
Introduction to Scientific Computing
Topic 1: Basic ‘Scalar’ Types and Programming Techniques

Lecturer: Dr Liew How Hui (liewhh@utar.edu.my)
October 2023

1. Course Learning Outcomes According to UTAR Syllabus
CO1 perform vector and matrix operation using computer software....................... Topic 1 and Topic 2 (Week 2)

CO2 plot graphs, curves, surfaces and contours using computer software Topic 4 (Week 3--5)

CO3 write program scripts for mathematical software.. Topic 3 (Week 1)

CO4 apply computer software to solve system of linear equations, eigenvalue problems or
matrix factorisation problems... Topic 5 (Weeks 5--6)

CO5 apply computer software to perform curve fitting on a set of data.................. Topic 6 (Week 7)

2. Course Arrangements and Assessments
* Week 1 and Week 2 (16 hours): Lectures and Practicals as usual.
** Week 1 Thursday (2/11): Meeting with IPSR, late to class for 10 min.
** Practical assessment (3%) during practical class?

* Week 3:
** Monday --- Deepavali replacement holiday. No class
** Wednesday ---Test (14+3=17%. Q1: CO2, Topic 2; Q2: Topic 1, Topic 3)
** Thursday --- Dr Goh YK continues with Python visualisation.
** Thursday --- Announcement(?) ofAssignment (17%)

* Week 4 and Week 5: Lecture and practical as usual by Dr Goh YK
** Dr Yong CK may start the class on Thursday

* Week 6:
** Practical Quiz 1 (8%) to be arranged by Dr Yong CK
** Submission of assignment report.
* Week 7:
** Monday --- Selangor Sultan Birthday Holiday. No class
** Practical Quiz 2 (8%) to be arranged by Dr Yong CK
* Total course hours = 48 hours

* In summary, Coursework (50%): Test (17%) + Assignment (17%) + Quizzes (16%)
* Final Exam (50%):
** Q1 (20%) and Q2 (20%) choose 1 only! --- CO2, Topic 1 and Topic 3
** Q3 (20%) --- CO1, Topic 2
** Q4 (20%) --- CO2, Topic 4
** Q5 (20%) --- CO4, Topic 5
** Q6 (20%) --- CO5, Topic 6

1

3. Introduction to ‘‘Scientific Computing’’

Scientific computing = numerical modelling and computation of (mostly) continuous models.

Continuous models:

* Calculus: for the formulation of ODEs, PDEs, integral equations, etc.;
* Ordinary Differential Equations (ODEs): from moving molecules to moving galaxies;
* Partial Differential Equations (PDEs): from the modelling of quantum particular, nanoparticles, climate

modelling (for weather prediction) to evolution of cosmology.

Applications:

* data analysis and modelling
* machine learning: building ‘intelligent model’ from data for marketing, information management and

business decision making
* Engineering modelling and calculations.

Objectives of scientific computing:

* Perform calculations correctly under proper discretisation and floating point arithmetic (i.e calculations
with rounding in finite decimal places)

* Perform calculations efficiently (i.e. getting the result in less steps and also fast)
* Perform calculations with limited memory

Reference Books
* Jaan Kiusalaas, Numerical Methods in Engineering with Python 3, 3rd edition, Cambridge University
Press 2013

* Hans Petter Langtangen, A Primer on Scientific Programming with Python, Springer 2016

2

4. Variables, Working Environments and Getting Help

Software for Scientific Computing: Anaconda Python

Variables are a combination starting with a capital or small letter follow by letters and/or numbers. It is used
to refer to values/data/objects in computer.

Variable1 = 1 + 2 + 3.5
variable2 = "A string" + "another string"*2
var_3 = sin # Small letter and
Var_3 = var_3(pi) # capital letter are different!!!

General Commands for Working Environments under Command Prompt:
* Start a session:python
* End a session:quit()
* Load a module or package or function:
from math import sin, cos, pi

* Reload a module:importlib.reload(modulename)
* Unload a package or module:del modulename
* Working directory in current session: The default directory for us to read and write a file.
import os; os.getcwd()

* Get computer time:
import time; time.localtime(); time.asctime()

* History for current session:history()
* List all variables in the current session:dir()
* Remove a variable:del variablename
* List the methods associated with an object:dir(variable_name)
* Check the type of a value / object:type(value)

Note that Python shell may not support session management in Windows. In Linux or MacOS, session man-
agement is automatic (i.e. the commands we keyed in are stored in .python_history, manual storing can be
achieved by using the readline library:

readline.write_history_file(’mypython.history’)

In Jupyter, one can use%hist -f my_history.py to store the commands in a session.

Getting Help:

* Online Help: Google/Bing search for ‘‘python help’’ or ‘‘python documentation’’.
* Local Help and Documentation: Python is popular because it has very good libraries for text processing,

scientific computing, etc. with help.

help(function_name)

can be used to find the description associated with function_name if it is defined. For example,
help(sin) to get the short info about sine function.

* Numpy provides its specific help:np.info(np.sin), np.lookfor(’create array’)

3

5. Basic Data Types: Numbers and Arithmetic Operations, Containers.

String: ’Single-quoted’, "Double-quoted", """Multiline
text""" , etc.

Integer: 1234567890, 0b101110, 0o1235670, 0x123456789ABCDEF0, etc.
Boolean: True, False
Floating-point reals: 1., .1, 1.23, 123e-5, 5.45e+3

List (square brackets): [1,2,"a",True]

Tuple (round brackets): (1,2,"a",True)

5.1. Characters, Strings, Texts
Usual characters: 0, 1, ..., 9, a, b, ..., z, A, ..., Z, punctuations, etc.

Control/Escape Characters: characters with backslash \, e.g. \n (new line), \t (tab), \%, etc.

String = an ordered collection of characters. It is normally expressed as quoted text.

Text = an ordered collection of strings usually separated by newlines. It is normally expressed as multiline
text.

Operations related to strings:
* "", ’’ : empty string
* len(s1) : get the length of the strings1
* s1 + s2 : joining strings
* s1 * n : repeat strings1 n times
* print(’a string’) : Show the string toterminal (new line will automatically be added)
* print(’no newline’, end=’’): turn off new line when printing
* .lower(), .upper(), .capitalize(): English/Latin related functions
* int(s1) : Convert a string in integer form to an integer
* int(s2,base) : Convert a string in base(<26) integer to an integer, e.g.i2=int("123", 4)
* float("123.456e-1") : convert a string to a floating point number

5.2. Booleans: True, False
Operations related to Booleans:
* not b1 : negation
* b1 and b2 : conjunction
* b1 or b2 : disjunction
* str(b1) : convert the Boolean value to a string
* print(b1) : print the Boolean value

5.3. Integers: 0, 1, -1, 2, -2, 3, -3, ...
Python integers can be very very large depending on memory. Numpy integers or other programming lan-
guages (e.g. C, C++) integers are usually finite size. E.g. 16-bit (−215 to 215 − 1) 32-bit (−231 to 231 − 1) or
64-bit (−263 to 263 − 1).

Arithmetic Operations, Bit Operations, Relational Operations, string-related operations related to integers:
* abs(x) : absolute value ofx
* -4 : negation
* 3 + 4 : addition
* 3 - 4 : subtraction
* 3 * 4 : multiplication
* 4 // 3 : integer division;4 % 3 : remainder
* 4 / 3 : floating-point number division
* 3 == 4, 3 != 4 : Check for (in)"equality"
* 3 < 4, 3 <= 4, 3 > 4, 3 >= 4: Check for ordering
* 9 & 12 : Bit-and
* 9 | 12 : Bit-or

4

* 9 ˆ 12 : Bit-xor
* 9 << 12 : Bit-shift-left
* 9 >> 12 : Bit-shift-right
* str(i1) : convert integer to decimal string
* bin(i1) : convert integer to binary string
* oct(i1) : convert integer to octal string
* hex(i1) : convert integer to hexadecimal string
* "%6d" % i1 : C-style formatting for integer
* "{:6d}".format(i1), f"{i1:6d}": C#-style formatting for integer
* bool(i1), int(b1): Convert integer value to and from Boolean value
* print(i1) : print the integer value

5.4. Floating Point Numbers: 1.3, .1, 15., 1_2345.67, 1e-2, 3.5e2, -0.1e2, ...
Python (Real) Floating Point Number = IEEE 64-bit format binary representation to approximate a real num-
ber using 1 sign bit, 11-bit exponent and 52-bit mantissa.

Arithmetic Operations, Relational Operations, string-related operations related to floating-point numbers:
* Special constants :from math import e, pi, tau, inf, nan,

import math (usemath.e, etc.)
* Real function library :from math import sin, cos, ...
* abs(-1e2) : absolute value
* -4.0 : negation
* 0.1 + 0.2 : addition
* 0.1 - 0.2 : subtraction
* 0.1 * 0.2 : multiplication
* 0.1 / 0.2 : division
* 0.1 ** 0.2 : powerxy = exp(ylnx).
* 0.1 + 0.2 == 0.3, 0.1 + 0.2 != 0.3: comparisons. Be careful with floating-point comparison,rounding

can cause unexpected result!
* 0.1 < 0.2, 0.1 <= 0.2, 0.3 > 0.4, 0.3 >= 0.4:

Check for ordering (be careful with rounding error issue)
* str(f1) : Convert a floating point value to a string
* "%.6f" % f1 : C-style formatting for floating point value
* "{:10.6f}".format(f1), f"{f1:10.6f}": C#-style formatting

5.5. Complex Numbers: 1.3+0j, .1, 15.-2j, 45.67j-1_23, 1e-2j, -3.5e2j, ...
Python Complex Floating Point Number = A pair of real floating point numbers with similar properties to
real floating point numbers.

* Representation:1+2j, 1.1e2-3.503j, complex(3,5)
* Operation: abs(), -x, +, -, *, /, **, .conjugate(), .imag,.real, ==, !=
* Complex function library:import cmath

5.6. Formatting Numbers: Use C-style or C#-style formats
Example. Express the fine structure constantα = 7. 297352568x10−3 in Python and print out its value in 6
decimal places and in scientific notation with 6 significant figures:

v=7.297352568e-3
print(f"{v:.6f}0v:.5e}") __________________________

5

5.7. List and Tuples
List and tuples arecollections / containers, i.e. they are used to store zero or multiple basic data types and/or
some complicated values/objects in Python.

Tuple
It is constructed using curved brackets (e.g.(1,1.0,"Helo")) or tuple() for programming construc-
tion.

There are virtually no methods associated with it.
* Use for value matching:x1,x2,x3 = 3,4,5

Note: The round brackets can be ignored when we are assigning values.
* Swapping values:x, y = y, x

List
It is normally constructed using square bracket:[1, 2, 3] or list() for programming construction.

The important operations associated with it areappend, clear, copy, insert, sort.
* For storing and the processing a list of values. E.g.

aString = input("Enter a list of integers (separated by a space): ")
anIntList = [int(i) for i in aString.split(" ")]

* A list is dynamic, so we can append or remove items from a list.
* We can assess list elements ofa usinga[i] wherei is an integer in an appropriate range. Note that

Python indexing starts from 0.
* A list of list of numbers can be used to represent matrix but it is slow for matrix arithmetic (so we usu-

ally work with Numpy arrays). E.g.

A = [[1,2],[3,4]] # represents a 2x2 matrix A
B = [[8,6,7,9],[3,8,5,6]] # represents a 2x4 matrix B
The matrix multiplication A x B is
C = [
[A[0][0]*B[0][0]+A[0][1]*B[1][0], A[0][0]*B[0][1]+A[0][1]*B[1][1],
A[0][0]*B[0][2]+A[0][1]*B[1][2], A[0][0]*B[0][3]+A[0][1]*B[1][3]],
[A[1][0]*B[0][0]+A[1][1]*B[1][0], A[1][0]*B[0][1]+A[1][1]*B[1][1],
A[1][0]*B[0][2]+A[1][1]*B[1][2], A[1][0]*B[0][3]+A[1][1]*B[1][3]]

]

* We can usesum(a) on list of numbersa to calculate the sum of the elements ina. For example
instead of writing

a = [1,3,5,7,9]
total = a[0] + a[1] + a[2] + a[3] + a[4]

we can write
a = [1,3,5,7,9]
total = sum(a)

6

6. Script Files
A script file can be opened usingnotepad and we can read the content of the file to be a Python program.

Running a script file (file ends with .py)
A script file can directly run in Python shell. Under Linux’s or MacOS’s shell, or Windows’cmd, one

needs to go to the working directory of the Python script and key in the following command followed by
‘‘enter’’ to run the script:

$ python my_python_script.py
$ python my_python_script.py > results.txt

Theresults.txt can be opened with word or insert into Word.

Jupyter notebook (file ends with .ipynb):

* It is a JSON file which need Jupyter notebook to read. Open using notepad shows us something differ-
ent from a Python script.

* It needs to be opened by a Browser and commands will be send to Python shell through Browser.

Comments
A commentstarts with #. It is a text line or paragraph inside a computer program with the intention of
explaining a portion of the program.

For a long / multi-paragraph comments, we usually treat them as (doc-)strings which open and end with
either""" or ’’’. We will put anr for ‘raw strings’ when we just want the \ to be a usual character rather
than escape character.

Example. (Scripts for Solving Middle-School Maths --- Final Exam Oct 2018, Q2(a), CO3) The area of a
triangleABCcan be calculated by the Heron’s formula

|ABC| = √ s(s− a)(s− b)(s− c), s = ________a + b + c

2
when the lengths of the three sides,a = BC, b = AC, c = AB of the triangleABCare given. The cosine rules
of the triangleABCare given below

a2 = b2 + c2 − 2bccosA

b2 = a2 + c2 − 2accosB

c2 = a2 + b2 − 2abcosC.
Given a trianglePQRwith lengthsPQ = 4. 5cm,PR= 3. 5cm andQR= 7cm. Write aprogram script to find
andprint the area of the trianglePQRand all the three anglesP, Q andR in degree.
Sample Solution:

Final Exam Oct 2018, Q2(a): A script to find triangle area and angles
a = 4.5
b = 3.5
c = 7.0
from math import sqrt, acos, degrees
s = (a+b+c)/2
Area = sqrt(s*(s-a)*(s-b)*(s-c))
print(f"The area of the triangle with a={a}, b={b}, c={c} is {Area}")
A = degrees(acos((b**2+c**2-a**2)/2/b/c))
B = degrees(acos((a**2+c**2-b**2)/2/a/c))
C = degrees(acos((a**2+b**2-c**2)/2/a/b))
print(f"Angle P = {C:8.4f} degree")
print(f"Angle Q = {B:8.4f} degree")
print(f"Angle R = {A:8.4f} degree")

Marks are awarded based on
* declaration of values for the three sides [1 mark]
* the appropriate import [1 mark]
* translation of mathematical formulae to computer instructions [6 marks]
* appropriate print commands [2 marks]

7

Example. (Theory of Interest SOA Exam FM Sample Questions Q1) Bruce deposits 100 into a bank
account. His account is credited interest at an annual nominal rate of interest of 4% convertible semiannually.

At the same time, Peter deposits 100 into a separate account. Peter’s account is credited interest at an
annual force of interest ofδ.

After 7.25 years, the value of each account is the same.
Calculateδ by writing a Python script.

Sample Solution:
IV_Bruce = 100
IV_Peter = 100
dur = 7.25 # duration in years
n = 2 # semiannual
ir = 0.04 # interest rate
FV_Bruce = IV_Bruce*(1+ir/n)**(n*dur)
FV_Peter(delta) = IV_Peter*exp(dur*delta) = FV_Bruce
from math import log
delta = log(FV_Bruce/IV_Peter)/dur
print("delta = ", delta)

Try to type in the above code and get the answer for delta. __________________________

Exercise on AI: Try to ask the above two questions toChaptGPT andWolfram Alpha and see if they can
generate Python scripts for you.

8

7. Functions
Functions are Python objects that usually takes inzero or more parameters / values anddo something and
may or may notreturn values.

A function can be abstractlly represented as

def f(x,y,z,...):
statement_1
statement_2
...
return value

For simple functions, it is possible to use one of the following form:

def f(x): return an_expression_of x ...
f = lambda x: an_expression_of x ...

Reasons for defining functions:
(a) Not to repeat long programming statements!
(b) Breaking down a computation process with reasonable names.

On point (a), we will illustrate with the calculations of mean square error in machine learning.

a = [6,8,9]; b = [10,5,4]
c = [14,32,39]
d = [21,12,19]
e = [34,20,16]
f = [35,43,21]
mse1 = ((a[0]-b[0])**2 + (a[1]-b[1])**2 + (a[2]-b[2])**2) / 3
mse2 = ((c[0]-d[0])**2 + (c[1]-d[1])**2 + (c[2]-d[2])**2) / 3
mse3 = ((e[0]-f[0])**2 + (e[1]-f[1])**2 + (e[2]-f[2])**2) / 3

If we replace the ‘repeating parts’ of the above program using function, we have something shorter:

def mean_sq_err3(x, y): # find mean square error of 3-element lists
return ((x[0]-y[0])**2 + (x[1]-y[1])**2 + (x[2]-y[2])**2) / 3

mse1 = mean_sq_err3(a, b)
mse2 = mean_sq_err3(c, d)
mse3 = mean_sq_err3(e, f)

On point (b), we will use the formula ofsample standard deviation for a list with 3 elements as an
illustrative example:

sd3(x) = √ __________________________(x1 − x
_
)2 + (x2 − x

_
)2 + (x3 − x

_
)2

3

This means that the calculation popular standard deviation can be broken down to the functions ‘square root’,
‘mean’, ‘sum’, etc.

def mean3(x): return (x[0] + x[1] + x[2])/3.0
def sd3(x): # popular standard deviation of 3-element list x

xbar = mean3(x)
total = sum([(x[0] - xbar)**2, (x[1] - xbar)**2, (x[2] - xbar)**2])
from math import sqrt
return sqrt(total/3)

Elementary built-in functions
Python only has very little built-in math functions for:
* numbers :abs(x), round(x), pow(x,n)
* many numbers :min(x1, x2, . . . , xn), max(x1, x2, . . . , xn)
* list of numbers :sum(x), sorted(x)
* list of booleans :all([True,True,True]), any([False,True,False])
We have to import math functions from themath module. Linear algebra and scientific functions are avail-
able from the Scipy’s modules.

9

Example. Write down the Python command to calculate sin10osin30osin50osin70o.
Solution: We must take note that numerical trigonometric functions only take radian, so we must convert
degree to radian:

from math import sin, radians
sin(radians(10))*sin(radians(30))*sin(radians(50))*sin(radians(70))

Common Practices in Scientific Computing
It is a common practise to transform the problem we have to astandard form and then apply appropriate
numerical methods to solve the problem.
* Single-variable equation in standard form:

F(x) = 0

* Finding area under a function f :

∫
b

a

| f (x)|dx

* Minimisation:

minxF(x)

Example. (Single-variable equation) Solve the following nonlinear equation using Python

sin(3x) = 2cos(x).

Sample Solution: Note that the equation is not is standard form. We can subtract both sides with the expres-
sion on the right to obtain

sin(3x) − 2cos(x) = 0.

It is in standard form and we can solving usingscipy.optimize.fsolve:
def F(x):

from math import sin, cos
return sin(3.0*x) - 2.0*cos(x)

import scipy.optimize
estimated_soln = scipy.optimize.fsolve(F,0.0)
print("The estimated solution is", estimated_soln)
Note that 0.0 is used as initial guess, other values may be OK or not OK. We have to try and see.__________________________

Example. (Solving Calculus Definite Integration) Create the Python commands to calculate

∫
10

0

xx/2dx+ ∫
10

0

0. 9xdx.

It is not in standard form, we can choose to integrate the left expression by hand and the right expression
using Calculus knowledge:

def f(x): return x**(x/2)

import scipy.integrate
estimate, error = scipy.integrate.quad(f, 0, 10)
answer = estimate + 0.9*(10**2/2.0)

Alternatively, we can write the integral into standard form since the lower and upper boundaries are the same.

∫
10

0

xx/2dx+ 0. 9x

dx.

We then write a Python script for the calculation:

10

def f(x): return x**(x/2) + 0.9*x

import scipy.integrate
answer = scipy.integrate.quad(f, 0, 10)

The answer is (61882.036798971014, 0.00028864395398611373).__________________________

7.1. Multiple Inputs and Outputs
Functions can take more than one input and may return multiple values.

Multiple inputs: data1, data2
def method(data1, data2):

... perform calculations ...
return (part1, part2)

Example. In maths, we can have functions with multiple variables. For example,

f (x, y) = sin(xy)

It be expressed in Python as a function with multiple inputs:

from math import sin
def f(x,y): return sin(x*y)

In maths, we can also have functions with multiput outputs. For example, a function which represents an
ellipse:

g(t) = (3cos(t), 2sin(t))

It be expressed in Python as a function with multiple outputs:

from math import sin, cos
def g(t): return (3*cos(t), 2*sin(t))

7.2. Variable Arguments
When a function or a method of the same name has different number of inputs, it is said to have variable
arguments. For example, the summation can have ‘any number of inputs’:

def total(a,b): return a+b
def total(a,b,c): return a+b+c

No one likes to write functions like this by repeat copy and paste but in some programming languages, this is
what they implement. Fortunately, Python provides thevariable length argument lists and together with
the for loop which we will learn allows us to implement a function with any number of inputs nicely:

def total(first, *rest):
t = first
for item in rest: t += item
return t

Thevariable length argument lists is used in the Pythonprint function as follows:

print("Adding", 1, "and", 2, "gives us", 1+2)

However, there are functions with ‘sort of fixed’ number of inputs but less values can be passed to the
function by assumingdefault values:

def afunction(par1, par2=some_default_value):
...

There is also a syntax to use thekeyword-ed argument lists (which uses the Dictionary data structure):

11

def bfunction(farg, **kwargs):
...
for key in kwargs:

do something to the value kwargs[key]
...

...

Theafunction andbfunction are used in more advanced programming context.

7.3. Positional-only parameters (Specific to Python)
According to https://www.python.org/dev/peps/pep-0570/, a function definition may look like:

def f(pos1, pos2, /, pos_or_kwd, *, kwd1, kwd2):
----------- ---------- ----------
| | |
| Positional or keyword |
| - Keyword only
-- Positional only

where/ and* are optional. If used, these symbols indicate the kind of parameter by how the arguments may
be passed to the function: positional-only, positional-or-keyword, and keyword-only. Keyword parameters are
also referred to as named parameters.

Note thatthis feature is only available in Python 3.8 and above.

def f(a,b,/,c,d,*,e,f): print(a,b,c,d,e,f)
f(10,20,30,40,50,f=60)
f(10,20,30,d=40,e=50,f=60)

12

8. Input-Output and File Types
An input refers to anything that computer ‘‘gets’’ data and store into computer memory. So ‘‘keyboard’’ is
an input, ‘‘mouse’’ is an input, ‘‘tablet’’ is an input, a ‘‘computer file’’ on our desktop is an input, etc.

An output refers to anything that computer ‘‘displays’’ or ‘‘stores’’ data from computer memory. So a
‘‘computer monitor’’ is an output, a ‘‘printer’’ is an output, a ‘‘computer file’’ on our desktop is an output,
etc.

To illustrate a simple input-output between ‘‘keyboard’’ and ‘‘screen’’ (is ‘‘teletype terminal’’ a more
precise term?), we will play with the following Python commands:

width = 70
pre = "0*2 + "*"*width + "0" + " "*(width-2) + "*0"
post = "*0" + " "*(width-2) + "*0 + "*"*width
greet = "0nter your name: "
name = input(greet); print(pre+("Hello "+name).center(width-2)+post)

The commandinput in line 5 reads from ‘‘keyboard’’, displays what you type on ‘‘screen’’ and stores
the string into the variablename.

However, there is a major problem with ‘‘keyboard’’ and ‘‘screen’’ --- the data which is keyed in and
displayed on ‘‘screen’’ will disappeared once we turn off the computer. A ‘‘computer file’’ is something that
will remain in computer even after we have turned off a computer and is hence the best choice for storing and
retrieving data related to scientific computing.

Similar to humans speaking many different languages, computer files also ‘‘storing’’ many different file
formats. All file formats can be categorised into two file types ---text file type andbinary file type. The
basic operations associated with a file are ‘‘open’’, ‘‘read’’, ‘‘write’’ and ‘‘close’’. The ‘‘save’’ function is
the same as opening file for writing and after writing data into it, close it.

Open text file for reading: fp=open("f", "rt")
Read text file: x=fp.readlines()
Open text file for writing: fp=open("g", "wt")
Write text file: fp.writelines(x)
Open binary file for reading: fp=open("f", "rb")
Read binary file: M=fp.read()
Open binary file for writing: fp=open("f", "wb")
Write binary file: fp.write(x)
Close file: fp.close()

13

9. If-else-then or Selective Statements
The ability for a computer program to ‘‘select’’ or ‘‘choose’’ is crucial because it allows us to imple-

ment ‘‘decision’’. In Python, ‘‘selection’’ is achieved by the various forms of the ‘‘if’’ selective statements.
A list of selective statements are given below.

If only:

if condition:
do_something_block

If-else statement:

if condition:
do_something_block

else:
do_otherthing_block

One-line form (ternary operator):

res = true_result if condition else false_result

Multiple conditions:

if condition1:
do_task1_block

elif condition2:
do_task2_block

elif condition3:
do_task3_block

else:
do_default_task_block

Example. (If-else statement and One-line form) Consider a very simple function:

H(x) =

 0, x < 0

1, x ≥ 0

Multiline form:

def H(x):
if x < 0.0:

return 0.0
else:

return 1.0

One-line form:

def H(x): return 0.0 if x < 0.0 else 1.0

Example. (Final Exam Sept 2012, Q3(a) --- Multiple-conditions) Consider the quadratic equation
ax2 + bx+ c = 0. The solution to this equation is

x = _____________−b ± √ b2 − 4ac

2a
.

The term ‘‘b2 − 4ac’’ is called the discriminate of the equation. The nature of the discriminate determines
the number and type of the roots as follows:

14

__
discriminate value number and type of roots__

positive 2 distinct real roots
negative 2 complex roots

zero 1 repeated root__

Write a Python program to solve for the roots of a quadratic equation. The program should:
* read the input values ofa, b, andc;
* calculate the roots; and
* display the outputs, including a statement about the type of the roots, i.e. ‘‘There are 2 distinct real

roots.’’
The output should be displayed as below.

This program solves for the roots of a quadratic equation of
the form axˆ2 + bx + c = 0.

input the value of the coefficient "a": 1
input the value of the coefficient "b": 2
input the value of the coefficient "c": 3
the discriminate is -8.000000
the equation has two complex roots
x1 = -1.000000 + 1.414214 i
x2 = -1.000000 - 1.414214 i

Sample Solution using Multi-condition statement:

from math import sqrt
print("""This program solves for the roots of a quadratic equation of
the form axˆ2 + bx + c = 0.""")

a = float(input(’input the value of the coefficient "a": ’))
b = float(input(’input the value of the coefficient "b": ’))
c = float(input(’input the value of the coefficient "c": ’))
discriminate = b**2 - 4*a*c
print("the discriminate is %.6f" % (discriminate))
if discriminate > 0:

print("the equation has two distinct real roots")
sq = sqrt(discriminate)
print("x1 = {x:.6f}".format(x=(-b+sq)/2.0/a))
print("x2 = {x:.6f}".format(x=(-b-sq)/2.0/a))

elif discriminate < 0:
print("the equation has two complex roots")
impart = sqrt(-discriminate)/2.0/a
repart = -b/2.0/a
print("x1 = {re:.6f} + {im:.6f} i".format(re=repart, im=impart))
print("x2 = {re:.6f} - {im:.6f} i".format(re=repart, im=impart))

else:
print("the equation has one repeated root")
print("x1 = x2 = {x:.6f}".format(x=-b/2.0/a))

Example. Given a cubic equation

a0x3 + a1x2 + a2x + a3 = 0 => x3 + ax2 + bx+ c = 0.

Let x = t − ___b
3a and

 t = x + ___b

3a
,

p = _______3ac− b2

3a2
,

q = ________________2b3 − 9abc+ 27a2d

27a3
,

h = ___p3

27
+ ___q2

4
.

* If h = 0, the cubic has multiple roots

15

* p = 0 (together withh = 0) = >q = 0 = > x1 = x2 = x3 = − ___b
3a

* p ≠ 0 = > t1 = ___3q
p , t2 = t3 = − ___3q

2p = > xk = tk − ___b
3a , k = 1, 2, 3.

* If h > 0 andp, q are real, the cubic has two complex roots and one real root based on the Cardano’s for-
mulae:

t1 = 3 √ − __q

2
+ √ ___q2

4
+ ___p3

27
+ 3 √ − __q

2
− √ ___q2

4
+ ___p3

27

t2 = ________−1 + √ 3i

2
3 √ − __q

2
+ √ ___q2

4
+ ___p3

27
+ ________−1 − √ 3i

2
3 √ − __q

2
− √ ___q2

4
+ ___p3

27

t3 = ________−1 − √ 3i

2
3 √ − __q

2
+ √ ___q2

4
+ ___p3

27
+ ________−1 + √ 3i

2
3 √ − __q

2
− √ ___q2

4
+ ___p3

27
.

* If h < 0, the cubic has 3 distinct roots based on the trigonometric formulae:

tk = 2 √ − __p

3
cos

 __1

3
arccos

 ___3q

2p √ ___−3

p
 − ________2π(k − 1)

3

for k = 1, 2, 3.

Sample Implementation of Cubic Equation Solver:
def cubic(poly):

if len(poly) == 4:
a, b, c, d = poly

else:
print("Coefficients", poly, "are not cubic")
return None

if a == 0: return quadratic([b,c,d])

https://en.wikipedia.org/wiki/Cubic_equation
p = ((3*c / a) - (b**2 / a**2)) / 3
q = ((2*b**3 / a**3) - (9*b*c / a**2) + (27*d / a)) / 27
h is the discriminant of the depressed cubic t3 + tp + q = 0
where t = x + b/(3a)
h = (q**2 / 4) + (p**3 / 27)

#
Assuming all the coefficents are real
h < 0: the cubic has 3 real roots
h = 0: the cubic has multiple root
h > 0: the cubic has 1 real root and 2 complex conjugate roots
#
from math import sqrt, sin, cos, acos, pi
b_3a = b / (3*a)

if p == q == h == 0: # all 3 roots are real and equal
return (-b_3a,)*3

Cardano’s formula (https://en.wikipedia.org/wiki/Cubic_equation)
if h > 0: # only 1 root is real

e = -(q/2) + sqrt(h)
s = -((-e)**(1/3)) if e < 0 else e**(1/3)
e = -(q/2) - sqrt(h)
u = -((-e)**(1/3)) if e < 0 else e**(1/3)

t1 = s + u
t2 = complex(-1, sqrt(3))/2*s + complex(-1,-sqrt(3))/2*u
t3 = complex(-1,-sqrt(3))/2*s + complex(-1, sqrt(3))/2*u

16

Trigonometric formula (https://en.wikipedia.org/wiki/Cubic_equation)
if h <= 0: # all 3 roots are real

e = sqrt(-p/3)
t1 = 2*e*cos(acos((3*q)/(2*p)/e)/3)
t2 = 2*e*cos(acos((3*q)/(2*p)/e)/3 - 2*pi/3)
t3 = 2*e*cos(acos((3*q)/(2*p)/e)/3 - 4*pi/3)

x1, x2, x3 = t1 - b_3a, t2 - b_3a, t3 - b_3a
x1 = complex(0,x1.imag) if abs(x1.real) < 1e-16 else x1
x2 = complex(0,x2.imag) if abs(x2.real) < 1e-16 else x2
x3 = complex(0,x3.imag) if abs(x3.real) < 1e-16 else x3
x1 = x1 if abs(x1.imag) > 1e-16 else x1.real
x2 = x2 if abs(x2.imag) > 1e-16 else x2.real
x3 = x3 if abs(x3.imag) > 1e-16 else x3.real

return x1, x2, x3 __________________________

17

10. Loops
Loops are applied to solve problems with repetition, for example, if there are many mathematical problems
involving the calling of a function multiple times:

f(1) + f(2) + f(3) + ... + f(1000)

It is unwise to copy and paste 1000 times!
Python provides several kinds of ‘‘loops’’--- for loop, while loop and recursion to solve ‘looping’ prob-

lem.

10.1. For Loop

for variable in somerange:
block

Thesomerange is usually (supposen is nonnegative)
range(start,end,step): start, start+step, ..., before ‘end-step’
range(20,1,-3): 20, 17, 14, 11, 8, 5, 2
range(1,10): 1, 2, 3, 4, 5, 6, 7, 8, 9
range(n) : 0,1,2,...,n-1 (Python starts from 0 by default)

Example. (Final Exam Sept 2016, Q3(a) with modification) Consider the alternating series

S= ∑
k

n=1

(−1)n+1 _________1

nln(n + 1)
.

Write a Python expression to calculateS for k = 100.
Sample Solution: In this example, we can see that we have

f (n) = _________(−1)n+1

nln(n + 1)

and we need to calculate

f(1) + f(2) + f(3) + ... + f(100)

Two possible Python implementations are illustrated:

from math import log
def f(n): return (-1)**(n+1)/n/log(n+1)

def S_1(k): # This is similar to C, C++, C#, etc.
total = 0.0
for n in range(1,k+1):

total += f(n)

def S_2(k): # This is specific to Python
return sum(f(n) for n in range(1,k+1))

print("S(100) =", S_1(100))

Example. (Final Exam Sept 2014, Q2(c) with modification) Write a Python code to calculate the following
summation

3(2 + 1) + 4(3 + 2 + 1) + 5(4 + 3 + 2 + 1) + 6(5 +. . .+1) +. . . + 1000(999 +. . .+1).

Sample Solution: If we try to match the pattern, we espect

f (n) = n((n − 1) + (n − 2) + . . . + 1)

The summation in the question can be expressed as

f (3) + f (4) + . . . + f (1000)

18

def f(n):
return n*sum(range(1,n)) # n*(1 + ... + n-1)

total = sum(f(i) for i in range(3,1001))

Example. (Shannon Entropy) Suppose we want to transmit English text and assume the 26 characters plus a
space has equal probability, theentropy under binary transmission system is

H(single character) = log2(27) = log2(
____1

1/27
) = −log2(

___1

27
)

Here the 1/27 is the probability of one character. When we are transmitting multiple characters or words of
different probabilitiespi , the entropy is theaverage of entropy:

H(S) = −∑
i

(pi × log2 pi).

The implementation in Python is

def H(S):
from math import log2
H1 = lambda p: 0.0 if x==0 else -p*log2(p)
return sum(H1(p) for p in S)

For loop is used in programming for many things apart from the mathematical summation demonstrated
earlier.
Example. (Final Exam Sept 2015, Q4(b)--- Weighted Mean in Statistics) A weighted mean is used when
there are varying weights for the data values. For a data set given byx = x1,x2,x3,. . . ,xn and corresponding
weights for eachxi , w = w1,w2,w3,. . . ,wn, the weighted mean is

∑

n

i=1

xiwi

∑
n

i=1

wi

.

Write a function that will receive two vectors as input arguments: one for the data values and one for the
weights and will return the weighted mean.
Sample Solution using For Loop:

def weigthed_mean(data, weights):
numer = 0.0
denom = 0.0
for i in range(len(weights)):

numer = numer + weights[i]*data[i]
for i in range(len(weights)):

denom = denom + weights[i]
return numer/denom

Example. (Final Exam Oct 2019 Q1(b) --- Speed up computation)
https://en.wikipedia.org/wiki/Horner’s_method is a polynomial evaluation method expressed by

p(x) = a0 + x(a1 + x(a2 + x(a3 + . . . + x(an−1 + xan)))).

Implement the Horner’s method as a Python functionhorner(coeffs,x) which takes in the coefficients
a0,a1,. . . ,an of the polynomialp(x) ascoeffs and a valuex and then returns the value of the polynomial
p(x) atx.
Sample Solution:

19

https://rosettacode.org/wiki/Horner’s_rule_for_polynomial_evaluation
def horner(x,coeffs):

deg = len(coeffs)
y = coeffs[deg-1]
for j in range(N-2,-1,-1):

y = coeffs[j] + x*y
return y

Example. (Estimating the errors for equations) Let us investigate the nonlinear equation mentioned earlier

sin(3x) = 2cos(x)

using for loop over the range 0<=x<=π.
Sample Solution:
from math import sin, cos, pi
def f(x): return sin(3*x) - 2*cos(x)

N = 10 # trying 10 points over [0,π]
for i in range(N):

x = i*pi/N
print("x={x:.4f}, y={y: 12.8f}".format(x=x, y = f(x)))__________________________

Example. (Discrete Mathematics, Tutorial 1, Q1(a)(iv)) Generate the truth table of the statement
∼ s → (pΛ(qVr)) wherep, q, r, s are atomic statements.
Sample Solution:

def v(val): return "T" if val else "F"
def statement1(p,q,r,s):

return s or (p and (q or r))
print("p | q | r | s | statement")
print("--+---+---+---+-----------")
for p in [True, False]:

for q in [True, False]:
for r in [True, False]:

for s in [True, False]:
val = statement1(p,q,r,s)
print(f"{v(p)} | {v(q)} | {v(r)} | {v(s)} | {v(val)}")

Example. (Final Exam Oct 2022 Q1(b)) Write a Python script without importing any modules but only
using appropriate data representation and for loops to generate a distance matrix for the3-D points Pi ,
i = 1, 2, 3, 4, 5 in Table 1.1.

Point x y z______________________
P1 2 3 5
P2 2 5 3
P3 6 4 2
P4 5 3 4
P5 3 5 4______________________

Table 1.1: 3-D points.
Define a function to calculate the Euclidean distance between two 3-D points in your Python script and then
go through all the pairs of the pointsP1 to P4 to generate a distance table in Table 1.2.

0.000000 2.828427 5.099020 3.162278 2.449490
2.828427 0.000000 4.242641 3.741657 1.414214
5.099020 4.242641 0.000000 2.449490 3.741657
3.162278 3.741657 2.449490 0.000000 2.828427
2.449490 1.414214 3.741657 2.828427 0.000000

Table 1.2: Distance matrix of the 3-D points.
Sample Solution using Double For-loop:

20

points = [(2,3,5), (2,5,3), (6,4,2), (5,3,4), (3,5,4)]
print(points) # [2 marks]

def euclid_dist(pt1, pt2): # [1 mark]
return ((pt2[0]-pt1[0])**2 + (pt2[1]-pt1[1])**2

+ (pt2[2]-pt1[2])**2)**0.5 # [2 marks]

for pt1 in points: # [1 mark]
for pt2 in points: # [1 mark]

dist = euclid_dist(pt1, pt2)
print(f"{dist:10.6f} ", end="") # same row

print() # Print a new line # [1 mark]

Example. (Final Exam Oct 2019 Q1(c)) In the late 1960’s, book publishers realised that they needed a uni-
form way to identify all the different books that were being published throughout the world. In 1970 they
came up with the International Standard Book Number system. Every book, including new editions of older
books, was to be given a special number, called an ISBN, which is not given to any other book. The check
digit x10 of a 10-digit ISBNx1x2

. . . x9x10 is given by the formula:

x10 = (11− (10x1 + 9x2 + 8x3 + 7x4 + 6x5 + 5x6 + 4x7 + 3x8 + 2x9 mod11)) mod11.

If x10 = 10, it is represented as ‘X’. Write a Pythonprogram script to implement the functioncheck-
digit10(isbn) which takes an ISBN of the formx1x2

. . . x9 as a string of length 9 and returns a digitx10

as a string of length 1.
* Correct definition of function [1 mark]
* Proper use of for loop [1 mark]
* Demonstrate correct translation of mathematical formula to computer program [3 marks]
Sample Solution:

def check_digit_10(isbn):
isbn = list(isbn.replace(’-’,’’).replace(’?’,’’))
assert len(isbn) == 9
x10 = 0
for i in range(len(isbn)):

x10 += (10-i)*int(isbn[i])
x10 = (11-x10) % 11
return str(x10) if x10 != 10 else ’X’

print(check_digit_10(’0-8044-2957’))
print(check_digit_10(’0-85131-041’))

Example. In the late 1960’s, book publishers realised that they needed a uniform way to identify all the dif-
ferent books that were being published throughout the world. In 1970 they came up with theInternational
Standard Book Number system. Every book, including new editions of older books, was to be given a special
number, called an ISBN, which is not given to any other book. ISBN is changed from a 10-digit system to
13-digit system since 1 January 2007. The check digit of the ISBN-13 is given by the formula (see
https://en.wikipedia.org/wiki/International_Standard_Book_Number)

x13 =

 r, r < 10,

0, r = 10

where

r = (10− (x1 + 3x2 + x3 + 3x4 + x5 + 3x6 + x7 + 3x8 + x9 + 3x10 + x11 + 3x12) mod 10).

Provide two implementations of theISBN-13 check digit as a Python functioncheck(isbn) which takes
in an array of digits and return a check digit, one implementation which uses for loop and one implementa-
tion which uses Numpy array. Find the check digit for978-0-306-40615-?.
Sample Solution using For Loop:

21

http://code.activestate.com/recipes/498104-isbn-13-converter/
def check_digit_13(isbn):

isbn = list(isbn.replace(’-’,’’).replace(’?’,’’))
assert len(isbn) == 12
sum = 0
for i in range(len(isbn)):

c = int(isbn[i])
w = 3 if i % 2 else 1
sum += w * c

r = 10 - (sum % 10)
if r == 10: return ’0’
else: return str(r)

Example. (Magic Square in Combinatorics) Amagic square is an arrangement of distinct numbers (i.e.,
each number is used once), usually integers, in a square grid, where the numbers in each row, and in each col-
umn, and the numbers in the main and secondary diagonals, all add up to the same number, called the “magic
constant”. A magic square has the same number of rows as it has columns, and in conventional math nota-
tion, n stands for the number of rows (and columns) it has and is called the ‘order of the magic square’. Thus,
a magic square of ordern containsn2 numbers.

A magic square can be denoted as a list ofn list with n numbers. Write a Python function tocheck if
an object is a magic square and then find an algorithm to generate magic squares from the Internet. Can we
ask AI to write such a script for us?
Sample Solution: The following Python function can be used to check a magic square encoded in the form
of a list of lists (rows).

https://www.w3resource.com/python-exercises/math/python-math-exercise-20.php
def is_magic_square(obj):

n = len(obj)
sums_from_every_row = [sum(row) for row in obj]
sums_from_every_col = []
for j in range(n):

col = [obj[irow][j] for irow in range(n)]
sums_from_every_col.append(sum(col))

#Two diagonals
diag1 = diag2 = 0
for i in range(n):

diag1 += obj[i][i]
diag2 += obj[i][n-i-1]

return diag1==diag2 and \
all([sums_from_every_row[i]==diag1 for i in range(n)]) and \
all([sums_from_every_col[i]==diag1 for i in range(n)])

m=[[7, 12, 1, 14], [2, 13, 8, 11], [16, 3, 10, 5], [9, 6, 15, 4]]
print(is_magic_square(m))
print(is_magic_square([[2, 7, 6], [9, 5, 1], [4, 3, 8]]))
print(is_magic_square([[2, 7, 6], [9, 5, 1], [4, 3, 7]]))

The followingmagic square generation algorithm is popular in the Internet.
https://www.codesansar.com/python-programming-examples/generate-magic-square.htm
https://scipython.com/book/chapter-6-numpy/examples/creating-a-magic-square/
def magic_sqr_method1(n):

if n % 2 == 0: return [] # Only works with odd n
magic_square = []
for i in range(n):

row = [0]*n
magic_square.append(row)

cnt, i, j = 1, 0, n//2
while cnt <= n**2:

magic_square[i][j] = cnt
cnt += 1
newi, newj = (i-1)%n, (j+1)%n
if magic_square[newi][newj]:

22

i += 1
else:

i, j = newi, newj
return magic_square __________________________

Example. Consider the heart disease data from
https://bookdown.org/brianmachut/uofm_analytics_r_hw_sol_2/logreg.html by analysing the relation
between X=fast_food_spend and Y=heart_disease.

One mathematical model for fitting the data is called logistic regression model:

P(Y = 1|X = x) = _____________________________________1

1 + exp(−(−10. 651330614 + 0. 002199567x))

Another mathematical model for fitting the data is the3-layer neural network is shown below:

−0.89442

2.41215

3.
03

89
8

fast_food_spend

0.948070
.5

6
2
4
9

0.82437

0.7
5329

0
.8

4
2
9
6

1.48813

−0.8
0157

−1.12404

heart_disease

−
1
.5

5
8
6
1

4
.2

0
7
7
9

2.75066

1

0
.7

0
5
4
9

0
.7

0
4
6
9

1

−
1
.5

6
6
5
6

1

Error: 160.952352 Steps: 25

 u1 = _________________________________1

1 + exp(−(2. 75065899 + 3. 03897930x))

u2 = _________________________________1

1 + exp(−(4. 20779155 + 2. 41214781x))

u3 = __________________________________1

1 + exp(−(−1. 55861321 − 0. 89442128x))

v1 = ___1

1 + exp(−(0. 70469462 + 1. 48813242u1 + 0. 75329235u2 + 0. 56249011u3))

v2 = ___1

1 + exp(−(0. 70548672 + 0. 84296074u1 + 0. 82436993u2 + 0. 94807080u3))

y = __1

1 + exp(−(−1. 56656128 − 1. 12404432v1 − 0. 80157036v2))

By using the knowledge you have learned so far, write a Python script to read heart_data.csv and
express the logistic regression model as Python function. Is it easy to implement the neural network model in
Python?
Sample Python Script Solution:

23

fp = open("heart_data.csv")
colnames = fp.readline().strip().split(",")
data = fp.readlines()
p = len(colnames)
We analyse using column 1 (heart_disease, output) and column 3 (fast_food_spend, input)
col1 = []
col3 = []
for row in data:

items = row.strip().split(",")
col1.append(float(items[0]))
col3.append(float(items[2]))

from matplotlib.pylab import plt
plt.plot(col3,col1,"*")
plt.show()

Expressing logistic regression model as Python functions
def log_reg(x):

from math import exp
return 1.0/(1.0+exp(-(-10.651330614 + 0.002199567*x)))

Interrupting a Loop: break, continue
Thebreak statement is used to stop a loop early.

Application of break statement: If the error of a calculation is accurate enough, break out from the loop
to improve accuracy. E.g. bisection method, newton method, ...

Thecontinue statement is used to skip some statements in a loop and continue with the next counter.

10.2. While Loop
In contrast to ‘‘for loop’’, we seldom use ‘‘while loop’’. It is used when we don’t know when to stop. A
‘‘while loop’’ statement may often be augmented withbreak statement to jump out of the loop.

while condition1:
block
if condition2: break
other block (won’t be executed if condition2 is true)

Example. (Final Exam Sept 2012, Q1(b) with modification) Write a Python script to generate a sequence of
random number and determine the number of attempt it takes to obtain the first random number that is in
between 0.5 and 0.55.
Sample Solution using While Loop:

import numpy as np
count = 0
while True:

anum = np.random.rand()
count = count + 1
if 0.5 < anum < 0.55:

print("Number of attempt taken =", count)
break # exit while loop

Example. (Final Exam Sept 2013, Q5(b) with modification) Write a Python script to determine the greatest
value ofn that can be used in the sum

2 + 4 + 6 + 8 + . . . + 2n

and get a value of less than 200.
Solution: If we use Python’srange andsum function, we can solve it easily with awhile loop as follows:

24

thesum = n = 0
while thesum < 200:

n = n+1
thesum = sum(range(2,2*n+1,2))
greatest_n = n-1

print(’The greatest value of n such that 2+4+...+2n<200 is’, greatest_n)

However, this is very inefficient because in line 4, we are summing numbers again and again. A more effi-
cient Python program is as follows:

thesum = n = 0
while thesum < 200:

n = n+1
thesum += 2*n
greatest_n = n-1

print(’The greatest value of n such that 2+4+...+2n<200 is’, greatest_n)

The greatest value ofn such that 2 + 4 +. . .+2n < 200 is 13. __________________________

Example. (Final Exam Sept 2017, Q3(c) with modification) Write a Python script to calculate the following
summation not exceeding 100. Script must give total sum and the last element as output.

__4

5
+ __5

6
+ __6

7
+ __7

8
+ __8

9
+. . . .

Sample Solution:

n = 0
thesum = nextterm = 0.0
while thesum < 100.0:

nextterm = (n+4.0)/(n+5.0)
thesum += nextterm
n = n+1

print(’Total sum is’, thesum-nextterm)
print("and the last element at output is", n+3, "/", n+4)

Total sum is 99.82862321536608 and the last element at output is 107/108.__________________________

10.3. Recursion
Recursion is a theoretical way to dolooping.

Recursion stands for ‘‘the act of a function calling itself to do things’’. This is a technique for estimating the
time or space complexity of computer algorithm related to trees and graphs.

Example. The mathematical definition of Fibonacci numbers are given by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, n = 2, 3, . . .

The recursive function implemetation of Fibonacci is shown below.

def fib(N):
"""
return the N-th Fibonacci number.
"""
if N<=0:

return 0
elif N==1:

return 1
else :

return fib(N-1) + fib(N-2) # can use up a lot memory

25

Example. Consider a variation of the recurrence relation found in 2017 West Australia Applications Exam:

Tn+1 = 4Tn − 3, T1 = 2.

Implement this recurrence relation as a Python functionT(n). In your implementation, returnNone if n is
less than 1.Demonstrate the workings of the function by writing a Python script to displayT(1), T(2),
...,T(10). Write down the value ofT(4).
Sample Solution:

def T(n):
if n < 1:

return None
elif n == 1:

return 2
else:

return 4*T(n-1)-3

for n in range(1,11):
print(f"T({n}) = {T(n)}")

Example. (Final Exam Sept 2015, Q2(d)) The Taylor series of a cosine function atx = 0 is

cosx = 1 − ___x2

2!
+ ___x4

4!
− ___x6

6!
+. . . .

Write a recursive function that computes and approximation of cosine.
Sample Solution using Recursion:

def cosine_approx(n,x):
if n<=0:

return 1.0
elif n%2==1: # n is odd

return cosine_approx(n-1,x)
else: # n is even

highest_order_term = 1.0
for i in range(2,n+1):

highest_order_term *= x/i
if (n/2)%2 == 1: highest_order_term *= -1
return highest_order_term + cosine_approx(n-2,x)

Recursion is a method to perform calculation for programming languages which does not have for loop
or while loop.

26

