard C as column matrix
when B (2x2 matrix) is multiplied to C
B @ C # [5, 10]

B @ B @ B @ B or np.linalg.matrix_power(B, 4)
[25313 25312]
Bˆ4 = B x B x B x B = []
[25312 25313]

np.kron(A, B)
[7, 8, 14, 16]
[1B, 2B] [8, 7, 16, 14]
Kronecker product A (x) B = [3B, 4B] = [21, 24, 28, 32]
[5B, 6B] [24, 21, 32, 28]
[35, 40, 42, 48]
[40, 35, 48, 42]

Example. Explain which of the Python/Numpy instruction is most appropriate achieved the following
results.
(a) Generate the multiplication tables for 1 to 9 using Python’s linear algebra operations.

Sample Solution: We can use the elementwise arithmetic to achieve this:

np.r_[1:10].reshape((9,-1)) * np.r_[1:10] # or
np.kron(np.r_[1:10].reshape((9,-1)), np.r_[1:10])

(b) Let A =

2
1

1

2
 . UseA to generate a matrix like this

[6 8 10 3 4 5]
[10 8 6 5 4 3]
[3 4 5 6 8 10]
[5 4 3 10 8 6]

Sample Solution: There are many answers to this but requires us to observe that

33






2

3
5

4

4

5

3


1

3
5

4

4

5

3


1

3
5

4

4

5

3


2

3
5

4

4

5

3







A = np.array([[2,1],[1,2]])
B = np.array([[3,4,5],[5,4,3]])
np.kron(A,B) __________________________

Example. (Final Exam Sept 2019, Q2) Given the matrix
[1 2]

M = [3 4]
[5 6]

(a) Execute the following Python commands for item (i) to item (v) and write down the output of the exe-
cution.
(i) print(M * M)

Solution: 1 4
9 16

25 36

(ii) print(M @ M.T)
Solution: 5 11 17

11 25 39
17 39 61

(iii) print(M[[2,1,0,1,2],:][:,[1,0,0,1]])
Solution: M[[2,1,0,1,2],:] M[[2,1,0,1,2],:][:,[1,0,0,1]]

[5 6] [6 5 5 6]
[3 4] [4 3 3 4]
[1 2] -----> [2 1 1 2]
[3 4] [4 3 3 4]
[5 6] [6 5 5 6]

(iv) print(M[:2,:]==M[[2,1],:])
Solution: [1 2] [5 6] [False False]

[] == [] -> []
[3 4] [3 4] [True True]

(v) print((M<3)|(M>4))
Solution: [1<3 2<3] [1>4 2>4] [True True]

[3<3 4<3] or [3>4 4>4] = [False False]
[5<3 6<3] [5>4 6>4] [True True]

(b) Write a Python program with no more than 3 lines to produce the following matrices fromM:
[-2.5 -1.5] [-2 -2] [-0.5 0.5]

M_1 = [-0.5 0.5] M_2 = [0 0] M_3 = [-0.5 0.5]
[1.5 2.5] [2 2] [-0.5 0.5]

by using the Numpy vector operation in the Python computer software. Note thatM_1 is M subtracted
by the mean of all values inM, M_2 is a matrix such that each column inM being subtracted by the
mean of corresponding column,M_3 is a matrix such that each row inM being subtracted by the mean
of corresponding row. Note that your program must work whenM is changed to an arbitrarym × n
matrix.
Sample Solution:

M1 = M - M.mean() # [1 mark]
M2 = M - M.mean(axis=0)) # [2 marks]
M3 = M - M.mean(axis=1,keepdims=True) # [2 marks]

34

8. Linear Algebra Solvers (To be covered in Topic 5)
In science and engineering, we often encounter the equations involving matrices called thelinear system or
thelinear algebra problem:

AX = B (LS)

whereA is anm × n matrix, X is ann × k matrix andB is anm × k matrix. X is unknown whereasA andB
need to be given.

8.1. When m = n and A is invertible
(LS) can be solved using

from scipy import linalg
X = linalg.solve(A, B) # linalg.inv(A) @ B is not recommended

Thelinalg.solve should be able to solve (LS) withm = n<<104 using the Gaussian elimination method
(and Cholesky method when the matrixA is positive definite). For any larger matrix, we may need the sparse
matrix solvers.
Example. Write down the Python script to solve the following problem:

[-2 11] [x11 x12] [19 1]
[] [] = []
[17 -19] [x21 x22] [3 2]

Sample Solution:

from scipy import linalg # Mentioned earlier
A = np.array([[-2,11],[17,-19]])
B = np.array([[19,1],[3,2]])
X = linalg.solve(A, B)
print("X=",X)

The solution is

X = [2.64429530 0.27516779]
[2.20805369 0.14093960]

Example. (Final Exam Sept 2014, Q4(a)) Given the linear system

3x1 + 7x2 − 2x3 + 3x4 − x5 = 37

4x1 + 3x5 = 40

5x3 − 4x4 + x5 = 12

2x1 + 9x3 + 4x4 + 3x5 = 14

5x4 + 8x5 = 20

Write a Python script to solve the linear system.
Sample Solution:

import numpy as np
from scipy import linalg
A = np.array([[3, 7, -2, 3, -1],

[4, 0, 0, 0, 3],
[0, 0, 5, -4, 1],
[2, 0, 9, 4, 3],
[0, 0, 0, 5, 8]])

x = linalg.solve(A, [37, 40, 12, 14, 20])

35

Example. (Final Exam Sept 2020 during MCO, Q1)
(a) Given thatA stores the following matrix

[4 0 0 0 0 15 8 1 0 0]
[0 6 0 0 0 6 24 6 1 0]
[0 0 6 0 0 1 8 15 4 4]
[1 0 0 3 0 0 8 4 18 5]
[2 3 0 0 5 0 0 8 6 24]
[29 3 1 0 0 5 0 0 3 7]
[3 17 5 6 0 0 7 0 0 2]
[4 4 17 3 4 0 0 6 0 0]
[0 8 2 25 4 0 0 0 8 0]
[0 0 7 1 16 0 0 0 0 7]

(i) Write down the output of the Python commandA[:,[3,5,2,4]]. Determine if it is the same
asA[[3,5,2,4]] and explain the difference.
Solution:

[[0 15 0 0]
[0 6 0 0]
[0 1 6 0]
[3 0 0 0]
[0 0 0 5]
[0 5 1 0]
[6 0 5 0]
[3 0 17 4]
[25 0 2 4]
[1 0 7 16]]

A[:,[3,5,2,4]] andA[[3,5,2,4]] are different because the former picks the columns
while the later pick the rows.

(ii) Write the Python command to pick all the odd rows and even columns fromA and write down the
output of your command.
Solution: A[::2,1::2] -> [[0 0 0 24 1]

[1 0 0 8 18]
[29 1 0 0 3]
[4 17 4 0 0]
[0 7 16 0 0]]

(iii) Write the Python command to pick the intersection of the second, fifth, third columns and of the
eighth, fifth and seventh rows in the given order and write down the output of your command.
Solution: A[:,[1,4,2]][[7,4,6],:] -> [[4 4 17]

[3 5 0]
[17 0 5]]

(iv) Write the Python command to arrange the given matrixA into the following diagonally dominant
form:

[15 8 1 0 0 4 0 0 0 0]
[6 24 6 1 0 0 6 0 0 0]
[1 8 15 4 4 0 0 6 0 0]
[0 8 4 18 5 1 0 0 3 0]
[0 0 8 6 24 2 3 0 0 5]
[5 0 0 3 7 29 3 1 0 0]
[0 7 0 0 2 3 17 5 6 0]
[0 0 6 0 0 4 4 17 3 4]
[0 0 0 8 0 0 8 2 25 4]
[0 0 0 0 7 0 0 7 1 16]

Solution: A[:,[5,6,7,8,9,0,1,2,3,4]]
(v) For ann × n matrixA, it is said to bediagonally dominantif for each row the absolute value of the

diagonal element is larger than the sum of the absolute value of the rest of the elements in the
row:

|aii | > ∑
n

j=1, j≠ i

|aij |, i = 1, 2, . . . ,n.

%

Write a Python functionis_diag_domin(A) which determines whether the matrixA is diago-
nally dorminant. The function with return True if the matrixA is diagonally dorminant, False if
the matrixA is not diagonally dorminant, and None if the matrix is not square.
Sample Solution:

def is_diag_domin(A):
N = A.shape[0]
for i in range(N):

S = sum(abs(A[i,j]) for j in range(N) if j != i)
if abs(A[i,i]) <= S:

print("i=",i)
return False

return True

#import q1
#print(is_diag_domin(q1.AA))

(b) Given that three 3 × 3 matrices
[5 8 8] [2 2 -2] [-2 -8 8]

P = [6 -9 -8] Q = [7 8 -2] R = [-8 -5 8]
[6 -5 1] [0 2 2] [6 -9 4]

(i) Write down the Python command to find the inverse matrix ofQ, Q−1.
Solution: The Python command to findQ−1 is

np.linalg.inv(Q)
or

np.linalg.solve(Q,np.eye(Q.shape[0])).
The output is

-1.25 0.5 -0.75
0.875 -0.25 0.625

-0.875 0.25 -0.125

(ii) Write down the Python command to find matrixL if P3LQ = R. Write down thematrix L.
Solution: L = (P3)−1RQ−1

L = linalg.inv(P@P@P) @ R @ linalg.inv(Q)
L = linalg.solve(np.linalg.matrix_power(P,3),R)@linalg.inv(Q)

The matrixL is
0.08603119 -0.04214438 0.07957573
0.21360577 -0.09753974 0.18129806

-0.24895274 0.11235113 -0.20818642

(iii) Suppose the 3 × 3 matricesE, F, G, H satisfies


 P

Q

Q

R


−1

=

 E

G

F

H


First, find the matrixH by writing down the appropriate Python commands. Then, write down the
appropriate Python command(s) to show that

(R− QP−1Q)−1 = H.

Solution: After from scipy import linalg, the command
H = linalg.inv(R - Q@linalg.inv(P)@Q)

allows us to obtain
[0.26819736 -0.15480007 -0.07891041]

H = [0.69421553 -0.3532685 -0.42828374]
[1.00692917 -0.48176952 -0.51330189]

37

8.2. When m ≠ n or A is not invertible
Mathematicians have solved the general linear system (LS) with no restrictions (except that that they cannot
be too large because computer memory is limited) onm andn (the price to pay is a longer computation time)
using the SVD method or QR method leading to the following functions in Python:

from scipy import linalg
X = linalg.lstsq(A, B) # linalg.pinv(A) @ B is not recommended

Note that X may not be a solution but a ‘least square solution’ of the linear system (LS).
Example. Write down the Python script to solve the following problem:

[x11 x12]
[-2 11] [] = [19 1]

[x21 x22]

Sample Solution:

A = np.array([[-2,11]])
B = np.array([[19,1]])
X,_,Rank,Sing = linalg.lstsq(A, B)
print("X=",X) # Many solutions but only one return

Example. Solve the Least Square Problem:

[-2 11] [x11 x12] [19 1]
[17 -19] [x21 x22] = [3 2]
[6 6] [6 7]

Note: Be careful,linalg.solve will not work.
Sample Solution:

A = np.array([[-2,11],[17,-19],[6,6]])
B = np.array([[19,1],[3,2],[6,7]])
X,Err,Rank,Sing = linalg.lstsq(A, B)
print("X=",X)
print("Residue=",Err)

38

8.3. Special (Dense) Matrices and Sparse Matrices
For some linear system with special square matrices such as theToeplitz matrix:









a1

a2

a3

.

.

an

b1

a1

a2

.

.

an−1

b2

b1

a0

.

.

an−2

. . .

. . .

. . .

.

.
. . .

bn−1

bn−2

.

.

a0

a1

bn

bn−1

.

.

b1

a0 









It can be generated using

linalg.toeplitz([a1, a2, a3, ..., an], [b0, b1, b2, ..., bm])

Mathematicians have developed special algorithms to speed up the solution of linear system with spe-
cial matrices.
* linalg.solve_toeplitz(c_or_cr, b, check_finite=True)

* Other special cases are ignored.
Example. Construct a Toeplitz matrix from the 1-D arraysa=[2,3,4,5] andb=[500,6,7,8,9,10].
Sample Solution:

>>> print(linalg.toeplitz([2,3,4,5],[500,6,7,8,9,10]))
[2, 6, 7, 8, 9, 10]
[3, 2, 6, 7, 8, 9]
[4, 3, 2, 6, 7, 8]
[5, 4, 3, 2, 6, 7]

Example. (Toeplitz System) Write a script usinglinalg.toeplitz to solve the linear system:

[1 -1 -2 -3] [1]
[3 1 -1 -2] [2]
[6 3 1 -1] y = [2]
[10 6 3 1] [5]

Sample Solution: When the Toeplitz matrixlinalg.toeplitz(c, r) is characterised byc andr, we
can write down the following commands.

c = np.array([1,3,6,10]) # first column of left matrix
r = np.array([1,-1,-2,-3]) # first row of left matrix
b = np.array([1,2,2,5]) # right column matrix
x = linalg.solve_toeplitz((c, r), b)

Some square matrices like the tridiagonal matrices have a lot zeros and sparse matrix is a good repre-
sentation and special solvers can be applied.
Example. (Sparse Matrix Solver)

import numpy as np
from scipy import sparse
N = 10
idx = np.r_[0:N]
v1 = 3*idx**2 +(idx/2)
v2 = -(6*idx**2 - 1)
v3 = 3*idx**2 -(idx/2)
A = sparse.spdiags(np.vstack((v1,v2,v3)),(-1,0,1),N,N).tocsc()
B = np.r_[N:0:-1]
X = sparse.linalg.spsolve(A, B)

Refer to https://lectures.scientific-
python.org/advanced/scipy_sparse/index.html for more Scipy functions related sparse
matrix.

39

9. Eigenvalue Problems and Matrix Functions
Eigenvalues are important in science and engineering because they are linked withresonance frequencies,
characteristic functions, etc. The eigenvalue problem Ax = λ x has the following matrix form:

AX = XΛ. (EP)

Here A is an n × n matrix. (EP) can be solved using:

from scipy import linalg
eigenvalues, eigenvectors = linalg.eig(A)

returning the eigenvalues (the diagonals ofΛ) and the normalised right eigenvectors as the columns ofX for
the square arrayA. For a special case whereA is a Hermitian or symmetric,linalg.eigh(A) has a faster
algorithm.

A (right) generalised matrix eigenvalue problem has the form:

AX = BXΛ (GEP)

It can be solved using

eigenvalues, eigenvectors = linalg.eig(A,B).

Example. Write down the Python script to solve the following eigenvalue problem:

[-2 11]
[] v = lambda v
[17 -19]

Sample Solution:

from scipy import linalg
A = np.array([[-2,11],[17,-19]])
lambdas, eigenvectors = linalg.eig(A)
print("/\=",lambdas)
print("X=",eigenvectors)

9.1. Linear Matrix Equations
There are a few matrix equations from linear control theory, signal processing, filtering, model reduction,
image restoration, decoupling techniques for ordinary and partial differential equations below and the respec-
tive solvers in Python are listed.

Sylvester equations:

AX + BX = C

are solved withlinalg.solve_sylvester(A, B, C) using the Bartels-Stewart algorithm.
A continuous-time algebraic Riccati equation (CARE):

XA+ AH X − XBR−1BH X + Q = 0

is linalg.solve_continuous_are(A, B, Q, R[, E, S, ...]) in Python.
A discrete-time algebraic Riccati equation (DARE):

AH XA− X − (AH XB)(R+ BH XB)(BH XA) + Q = 0

is linalg.solve_discrete_are(A, B, Q, R[, E, S, balanced]) in Python.
A continuous-time Lyapunov equation:

AX + XAH = Q

is linalg.solve_continuous_lyapunov(A, Q) in Python.
A discrete-time Lyapunov equation:

AXAH − X + Q = 0

is linalg.solve_discrete_lyapunov(A, Q[, method]) in Python.

40

9.2. Matrix Functions and Matrix Equations
A more generalnonlinear matrix problem has the form:

f (X) = 0 (ME)

whereX and 0 aren × n square matrices. There is no simple / unified solution technique to this problem. A
special case of (ME) has a quadratic left hand side leading to a ‘quadratic matrix equation’:

AX2 + BX + C = 0

whereX, A, B, C, 0 are alln × n matrices. For example,

[-2 11] [19 1] [0 13] [0 0]
[] X2 + [] X + [] = []
[17 -19] [3 2] [-13 13] [0 0]

whereX is a 2 × 2 matrix.
The f (X) in (ME) can be amatrix function defined by the Taylor series for matrix of the form

f (X) = ∑
∞

k=0

______f (k)(0)

k!
Xk.

Python has the exponential, logarithm, trigonometric and hyperbolic matrix functions such as
linalg.expm, linalg.logm, linalg.sinm, linalg.cosm, linalg.tanm, linalg.sinhm,
linalg.coshm andlinalg.tanhm.
Example. (Final Exam Sept 2021 during MCO, Q1(d)) Given a 2 × 2 matrix

A =

 1

0. 1

−0. 1

1 
 .

Let X be a 2 × 2 matrix with entriesxij , i, j = 1, 2. You are investigating the difference between the matrix
exponential function

exp[m] (X) = I2 + X + __1

2!
X2 + __1

3!
X3 + __1

4!
X4 + . . . + __1

k!
Xk + . . .

and the elementwise exponential function

exp(X) =

e

x11 ex12

ex21 ex22


(i) Write down the Python commands for calculating exp[m] (A) and exp. Run the Python commands and
write down the output of the commands. Then, write down the difference exp[m] (A) − exp(A).
Solution: The Python commands are respectively
* exp[m] (A): linalg.expm(A)
* exp(A): np.exp(A)
The outputs are respectively

[[2.70470174 -0.27137536] [[2.71828183 0.90483742]
[0.27137536 2.70470174]] [1.10517092 2.71828183]]

and the difference is
[[-0.01358009 -1.17621278]
[-0.83379556 -0.01358009]]

(ii) Write down the Python command to find the difference

exp[m] (A) − I2 − A − __1

2!
A2 − __1

3!
A3

and write down the difference.
Solution: The Python command to find the difference is

linalg.expm(A) - np.eye(2) - A - 0.5*A@A - 1/6*A@A@A

and the output is
[[0.04803508 -0.02154203]
[0.02154203 0.04803508]] __________________________

41

10. Inline Functions, Anonymous Functions
Python does not have inline functions. Another implementation of Python called PyPy will inline functions
automatically.

The lambda notion for function is theanonymous function in Python:

lambda x: an_expression_of x ...

It is usually used when we don’t need to give an operation a function name.
Example. Sorting list strings reversely based on the characters and the number.

import re
table_data = ["vlan1", "usb0", "eth1", "vlan4", "vlan20"]
sorted(table_data, key=lambda v:
[re.findall(r’([a-z]+)’, v), -int(re.findall(r’(\d+)’, v)[0])],
reverse=True)

Purpose of Section 8 and Section 9:

* We are trying to use examples to illustrate how to transform certain scientific problem to arrays and
then to use the right numerical methods to get a reasonable solution/model to the scientific problem.

Purpose of (this) Section 10:

* Inline functions is for improve speed but Python is only fast when the underlying C or C++ implemen-
tations are used. Anonymous functions are used when we want to do perform a data transformation for
some computer algorithms (e.g. sorted).

42

11. Practical Topic: Arrays and Built-in Functions
Work through the examples in Sections 2.1 to 2.3, 3, 4.1 to 4.2, 5.1 to 5.4 andpracti-

cal2_array.py.
If time permits, try to construct statistical tables using Numpy array and built-in functions or Scipy sta-

tistical functions. For example, write down the Python program using array command(s) for constructing
standard normal distribution cumulative table (less than Z) like the one shown in
https://en.wikipedia.org/wiki/Standard_normal_table.

To understand the popularity of Python in scientific computing, the C++ programnormtbl2.cc
below using boost and armadillo linear algebra library is listed below for comparison.

#include <iostream>
#include <iomanip>
#include <string>
#include <boost/math/distributions.hpp>
#include <armadillo>
using namespace std;

const int prec = 5;
const int cw = prec + 3; // column width for printing table
const char nl[2] = "\n";
const string sepleft{" | "};
const string septop(cw-4, ’ ’); // 0.xy occupies 4 places

int main() {
const double xs=0.0, xe=3.9, inc=0.1;
const int N=int(round((xe-xs)/0.1))+1, M=10;
arma::mat s_table(N,M); // statistiscal table
cout << s_table.n_rows << " x " << s_table.n_cols << nl;

// Print Top Table Header
cout << string(5, ’ ’); // left label column
for(int i=0; i<M; i++)

cout << septop << fixed << setprecision(2) << 0.01*i;
cout << nl << string(4, ’-’) << ’+’ << string(M*cw, ’-’) << nl;
boost::math::normal_distribution<> normd;
for(int i=0; i<N; i++) {

for(int j=0; j<M; j++) {
s_table(i,j) = cdf(normd, 0.1*i + 0.01*j);

}
}
// https://stackoverflow.com/questions/63357023/print-
// double-data-type-with-a-precision-upto-4-decimal-places-armadillo
for(int row=0; row<N; row++){

cout << setprecision(1) << row*0.1 << sepleft;
cout.precision(prec);
cout.setf(ios::fixed);
s_table.row(row).raw_print(cout);

}
}

43

12. Practical Topic: Advanced Array and Matrix
According to https://en.wikipedia.org/wiki/Financial_engineering, financial

engineering is a multidisciplinary field involving the application of mathematical finance and computational
finance in the practice of finance. It is complex because it is trying to design financial products, in particular,
complex financial derivatives are very difficult priced.

In this section, we explore the simplest financial derivative called theEuropean options. Two typical
European options areEuropean call options andEuropean put options. The former has a payoff

payoff(S, K) = max(ST(ω) − K, 0)

and the later has a payoff

payoff(S, K) = max(K − ST(ω), 0)

whereST is the price of the underlying asset at timeT and the constantK is the strike price.
Note that aEuropean Option is just a contract between a seller and a buyer so that the buyer has the

right to exercise the option ONLY at the expiration date. There is a contract between a seller and a buyer
so that the buyer has theright to exercise the option at ANY time up to expiration date and it is called an
American Option.

12.1. Practical Exercise
For a strike priceK = 50 andST for the range 40 to 60, plot the diagram forpayoff(S, K) againstST

using the technique mentioned earlier.

44

12.2. Binomial Options Pricing Model (BOPM) with a Single-Period
The binomial tree model (see https://en.wikipedia.org/wiki/Bino-

mial_options_pricing_model) is a kind of computational method for the valuation of options using
a "discrete-time" (lattice based) model of the varying price over time of the underlying financial instrument.

Binomial Options Pricing__
Time Underlying Asset Option Replicate__
t = 0 S C Δ S+ B
t = T Sd Su Cd Cu eDT Δ Sd + erT B = Cd eDT Δ Su + erT B = Cu__













whereCu = payoff(Su, K), Cd = payoff(Sd, K), D is the dividend yield rate of the underlying asset.
Solving the replicate, gives

Δ = e−DT(_______Cu − Cd

Su − Sd

), B = e−DT(___________SuCd − SdCu

Su − Sd

).

and after rearranging, we have

C = Δ S+ B = e−rT [(_________e(r−D)T − d

u − d
)Cu + (_________u − e(r−D)T

u − d
)Cd]

whereSu = uSandSd = dSand we can let

p = _________e(r−D)T − d

u − d
the option priceC becomes

C = e−rT [pCu + (1 − p)Cd] (OP)

Note that in Cox-Ross-Rubinstein binomial tree model, additional assumptions are made:u = eσ√ h and
d = e−σ√ h.
Example. Assuming the risk-free interest rate is 0.25 (annually compounding). For a non-divident paying
stock with a current stock price of 50. It is know that the price at the end of 12 months will either be 100 or
25, determine the value of the European call option to buy the stock at a strike 50.
Sample Solution:
import numpy as np
def payoff(S, K):

return np.max([S-K, 0])

T = 1 # 12 months = 1 year
S0 = 50
Su = 100
Sd = 25
K = 50
D = 0 # zero-dividend
r = np.log(1 + 0.25) # convert to force of interest
u = Su / S0
d = Sd / S0
p = (np.exp(r*T)-d)/(u-d)
C = np.exp(-r*T)*(p*payoff(Su,K) + (1-p)*payoff(Sd,K))
print(f"The value of the European call option is {C}")__________________________

45

12.3. Multi-Period Binomial Options Pricing Model
Let Su = uS0 andSd = dS0. The multi-period BOPM with a periodh such thatnh = T has the following

table.

Multi-Period Binomial Options Pricing___
Time Underlying Asset Option Option Replicate___

t = 0 S0 C0 Δ S0 + B
t = h Sd Su Cd Cu eDhΔ Sd + erhB = Cd eDhΔ Su + erhB = Cu

t = 2h Sdd Sud Suu Cdd Cud Cuu ...
t = nh = T Sdd...d Suu...u Cdd...d Cuu...u ...___



















whereSd...du...u = di− ju j wherei = 1, 2, . . . n.
Example. Consider anon-dividend-paying stock with a current stock price of 41. Suppose the risk-free force
of interest rate is 8%, try to generate the two-period binomial tree withu = 1. 2870 andd = 0. 8419 which can
be used to estimate the value of a 1-year European put option with a strike price 43.
Sample Solution: By searching a bit from Internet, I found
https://github.com/Brucewuzhang/Financial-Engineering-and-risk-manage-
ment-I-/. The Jupyter notebook has something useful but the implementation is for Cox-Ross-Rubinstein
binomial tree model
def binomial_tree(T,S0,u,d,n):

tree = np.zeros((n+1,n+1))
h = T/n
for i in range(n+1):

for j in range(i+1):
tree[i,j]=(d**(i-j))*(u**j)*S0

return tree

Given
T = 1 # 1-year
n = 2 # 2-period model
S0 = 41
D = 0 # non-dividend-paying
r = 0.08
K = 43
u = 1.2870
d = 0.8419
S_tree = binomial_tree(T,S0,u,d,n)
print(S_tree)
The output is as follows
[[41. 0. 0.]
[34.5179 52.767 0.]
[29.06062001 44.4245373 67.911129]]

To determine the price of the option, we need to calculate the payoff butthe following will not work:
np.max(K - S_tree, 0) # wrong

The correct answer that give us the correct payoff is
def payoff_put(S):

return np.max([K-S, 0])

f = np.vectorize(payoff_put) # Vectorise the payoff

For European put option, we ONLY need to calculate the payoff at timeT because this is when the con-
tract is exercised:
f(S_tree[n,:])
The pricing can be calculated using (OP) by going backwards which is beyond this course.__________________________

46

