I ntroduction to Scientific Computing
Topic 1: Basic ‘Scalar’ Types and Programming Techniques

Lecturer: Dr Liew How Hui [i ewhh@t ar . edu. my)
October 2023

1. CourseLearning Outcomes Accordingto UTAR Syllabus

CO1 perform vector and matrix operation using computer software....................... Topic 1 and Topic 2 (Week 2
CO2 plot graphs, curves, surfaces and contours using computer software Topic 4 (Week 3--5)
CO3 write program scripts for mathematical software................ccccooiiiiiiiieeeennnns Topic 3 (Week 1)
CO4 apply computer software to solve system of linear equations, eigenvalue problems or
matrix factorisation ProbleMS............oovii i Topic 5 (Weeks 5--6)
CO5 apply computer software to perform curve fitting on a set of data.................. Topic 6 (Week 7)

2. Course Arrangements and Assessments

* Week 1 and Week 2 (16 hours): Lectures and Practicals as usual.
** Week 1 Thursday (2/11): Meeting with IPSR, late to class for 10 min.
** Practical assessment (3%) during practical class?

* Week 3:

** Monday --- Deepavali replacement holiday. No class

** \Wednesday ---Test (14+3=17%. Q1: CO2, Topic 2; Q2: Topic 1, Topic 3)
** Thursday --- Dr Goh YK continues with Python visualisation.

** Thursday --- Announcement(?) &ssignment (17%)

* Week 4 and Week 5: Lecture and practical as usual by Dr Goh YK
** Dr Yong CK may start the class on Thursday

* Week 6:

** Practical Quiz 1 (8%) to be arranged by Dr Yong CK

** Submission of assignment report.

* Week 7:

** Monday --- Selangor Sultan Birthday Holiday. No class
** Practical Quiz 2 (8%) to be arranged by Dr Yong CK

* Total course hours = 48 hours

* In summary, Coursework (50%): Test (17%) + Assignment (17%) + Quizzes (16%)
* Final Exam (50%):

** Q1 (20%) and Q2 (20%) choose 1 only! --- CO2, Topic 1 and Topic 3

** Q3 (20%) --- CO1, Topic 2

** Q4 (20%) --- CO2, Topic 4

** Q5 (20%) --- CO4, Topic 5

** Q6 (20%) --- CO5, Topic 6

3. Introduction to ‘‘ Scientific Computing’’

Scientific computing = numerical modelling and computation of (mostly) continuous models.

Continuous models:

* Calculus: for the formulation of ODEs, PDEs, integral equations, etc.;
* QOrdinary Differential Equations (ODESs): from moving molecules to moving galaxies;

* Partial Differential Equations (PDEs): from the modelling of quantum particular, nanopatrticles, climate
modelling (for weather prediction) to evolution of cosmology.

Applications:

* data analysis and modelling

* machine learning: building ‘intelligent model’ from data for marketing, information management and
business decision making

* Engineering modelling and calculations.

Objectives of scientific computing:

* Perform calculations correctly under proper discretisation and floating point arithmetic (i.e calculations
with rounding in finite decimal places)

* Perform calculations efficiently (i.e. getting the result in less steps and also fast)

* Perform calculations with limited memory

Reference Books

* Jaan Kiusalaas, Numerical Methods in Engineering with Python 3, 3rd edition, Cambridge University
Press 2013

* Hans Petter Langtangen, A Primer on Scientific Programming with Python, Springer 2016

4. Variables, Working Environments and Getting Help

Software for Scientific Computing: Anaconda Python

Variables are a combination starting with a capital or small letter follow by letters and/or numbers. Itis used
to refer to values/data/objects in computer.

Variablel =1 + 2 + 3.5

variable2 = "A string" + "another string"*2

var_3 = sin # Small letter and

Var_3 = var_3(pi) # capital letter are different!!

General Commands for Working Environments under Command Prompt:

* Start a sessiomyt hon
*End a sessionqui t ()
* Load a module or package or function:
frommath inmport sin, cos, pi
* Reload a modulei nportli b. rel oad(nodul enane)
* Unload a package or moduldel nodul enane
* Working directory in current session: The default directory for us to read and write a file.
i nport o0s; o0s.getcwd()
* Get computer time:
inmport time; tine.localtine(); tine.asctime()
* History for current sessiorhi st ory()
* List all variables in the current sessioahi r ()
* Remove a variabledel vari abl enane
* List the methods associated with an objatitr (vari abl e_nane)
* Check the type of a value / objedtype(val ue)

Note that Python shell may not support session management in Windows. In Linux or MacOS, session man-
agement is automatic (i.e. the commands we keyed in are stored in .python_history, manual storing can be
achieved by using the readline library:

readline.wite history file(’ mypython. history’)
In Jupyter, one can ugdi st -f ny_hi story. py to store the commands in a session.

Getting Help:
* Online Help: Google/Bing search for “python help” or “python documentation”.

* Local Help and Documentation: Python is popular because it has very good libraries for text processing,
scientific computing, etc. with help.

hel p(functi on_nane)

can be used to find the description associated with function_name if it is defined. For example,
help(sin) to get the short info about sine function.

* Numpy provides its specific helpnp. i nfo(np.sin), np.lookfor(’'create array’)

5. Basic Data Types: Numbersand Arithmetic Operations, Containers.

String: " Si ngl e-quoted’, "Doubl e-quoted", """Mul tiline
text""" ,etc.

Integer: 1234567890, 00101110, 001235670, 0x123456789ABCDEFO, etc.

Boolean: True, Fal se

Floating-pointreals: 1., .1, 1.23, 123e-5, 5.45e+3
List (square brackets): [1, 2, "a", True]
Tuple (round brackets): (1, 2, "a", Tr ue)

5.1. Characters, Strings, Texts
Usual characters: 0, 1, ..., 9, a, b, ..., z, A, ..., Z, punctuations, etc.

Control/Escape Characters: characters with backslash \, e.g. \n (new line), \t (tab), \%, etc.
String = an ordered collection of characters. Itis normally expressed as quoted text.

Text = an ordered collection of strings usually separated by newlines. It is normally expressed as multiline
text.

Operations related to strings:

x oy

: empty string

*len(sl) : get the length of the stringl

*sl + s2 : joining strings

*sl * n > repeat stringg 1 n times

*print('a string’) : Show the string taerminal (new line will automatically be added)

*print(’no newine , end=""):turn off new line when printing
*.lower(),.upper(),.capitalize():English/Latin related functions

*int(sl) : Convert a string in integer form to an integer

*int(s2, base) : Convert a string in base(<26) integer to an integer,ie2gsi nt (" 123", 4)
*float("123. 456e-1") :converta string to a floating point number

5.2. Booleans: True, False
Operations related to Booleans:

*not bl : negation

*pbl and b2 :conjunction

*pbl or b2 . disjunction

*str(bl) : convert the Boolean value to a string

*print(bl) :printthe Boolean value

53. Integers: 0, 1,-1,2,-2, 3, -3, ...

Python integers can be very very large depending on memory. Numpy integers or other programming lan-
guages (e.g. C, C++) integers are usually finite size. E.g. 16-Bif go 2*° — 1) 32-bit (-2%! to 23! - 1) or

64-bit (2% to 23 - 1).

Arithmetic Operations, Bit Operations, Relational Operations, strmdated operations related to integers:

* abs(x) : absolute value of

*-4 : hegation

*3 + 4 . addition

*3 - 4 . subtraction

*3 * 4 : multiplication

*4 [] 3 . integer division;4 % 3 : remainder
*4 | 3 : floating-point number division
*3 == 4,3 '=4 : Check for (in)"equality”

*3 < 4,3 <= 4,3 > 4,3 >= 4:Check for ordering
*9 & 12 : Bit-and

*9 | 12 : Bit-or

*9 ~ 12 : Bit-xor

*9 << 12 : Bit-shift-left

*9 >> 12 : Bit-shift-right

*str(il) : convert integer to decimal string
*bin(il) : convert integer to binary string

*oct (il) : convert integer to octal string

* hex(i 1) : convert integer to hexadecimal string
*"oed" %il : C-gtyle formatting for integer

*"{.6d}". format (i 1) f"{i1: 6d}": C#syleformatting for integer
* bool (i 1) i nt (bl) : Convert integer value to and from Boolean value
*print(il) : print the integer value

5.4. Floating Point Numbers: 1.3, .1, 15., 1 2345.67, 1le-2, 3.5e2, -0.1€2, ...

Python (Real) Floating Point Number = IEEE 64-bit format binary representation to approximate a real num-
ber using 1 sign bit, 11-bit exponent and 52-bit mantissa.

Arithmetic Operations, Relational Operations, string-related operations related to floating-point numbers:
* Special constants ffrommath inport e, pi, tau, inf, nan,

i mport mat h (usemat h. e, etc.)
* Real function library from math inport sin, cos,

* abs(-1e2) : absolute value
*-4.0 ' negation

*0.1+0.2 : addition

*0.1-0.2 : subtraction
*0.1*0.2 : multiplication
*0.1/0.2 : division

*0.1**0.2 : powerx’ = expfyinx).

*0.1+0.2==0.3,0.1 +0.2!=0.3: comparisons. Be careful with floating-point companisanding
can cause unexpected result!

*0.1<0.2,0.1 <= 0.2,0.3 >0.4,0.3 >=0.4:
Check for ordering (be careful with rounding error issue)

*str(fl) : Convert a floating point value to a string

*"06f" %fl : C-style formatting for floating point value

*"{:10.6f}".format (f1),f"{f1:10.6f}": C#styleformatting

5.5. Complex Numbers: 1.3+0j, .1, 15.-2], 45.67j-1_23, 1e-2j, -3.562j, ...

Python Complex Floating Point Number = A pair of real floating point numbers with similar properties to
real floating point numbers.

* Representationl+2j , 1. 1e2- 3. 503j ,complex(3 5)
* Operation: abs(), -x, +, -, *, /, **, .conjugate(), .imagr eal , ==, I=
* Complex function libraryi rrport cmat h

5.6. Formatting Numbers: Use C-style or C#-style formats

Example. Express the fine structure constant 7.29735256810°2 in Python and print out its value in 6
decimal places and in scientific notation with 6 significant figures:

v=7.297352568e- 3

print(f"{v:.6f}0v:.5e}")

5.7. List and Tuples

List and tuples areollections/ containers, i.e. they are used to store zero or multiple basic data types and/or
some complicated values/objects in Python.

Tuple
It is constructed using curved brackets (€.4, 1. 0, "Hel 0")) ort upl e() for programming construc

tion.

List

There are virtually no methods associated with it.

Use for value matchinggl, x2, x3 = 3,4,5
Note: The round brackets can be ignored when we are assigning values.

Swapping valuesx, y =Yy, X

It is normally constructed using square brackptt, 2, 3] orli st () for programming construction.

The important operations associated with itappend, cl ear, copy, i nsert,sort.
For storing and the processing a list of values. E.g.

aString = input("Enter a list of integers (separated by a space): ")
anlntList = [int(i) for i in aString.split(" ")]

A list is dynamic, so we can append or remove items from a list.

We can assess list elementsafusinga[i] wherei is an integer in an appropriate range. Note that
Python indexing starts from 0.

A list of list of numbers can be used to represent matrix but it is slow for matrix arithmetic (so we usu-
ally work with Numpy arrays). E.g.

[[1,2],[3,4]] # represents a 2x2 matrix A
[[8,6,7,9],[3,8,5,6]] # represents a 2x4 matrix B
he matrix multiplication Ax Bis

OHm>
=N

A[0] [0] *B[O]
A[0] [0] *B[O]
[A[1][0]*B[O]
A[1][0]*B[O]

]+A[O][1]*B[1][0], A[O][O]*B[O][1]+A[O][1]*B[1][1],
]+A[O] [1]*B[1][2], A[O][O]*B[O][3]+A[O][1]*B[1][3]],
1+A[1][1]*B[1][0], A[1][O]*B[O][1]+A[1][1]*B[1][1],
1+A[1][1]*B[1][2], A[1][0]*B[O][3]+A[1][1]*B[1][3]]

NONO

We can usesun{a) on list of numbersa to calculate the sum of the elementsdn For example
instead of writing

a=1_123,57,9]

total = a[0] + a[l1] + a[2] + a[3] + a[4]
we can write

a=1_123,57,9]

total = sun(a)

6. Script Files
A script file can be opened usingtepad and we can read the content of the file to be a Python program.

Running a script file (file ends with . py)

A script file can directly run in Python shell. Under Linux’s or MacOS's shell, or Windawai, one
needs to go to the working directory of the Python script and key in the following command followed by
“enter” to run the script:

$ python ny_python_script. py
$ python ny_python_script.py > results.txt

Ther esul ts. t xt can be opened with word or insert into Word.

Jupyter notebook (file endswith . i pynb):

* |tis a JSON file which need Jupyter notebook to read. Open using notepad shows us something differ-
ent from a Python script.

* It needs to be opened by a Browser and commands will be send to Python shell through Browser.

Comments

A commentstarts with #. It is a text line or paragraph inside a computer program with the intention of
explaining a portion of the program.

For a long / multi-paragraph comments, we usually treat them as (doc-)strings which open and end with
either""" or’ '’ . We will put anr for ‘raw strings’ when we just want the \ to be a usual character rather
than escape character.

Example. (Scripts for Solving Middle-School Maths --- Final Exam Oct 2018, Q2(a), CO3) The area of a
triangle ABC can be calculated by the Heron’s formula

a+b+c

|IABC =VSE-a)(S-b)(s-¢c), s= —

when the lengths of the three sidass BC, b = AC, ¢ = AB of the triangleABC are given. The cosine rules
of the triangleABC are given below

a% = b? + ¢ - 2bccosA

b? = a® + ¢ - 2accoB

c? = a® + b? - 2abcoC.
Given a triangle?QRwith lengthsPQ = 4. 5cm,PR= 3. 5cm andQR= 7cm. Write gprogram script to find
andprint the area of the triangleQRand all the three anglé3 Q andRin degree.

Sample Solution:
Final Exam Cct 2018, @(a): A script to find triangle area and angl es
a=4.5
b =235
c=17.0
frommath inport sqrt, acos, degrees
s = (atb+c)/2
Area = sqrt(s*(s-a)*(s-b)*(s-c))
print(f"The area of the triangle with a={a}, b={b}, c={c} is {Area}")
A = degrees(acos((b**2+c**2-a**2)/2/b/c))
B = degrees(acos((a**2+c**2-b**2)/2/alc))
C = degrees(acos((a**2+b**2-c**2)/ 2/ al b))

print(f"Angle P = {C 8. 4f} degree")
print(f"Angle Q = {B:8.4f} degree")
print(f"Angle R = {A:8.4f} degree")

Marks are awarded based on

* declaration of values for the three sides [1 mark]
* the appropriate import [1 mark]

* translation of mathematical formulae to computer instructions [6 marks]
* appropriate print commands [2 marks]

7

Example. (Theory of Interest SOA Exam FM Sample Questions Q1) Bruce deposits 100 into a bank
account. His account is credited interest at an annual nominal rate of interest of 4% convertible semiannually.

At the same time, Peter deposits 100 into a separate account. Peter’'s account is credited interest at an
annual force of interest @.

After 7.25 years, the value of each account is the same.
Calculated by writing a Python script.

Sample Solution:

IV _Bruce = 100

IV _Peter = 100

dur 7.25 # duration in years

n 2 # sem annual

ir 0.04 # interest rate

FV_Bruce = |V _Bruce*(1+ir/n)**(n*dur)
FV_Peter(delta) = IV _Peter*exp(dur*delta) = FV _Bruce
frommath inport |og

delta = | og(FV_Bruce/lV_Peter)/dur
print("delta =", delta)

Try to type in the above code and get the answer for delta.

Exerciseon Al: Try to ask the above two questions@haptGPT andWolfram Alpha and see if they can
generate Python scripts for you.

7. Functions

Functions are Python objects that usually takeséno or more parameter s/ values anddo something and
may or may noteturn values.

A function can be abstractlly represented as

def f(x,y,z,...):
statenment 1
statement _2

}éiurn val ue
For simple functions, it is possible to use one of the following form:
def f(x): return an_expression_of x ..
f = lanmbda x: an_expression_of x ..
Reasons for defining functions:
(&) Not to repeat long programming statements!
(b) Breaking down a computation process with reasonable names.
On point (a), we will illustrate with the calculations of mean square error in machine learning.

a=1[6,8,9]; b =[10,5, 4]

c = [14, 32,39]

d =1[21,12,19]

e = [34, 20, 16]

f = [35, 43, 21]

nsel = ((a[0]-b[0])**2 + (a[1]-b[1])**2 + (a[2]-b[2])**2) / 3
nee2 = ((c[0]-d[0])**2 + (c[1]-d[1])**2 + (c[2]-d[2])**2) / 3
mse3 = ((e[0]-f[0])**2 + (e[1]-f[1])**2 + (e[2]-f[2])**2) / 3

If we replace the ‘repeating parts’ of the above program using function, we have something shorter:

def mean_sq_err3(x, y): # find nmean square error of 3-elenent lists
return ((x[0]-y[O])**2 + (x[1]-y[1])**2 + (x[2]-y[2])**2) / 3

msel = nean_sqg_err3(a, b)
nmse2 = nean_sq_err3(c, d)
nse3 = nean_sqg_err3(e, f)

On point (b), we will use the formula osample standard deviation for a list with 3 elements as an
illustrative example:

3

This means that the calculation popular standard deviation can be broken down to the functions ‘square root’,
‘mean’, ‘sum’, etc.

def mean3(x): return (x[0] + x[1] + x[2])/3.0
def sd3(x): # popul ar standard devi ati on of 3-elenent list x
xbar = mean3(x)
total = sum([(x[0] - xbar)**2, (x[1] - xbar)**2, (x[2] - xbar)**2])
frommth inport sqrt
return sqrt(total/3)

e = v)2 —)2
sd3(x):-\/ KX 7 (G- X+ (%=X

Elementary built-in functions

Python only has very little buHdin math functions for:

* numbers abs(x),round(x), pow x, n)

*many numbers m n(X, Xy, -+ -, X)), MBX(X7, X5, -+ -, Xp)

* list of numbers :sum(x), sort ed(x)

* list of booleans al | ([True, True, True]),any([Fal se, True, Fal se])

We have to import math functions from tinet h module. Linear algebra and scientific functions are avail-
able from the Scipy’s modules.

Example. Write down the Python command to calculate sitsi@3(®sin5¢°sin70 .

Solution: We must take note that numerical trigopnometric functions only take radian, so we must convert
degree to radian:

frommth inport sin, radians
sin(radi ans(10)) *si n(radi ans(30)) *si n(radi ans(50)) *si n(radi ans(70))

Common Practicesin Scientific Computing

It is a common practise to transform the problem we have tes@ndard form and then apply appropriate
numerical methods to solve the problem.

* Single-variable equation in standard form:

F(x)=0
* Finding area under afunction f:
b
] | (X)|dx
a
* Minimisation:
min,F(x)

Example. (Single-variable equation) Solve the following nonlinear equation using Python
sin(3x) = 2cosk).

Sample Solution: Note that the equation is not is standard form. We can subtract both sides with the expres-
sion on the right to obtain

sin(3x) — 2cosk) = 0.

Itis in standard form and we can solving usewi py. opti ni ze. f sol ve:
def F(x):

frommath inport sin, cos

return sin(3.0*x) - 2.0*cos(x)

i mport scipy.optinize

estimated_soln = scipy.optinize.fsol ve(F, 0.0)

print("The estimated solution is", estimted_soln)

Note that 0.0 is used as initial guess, other values may be OK or not OK. We have to try and see.

Example. (Solving Calculus Definite Integration) Create the Python commands to calculate
10 2 10
x¥edx+ 1 0.9xdx
IO J'0

It is not in standard form, we can choose to integrate the left expression by hand and the right expression
using Calculus knowledge:
def f(x): return x**(x/2)

i mport scipy.integrate
estimate, error = scipy.integrate.quad(f, 0, 10)
answer = estimate + 0.9*(10**2/2.0)

Alternatively, we can write the integral into standard form since the lower and upper boundaries are the same.
10] O
i X2dx + 0. xpx.

N 0
We then write a Python script for the calculation:

10

def f(x): return x**(x/2) + 0.9*x

i mport scipy.integrate
answer = scipy.integrate.quad(f, 0, 10)

The answer is (61882.036798971014, 0.00028864395398611373).

7.1. Multiple Inputsand Outputs
Functions can take more than one input and may return multiple values.

Multiple inputs: datal, data2
def nethod(datal, data2):
performcal cul ations ...
return (partl, part2)

Example. In maths, we can have functions with multiple variables. For example,
f(x,y) = sin(xy)
It be expressed in Python as a function with multiple inputs:

frommath inport sin
def f(x,y): return sin(x*y)

In maths, we can also have functions with multiput outputs. For example, a function which represents an
ellipse:

g(t) = (3cos(), 2sint))
It be expressed in Python as a function with multiple outputs:

frommath inport sin, cos
def g(t): return (3*cos(t), 2*sin(t))

7.2. Variable Arguments

When a function or a method of the same name has different number of inputs, it is said to have variable
arguments. For example, the summation can have ‘any number of inputs’:

def total (a,b): return atb
def total(a,b,c): return a+b+c

No one likes to write functions like this by repeat copy and paste but in some programming languages, this is
what they implement. Fortunately, Python provides ¥haeiable length argument lists and together with
the for loop which we will learn allows us to implement a function with any number of inputs nicely:

def total (first, *rest):
t = first
for iteminrest: t += item
return t

Thevariable length argument listsis used in the Pythopr i nt function as follows:
print("Adding", 1, "and", 2, "gives us", 1+2)

However, there are functions with ‘sort of fixed’ number of inputs but less values can be passed to the
function by assumindefault values:
def afunction(parl, par2=sone_default_ val ue):

There is also a syntax to use tkeyword-ed argument lists (which uses the Dictionary data structure):

11

def bfunction(farg, **kwargs):

fb? key in kwargs:
do sonething to the val ue kwargs[key]

Theaf uncti on andbf uncti on are used in more advanced programming context.

7.3. Positional-only parameter s (Specific to Python)
According to https://www.python.org/dépeps/pep-0570/, a function definition may look like:

def f(posl, pos2, /, pos_or_kwd, *, kwdl, kwd2):

| Posi tional or keyword |
[- Keyword only
-- Positional only

where/ and* are optional. If used, these symbols indicate the kind of parameter by how the arguments may
be passed to the function: positional-only, positional-or-keyword, and keyword-only. Keyword parameters are
also referred to as named parameters.

Note thatthis featureis only available in Python 3.8 and above.

def f(a,b,/,c,d,*, e, f): print(a,b,c,d, e, f)
f (10, 20, 30, 40, 50, f =60)
f (10, 20, 30, d=40, e=50, f =60)

12

8. Input-Output and File Types
An input refers to anything that computer “gets” data and store into computer memory. So “keyboard” is
an input, “mouse” is an input, “tablet” is an input, a “computer file” on our desktop is an input, etc.

An output refers to anything that computer “displays” or “stores” data from computer memory. So a
“‘computer monitor” is an output, a “printer” is an output, a “computer file” on our desktop is an output,
etc.

To illustrate a simple input-output between “keyboard” and “screen” (is “teletype terminal” a more
precise term?), we will play with the following Python commands:

width = 70

pre = "0*2 + "*"*width + "0" + " "*(width-2) + "*0"

post = "*0" + " "*(width-2) + "*0 + "*"*width

greet = "Onter your nane: "

name = input(greet); print(pre+("Hello "+nane).center(w dth-2)+post)

The command nput in line 5 reads from “keyboard”, displays what you type on “screen” and stores
the string into the variableane.

However, there is a major problem with “keyboard” and *screen” --- the data which is keyed in and
displayed on “screen” will disappeared once we turn off the computer. A “computer file” is something that
will remain in computer even after we have turned off a computer and is hence the best choice for storing and
retrieving data related to scientific computing.

Similar to humans speaking many different languages, computer files also “storing” many different file
formats. All file formats can be categorised into two file typestext file type andbinary file type. The
basic operations associated with a file are “open”, “read”, “write” and “close”. The “save” function is
the same as opening file for writing and after writing data into it, close it.

Open text file for reading: f p=open("f", "rt")
Read text file: x=f p. readl i nes()
Open text file for writing: f p=open("g", "w")
Write text file: fp.witelines(x)
Open binary file for reading: f p=open("f", "rb")
Read binary file: Mef p. read()

Open binary file for writing: f p=open("f", "wbh")
Write binary file: fp.wite(x)

Close file: fp.close()

13

9. If-ese-then or Selective Statements

The ability for a computer program to “select” or “choose” is crucial because it allows us to imple-
ment “decision”. In Python, “selection” is achieved by the various forms of the “if” selective statements.
A list of selective statements are given below.

If only:

if condition:
do_sonet hi ng_bl ock

| f-else statement:

if condition:

do_sonet hi ng_bl ock
el se:

do_ot hert hi ng_bl ock

One-lineform (ternary operator):

res = true_result if condition ese fal se_result

Multiple conditions:

if conditionl:
do_taskl bl ock
elif condition2:
do_t ask2_bl ock
elif conditiong3:
do_task3_ bl ock
el se:
do_default _task bl ock

Example. (If-else statement and One-line form) Consider a very simple function:

0o, x<0

Hx) = x=0

Multiline form:

def H(x):
if x < 0.0:
return 0.0
el se:
return 1.0

One-line form:
def H(x): return 0.0 if x < 0.0 else 1.0

Example. (Final Exam Sept 2012, Q3(a) --- Multiple-conditions) Consider the quadratic equation
ax? + bx+c=0. The solution to this equation is
« = —-b + Vb7 - 4ac
- 2a '

The term ‘b? — 4ac’ is called the discriminate of the equation. The nature of the discriminate determines
the number and type of the roots as follows:

14

positive 2 distinct real roots
negative 2 complex roots []
O Zero 1repeatedroot [J

Fdiscriminate value number and type of rogts
U
O

Write a Python program to solve for the roots of a quadratic equation. The program should:
* read the input values d, b, andc;
* calculate the roots; and

* display the outputs, including a statement about the type of the roots, i.e. “There are 2 distinct real
roots.”

The output should be displayed as below.

This program solves for the roots of a quadratic equation of
the formax™2 + bx + ¢ = 0.

i nput the value of the coefficient "a": 1

i nput the value of the coefficient "b": 2

i nput the value of the coefficient "c": 3

the discrimnate is -8.000000

the equation has two conplex roots

x1 = -1.000000 + 1.414214

x2 = -1.000000 - 1.414214

Sample Solution using Multi-condition statement:

frommth inport sqrt
print("""This programsolves for the roots of a quadratic equation of
the formax™2 + bx + ¢ = 0.""")
float (input(’input the value of the coefficient "a": '))
float(input('input the value of the coefficient "b": "))
float(input('input the value of the coefficient "c": "))
discrimnate = b**2 - 4*a*c
print("the discrimnate is %6f" % (discrimnate))
if discrimnate > O:
print("the equation has two distinct real roots")
sq = sqrt(discrimnate)
print("x1 = {x:.6f}".format(x=(-b+sq)/2.0/a))
print("x2 = {x:.6f}".format(x=(-b-sq)/2.0/a))
elif discrinmnate < O:
print("the equation has two conpl ex roots")
inmpart = sqrt(-discrimnate)/2.0/a
repart = -b/2.0/a
print("x1 = {re:.6f} + {im.6f} i".format(re=repart, inrinpart))
print("x2 = {re:.6f} - {im.6f} i".format(re=repart, inrinpart))
el se:
print("the equation has one repeated root")
print("x1 = x2 = {x:.6f}".format (x=-b/2.0/a))

O T
I n

Example. Given a cubic equation

apxi+a X +ax+a; =0 => x*+ax’+bx+c=0.

+ Db
Letx=t ?ﬁand

b
t=Xx+ —,

a
_ 3ac-b?

P 3a2
2b® — 9abc+ 27a%d
gred, '
= p_+ q_

27 4

I A

* If h=0, the cubic has multiple roots
15

*

*

*

*

If h> 0 andp, g are real, the cubic has two complex roots and one real root based on the Cardano’s for

p=0(togetherwitm:O)=>q=0=>x1:xzzxgz—g%

39 -3 k=12 3.

p#0=>t=Fhtp=to=-d=>x =12

mulae:

2 3 2 3
_3 p 3 _q Y p
'\/ >V 77577 '\/ > '\/ 7 57
—1 +73| “1+V3i, q p3 -1- V3| —1-V3i, 02
'\/ 7 '\/ '\/
—1 73| —1-V3i, 0?2 p3 —1+\/3| 3 — g 02
s '\/ '\/ 2 '\/ 2 '\/ 7 +27

If h< 0, the cubic has 3 distinct roots based on the trigonometric formulae:

tk—Z-V —co%arccogq _3D MEJ fork=1,2,3.
3

0

Sample Implementation of Cubic Equation Solver:
def cubic(poly):

if len(poly) == 4:
a, b, ¢, d=poly

el se:
print("Coefficients", poly, "are not cubic")
return None

if a==20: return quadratic([b,c,d])

((3*c / a) - (b**2 / a**2)) / 3

((2*b**3 / a**3) - (9*b*c / a**2) + (27*d / a)) | 27
h is the discrimnant of the depressed cubic t3+tp+g=0
where t = x + b/ (3a)
= (g**2 / 4) + (p**3 /| 27)

https://en.w ki pedi a. or g/ wi ki / Cubi c_equati on

SHHFOT H

uming all the coefficents are real

sum
< 0: the cubic has 3 real roots
= 0: the cubic has multiple root
> 0: the cubic has 1 real root and 2 conpl ex conjugate roots

:T:Tjg

frommath inport sqrt, sin, cos, acos, pi
b 3a =b/ (3*a)

if p==q==h==0: # all 3 roots are real and equal
return (-b_3a,)*3

Cardano’s fornula (https://en.w ki pedi a. org/w ki / Cubi c_equati on)
if h>0: #only 1 root is real

e =-(q9g/2) + sqgrt(h)

s = -((-e)**(1/3)) if e <0 else e**(1/3)

e =-(q9g/2) - sqrt(h)

u=-((-e)**(1/3)) if e <0 else e**(1/3)

tl =s +u

t2 = conplex(-1, sqrt(3))/2*s + conplex(-1,-sqrt(3))/2*u
t3 = conplex(-1,-sqrt(3))/2*s + conplex(-1, sqrt(3))/2*u

16

Trigononetric formula (https://en.w ki pedi a. org/w ki / Cubi c_equati on)
if h<=0: # all 3 roots are rea

e = sqgrt(-p/3)

tl = 2*e*cos(acos((3*q)/(2*p)/e)/3)

t2 = 2*e*cos(acos((3*q)/(2*p)/e)/3 - 2*pi/3)
t3 = 2*e*cos(acos((3*q)/(2*p)/e)/3 - 4*pi/3)

X1, x2, x3 =t1 - b_3a, t2 - b 3a, t3 - b _3a

x1 = conplex(0,x1l.imag) if abs(xl.real) < le-16 else x1
x2 = conpl ex(0,x2.imag) if abs(x2.real) < le-16 el se x2
x3 = conpl ex(0,x3.imag) if abs(x3.real) < le-16 el se x3
x1 = x1 if abs(xl.imag) > le-16 el se x1.real
x2 = x2 if abs(x2.imag) > le-16 el se x2.real
x3 = x3 if abs(x3.imag) > le-16 el se x3.real

return x1, x2, x3

17

10. Loops

Loops are applied to solve problems with repetition, for example, if there are many mathematical problems
involving the calling of a function multiple times:

f(1) + f(2) + f(3) + ... + f(1000)
It is unwise to copy and paste 1000 times!

Python provides several kinds of “loops-- for loop, while loop and recursion to solve ‘looping’ prob-
lem.

10.1. For Loop

for variable in sonerange:
bl ock

Thesoner ange is usually (suppose is nonnegative)
range(start, end,step): start, start+step, ..., before 'end-step’
range(20,1,-3): 20, 17, 14, 11, 8, 5, 2
range(1,10): 1, 2, 3, 4, 5 6, 7, 8, 9
range(n) :0,1,2,...,n-1 (Python starts fromO by default)

Example. (Final Exam Sept 2016, Q3(a) with modification) Consider the alternating series
k 1
S=y (-ny™
n=1

nin(n+1)"
Write a Python expression to calcul&dor k = 100.
Sample Solution: In this example, we can see that we have
-1 n+1
f(n) = ﬁ
and we need to calculate
f(1) + f(2) + f(3) + ... + £(100)
Two possible Python implementations are illustrated:
frommath inport |og
def f(n): return (-1)**(n+1)/n/l og(n+1)

def S 1(k): # This is simlar to C, C++, C#, etc.
total = 0.0
for nin range(1, k+1):
total += f(n)

def S 2(k): # This is specific to Python
return sun(f(n) for n in range(l, k+1))

print("S(100) =", S 1(100))

Example. (Final Exam Sept 2014, Q2(c) with modification) Write a Python code to calculate the following
summation

32+1)+4(3+2+1)+5(@4+3+2+1)+6(5+...+1)+ . +1000(999 +...+1).
Sample Solution: If we try to match the pattern, we espect
fm=n((h-1)+MN-2)+ - ---+1)
The summation in the question can be expressed as
f(3)+f(4)+ - - - + f(1000)

18

def f(n):
return n*sum(range(1l,n)) # n*(1 + ... + n-1)

total = sum(f(i) for i in range(3,1001))

Example. (Shannon Entropy) Suppose we want to transmit English text and assume the 26 characters plus a
space has equal probability, thetropy under binary transmission system is
1

H(single charactey = log,(27) = Iogz(m) = —Iogz(21_7)

Here the 1/27 is the probability of one character. When we are transmitting multiple characters or words of
different probabilitiesp,, the entropy is theverage of entropy:

H(S = -3 (p; xlog,p)).

The implementation in Python is

def H(S):
frommth inport |og2
HlL = lanbda p: 0.0 if x==0 el se -p*l og2(p)
return sum(HL(p) for pin S

For loop is used in programming for many things apart from the mathematical summation demonstrated
earlier.
Example. (Final Exam Sept 2015, Q4(B)- Weighted Mean in Statistics) A weighted mean is used when
there are varying weights for the data values. For a data set giverrly; X, X5 .. ., X, and corresponding
weights for eachx;, w = w; W, Ws ... ,w,,, the weighted mean is

n
Z X; Wi
=1 X

2\

Write a function that will receive two vectors as input arguments: one for the data values and one for the
weights and will return the weighted mean.

Sample Solution using For L oop:
def wei gthed _nean(data, weights):

numer = 0.0
denom = 0.0

for i in range(len(weights)):
nuner = nuner + weights[i]*data[i]
for i in range(len(weights)):

denom = denom + wei ghts[i]
return nuner/denom

Example. (Final Exam Oct 2019 Q1(b) Speed up computation)
https://en.wikipedia.org/wiki/Horner's_method is a polynomial evaluation method expressed by
P(X) = ag + x(a; + X(@z + X(@z + + - - + X(@y4 + X&,)))).

Implement the Horner's method as a Python functiem ner (coef f s, x) which takes in the coefficients
aa, ...,a, of the polynomialp(x) ascoef f s and a valuex and then returns the value of the polynomial
p(x) atx.

Sample Solution:

19

https://rosettacode. org/wi ki/Horner’s rul e for_pol ynom al _eval uation
def horner(x, coeffs):
deg = len(coeffs)
y = coeffs[deg-1]
for j inrange(N-2,-1,-1):
y = coeffs[j] + x*y
returny

Example. (Estimating the errors for equations) Let us investigate the nonlinear equation mentioned earlier
sin(3x) = 2cosk)

using for loop over the range 0<=x#=

Sample Solution:

frompmath inport sin, cos, pi
def f(x): return sin(3*x) - 2*cos(x)

N =10 # trying 10 points over [0, 1]
for i in range(N):
X = i*pi/N
print("x={x:.4f}, y={y: 12.8f}".format(x=x, y = f(x)))

Example. (Discrete Mathematics, Tutorial 1, Q1(a)(iv)) Generate the truth table of the statement
[k - P/NgVr) wherep, g, r, sare atomic statements.

Sample Solution:

def v(val): return "T" if val else "F"
def statementl(p,q,r,s):
return s or (p and (q or r))
print("p| q| r | s | statement")
print("--4---+---4---+----------- ")
for pin [True, False]:
for g in [True, False]:
for r in [True, False]:
for s in [True, False]:
val = statenent1(p,q,r,s)

print(f"{v(p)} | {v(a)} | {v(r)} [{v(s)} | {v(val)}")

Example. (Final Exam Oct 2022 Q1(b)) Write a Python script without importing any modules but only
using appropriate data representation and for loops to generate a distance matrix 3eD tpeints P;,
i=1,2,3,4,5in Table 1.1.

Wk olwk
A BADNWOOIN
OoooooOoOada

X
2
2
1 Ps 6
5
3

Table 1.1: 3-D points.

Define a function to calculate the Euclidean distance between two 3-D points in your Python script and then
go through all the pairs of the poins to P, to generate a distance table in Table 1.2.

0. 000000 2.828427 5. 099020 3.162278 2.449490
2.828427 0. 000000 4.242641 3. 741657 1.414214
5. 099020 4.242641 0. 000000 2. 449490 3. 741657
3.162278 3. 741657 2. 449490 0. 000000 2.828427
2.449490 1.414214 3. 741657 2.828427 0. 000000

Table 1.2: Distance matrix of the 3-D points.
Sample Solution using Double For-loop:

20

points =[(2,3,5), (2,5,3), (6,4,2), (5,3,4), (3,5,4)]

print (poi nts) # [2 marks]

def euclid_dist(ptl, pt2): # [1 mark]
return ((pt2[0]-pt1[0])**2 + (pt2[1]-ptl[1])**2

+ (pt2[2]-ptl][2])**2)**0.5 # [2 marks]

for ptl in points: # [1 mark]
for pt2 in points: # [1 mark]
dist = euclid_dist(ptl, pt2)
print(f"{dist:10.6f} ", end="") # sane row
print() # Print a newline # [1 mark]

Example. (Final Exam Oct 2019 Q1(c)) In the late 1960's, book publishers realised that they needed a uni-
form way to identify all the different books that were being published throughout the world. In 1970 they
came up with the International Standard Book Number system. Every book, including new editions of older
books, was to be given a special number, called an ISBN, which is not given to any other book. The check
digit x,, of a 10-digit ISBNX; X, - - - XgX;4 iS given by the formula:

X0 = (11- (10X, + 9%, + 8X5 + 7X, + 6X5 + 5Xg + 4X; + 3Xg + 2Xg mod11)) mod11.

If x,0 = 10, it is represented a¥: Write a Pythonprogram script to implement the functioheck-

di gi t 10(i sbn) which takes an ISBN of the formy,, - - - Xy as a string of length 9 and returns a dij

as a string of length 1.

* Correct definition of function [1 mark]

* Proper use of for loop [1 mark]

* Demonstrate correct translation of mathematical formula to computer program [3 marks]

Sample Solution:

def check_digit_10(isbn):
isbn = list(isbn.replace(’-","").replace(’?",’"))
assert len(isbhn) == 9
x10 = 0
for i in range(len(isbn)):
x10 += (10-i)*int(isbn[i])
x10 = (11-x10) % 11
return str(x10) if x10 !'= 10 else 'X

print(check_digit_210(’ 0-8044-2957"))
print(check digit_ 10(’' 0-85131-041"))

Example. In the late 1960’s, book publishers realised that they needed a uniform way to identify all-the dif
ferent books that were being published throughout the world. In 1970 they came up wititeimational
Sandard Book Number system. Every book, including new editions of older books, was to be given a special
number, called an ISBN, which is not given to any other book. ISBN is changed from a 10-digit system to
13-digit system since 1 January 2007. The check digit of the ISBN-13 is given by the formula (see
https://en.wikipedia.org/wiki/International_Standard_Book_Number)

Lk, r <10,

X13:%), r=10

r = (10— (Xy + 3%, + Xz + 3X, + X5 + 3Xg + X; + 3Xg + Xg + 3X;q + X1 + 3Xy,) mod 10).

Provide two implementations of tH&BN-13 check digit as a Python functiaheck(i sbn) which takes
in an array of digits and return a check digit, one implementation which uses for loop and one implementa-
tion which uses Numpy array. Find the check digit%a18- 0- 306- 40615- ?.

Sample Solution using For L oop:

where

21

http://code. activestate.comrecipes/498104-i sbhn-13-converter/
def check_digit_13(isbn):

isbn = list(isbn.replace(’-","").replace(’?",’ "))
assert len(isbn) == 12

sum = 0

for i in range(len(isbn)):

c = int(isbn[i])
w=3if i %2 else 1
sum+= w * ¢

r =10 - (sum % 10)

if r == 10: return 'O’

el se: return str(r)

Example. (Magic Square in Combinatorics) Magic square is an arrangement of distinct numbers (i.e.,

each number is used once), usually integers, in a square grid, where the numbers in each row, and in each col-
umn, and the numbers in the main and secondary diagonals, all add up to the same number, called the “magic
constant”. A magic square has the same number of rows as it has columns, and in conventional math nota-
tion, n stands for the number of rows (and columns) it has and is called the ‘order of the magic square’. Thus,
a magic square of ordercontainsn? numbers.

A magic square can be denoted as a lishdist with n numbers. Write a Python function theck if
an object is a magic square and then find an algorithm to generate magic squares from the Internet. Can we
ask Al to write such a script for us?

Sample Solution: The following Python function can be used to check a magic square encoded in the form
of a list of lists (rows).

https://ww. w3resour ce. coni pyt hon- exer ci ses/ mat h/ pyt hon- mat h- exer ci se- 20. php
def is_magi c_square(obj):
n = |l en(obj)
suns_fromevery_row = [sum(row) for row in obj]
sunms_from every_col [1
for j in range(n):
col =Jobj[irow[]j] for irowin range(n)]
suns_from every_col . append(sum(col))
#Two di agonal s
diagl = diag2 = 0
for i in range(n):
diagl += obj[i][i]
diag2 += obj[i][n-i-1]
return di agl==di ag2 and \
all ([suns_fromevery rowi]==diagl for i in range(n)]) and \
all ([sunms_fromevery_col[i]==diagl for i in range(n)])

m[[7, 12, 1, 14], [2, 13, 8, 11], [16, 3, 10, 5], [9, 6, 15, 4]]
print(is_magic_square(mn)

print(is_magic_square([[2, 7, 6], [9, 5, 1], [4, 3, 8]]))
print(is_magic_square([[2, 7, 6], [9, 5, 1], [4, 3, 7]]))

The followingmagic squar e generation algorithm is popular in the Internet.

https://ww. codesansar. coni pyt hon- programm ng- exanpl es/ gener at e- nagi c- square. ht m
https://scipython. conf book/ chapter-6-nunpy/ exanpl es/ creati ng- a- magi c- squar e/

def nmagi c_sqr_nethodl(n):

if n%2 ==20: return [] # Only works with odd n
magi c_square = []
for i in range(n):

row = [0]*n
nmagi c_squar e. append(r ow)
cnt, i, j =1, 0, n/l/2
while cnt <= n**2:
magi c_square[i][j] = cnt
cnt += 1
newi, new = (i-1)%, (j+1)%
if magi c_square[newi][new]:
22

i += 1
el se:
i,] = newi, new
return magi c_square

Example. Consider the heart disease data from
https://bookdown.org/brianmachut/uofm_analytics_r_hw_sol_2/logreg.html by analysing the relation
between X=fast_food_spend and Y=heart_disease.

One mathematical model for fitting the data is called logistic regression model:
1
1+ expt(-10.651330614 + 0.00219959Y

Another mathematical model for fitting the data is B¥ayer neural network is shown below:

P(Y=1X=X) =

fast food spend,

Error: 160.952352 Steps: 25

o _ 1

E“l ~ 1+ expE(2. 750651899 +3.038979%))
2T Trexp(-@. 20779155 + 2. 4121479
. =

0° 1+exp(-(-1.55861321 - 0.89442198

o 1
g’l " T+ exp(—(0. 70469462 + 1. 48813242+ 0. 75329236, + 0. 5624901())

8’2 ~ T+ exp(—(0. 70548672 + 0. 84296Q¥4+ 0. 82436998, + 0. 94807080,))

1
~ 1+exp(—(-1.56656128 - 1. 12404482 0. 80157036,))

By using the knowledge you have learned so far, write a Python script to read heart_data.csv and
express the logistic regression model as Python function. Is it easy to implement the neural network model in
Python?

Sample Python Script Solution:

y

23

fp = open("heart_data.csv")
colnames = fp.readline().strip().split(",")
data = fp.readlines()
p = |l en(col nanes)
We anal yse using colum 1 (heart_di sease, output) and colum 3 (fast food spend, inp
coll =1]
col3 =1]
for rowin data:

itens = row strip().split(",")

col 1. append(float(itens[0]))

col 3. append(float(itens[2]))
frommtplotlib.pylab inport plt
plt.plot(col3,coll,"*")
plt.show()

Expressing |logistic regression nodel as Python functions
def log reg(x):

frommath inport exp

return 1.0/ (1. O+exp(-(-10.651330614 + 0.002199567*x)))

Interrupting a Loop: break, continue
Thebr eak statement is used to stop a loop early.

Application of break statement: If the error of a calculation is accurate enough, break out from the loop
to improve accuracy. E.g. bisection method, newton method, ...

Thecont i nue statement is used to skip some statements in a loop and continue with the next counter.

10.2. While Loop

In contrast to “for loop”, we seldom use “while loop”. It is used when we don't know when to stop. A
“while loop” statement may often be augmented witheak statement to jump out of the loop.

whil e conditionl:
bl ock
if condition2: break
other block (won't be executed if condition2 is true)

Example. (Final Exam Sept 2012, Q1(b) with modification) Write a Python script to generate a sequence of
random number and determine the number of attempt it takes to obtain the first random number that is in
between 0.5 and 0.55.

Sample Solution using While L oop:

i mport nunpy as np
count = 0

whi l e True:
anum = np. random r and()
count = count + 1
if 0.5 < anum < 0. 55:
print("Nunber of attenpt taken =", count)
break # exit while | oop

Example. (Final Exam Sept 2013, Q5(b) with modification) Write a Python script to determine the greatest
value ofn that can be used in the sum

2+4+6+8+. .. +2n

and get a value of less than 200.
Solution: If we use Python’s ange andsumfunction, we can solve it easily withwhi | e loop as follows:

24

thesum=n =0
whil e t hesum < 200:
n = n+l
t hesum = sun{range(2, 2*n+1, 2))
greatest_n =n-1
print(’ The greatest value of n such that 2+4+...+2n<200 is', greatest_n)

However, this is very inefficient because in line 4, we are summing numbers again and again. A inore eff
cient Python program is as follows:

thesum=n =0
whil e t hesum < 200:
n = n+l
thesum += 2*n
greatest_n = n-1
print(’ The greatest value of n such that 2+4+...+2n<200 is', greatest_n)

The greatest value afsuch that 2 + 4 +. . . #2< 200 is 13.

Example. (Final Exam Sept 2017, Q3(c) with modification) Write a Python script to calculate the following
summation not exceeding 100. Script must give total sum and the last element as output.

4 5 6 7 8

—t —F —+—+ —+....

5 6 7 8 9

Sample Solution:

n=2~0
thesum = nextterm= 0.0
whil e thesum < 100. O:
nextterm = (n+4.0)/(n+5.0)
t hesum += nextterm
n = n+l
print(’Total sumis’, thesumnextterm
print("and the | ast elenent at output is", n+3, "/", n+4)

Total sum is 99.82862321536608 and the last element at output is 107/108.

10.3. Recursion
Recursion is a theoretical way to dmoping.

Recursion stands for “the act of a function calling itself to do things”. This is a technique for estimating the
time or space complexity of computer algorithm related to trees and graphs.

Example. The mathematical definition of Fibonacci numbers are given by
Fo=0,F,=1,F,=F,,+F,,, n=2.3,...
The recursive function implemetation of Fibonacci is shown below.
def fib(N):

return the N-th Fi bonacci nunber.

if N<=0:
return O
elif N==1:
return 1
el se :

return fib(N1) + fib(N-2) # can use up a |lot nenory

25

Example. Consider a variation of the recurrence relation found in 2017 West Australia Applications Exam:
T =4T,-3, T, =2.

Implement this recurrence relation as a Python functipn) . In your implementation, returNone if n is
less than 1.Demongtrate the workings of the function by writing a Python script to dispyl) , T(2),
..., T(10) . Write down the value of (4) .

Sample Solution:

def T(n):
if n< 1:
return None
elif n == 1:
return 2
el se:
return 4*T(n-1)-3

for nin range(1, 11):
print(f"T({n}) = {T(n)}")

Example. (Final Exam Sept 2015, Q2(d)) The Taylor series of a cosine functigrrdl is

1 2 X4 X6
=TT e
Write a recursive function that computes and approximation of cosine.
Sample Solution using Recursion:

def cosi ne_approx(n,x):
i f n<=0:
return 1.0
elif ny®==1:. # n is odd
return cosi ne_approx(n-1,x)

el se: # n is even
hi ghest _order _term= 1.0
for i in range(2,n+l):

hi ghest _order _term*= x/i
if (n/2)% == 1: highest_order_term*= -1
return hi ghest_order_term + cosi ne_approx(n-2,x)

Recursion is a method to perform calculation for programming languages which does not have for loop
or while loop.

26

