UECM1303 TUTORIAL 1: PROPOSITIONAL LOGIC (SEMANTICS AND INFERENCE)

May 2021

Slide 1: Formal Propositions & Truth Table

1. Let p, q, r and s denote the following statements.

p: Ali is inside	q: Ali is watching TV
r: Ali is taking his dinner	s: Ali is riding his bicycle

- (a) Translate the following into English sentences.
 - (i) $s \wedge (q \vee \sim r)$
 - (ii) $p \to (q \lor r)$
 - (iii) $(p \lor s) \land (p \to q)$
 - (iv) $\sim s \rightarrow (p \land (q \lor r))$
- (b) Translate the following into logical notation.
 - (i) Ali is neither inside nor is he riding his bicycle.
 - (ii) Ali is inside, and he is taking his dinner while watching TV.
 - (iii) Ali is not watching TV only if he is outside.
 - (iv) Ali is inside and taking his dinner implies that he is not riding his bicycle.
 - (v) If Ali is not watching TV, then if he is not taking his dinner, he is outside.
- 2. Given that p and q are true and r, s and t are false, find the truth value of each statement below.
 - (a) $(p \lor \sim q) \to (r \land s \land t)$
 - (b) $(q \to (r \to s)) \land ((p \to s) \to (\sim t))$
- 3. If statement q is true, determine all truth values assignments for the statements p, r and s for which the truth value of the following statement is true:

 $(q \to [(\sim p \lor r) \land \sim s]) \land [\sim s \to (\sim r \land q)].$

- 4. Give the negation, converse, inverse and contrapositive of each the following statements.
 - (a) I will pass the course if I work hard.
 - (b) If $A = B \cap C$, then $A \subset C$.
 - (c) If -2 < 4 and 3 + 8 = 11, then $\sin(\pi/2) = 1$.
- 5. Construct truth tables for the following statement forms:
 - (a) $(p \leftrightarrow q) \leftrightarrow (\sim p \leftrightarrow \sim q)$
 - (b) $\sim p \rightarrow (p \lor q)$
 - (c) $(p \to q) \leftrightarrow (\sim q \to \sim p)$

Then determine whether each of the above statement forms is a tautology, a contingency or a contradiction.

- 6. Determine whether the following statement forms are tautologies.
 - (a) $p \to [q \to (p \land q)]$
 - (b) $(p \lor q) \to (q \to q)$
 - (c) $(p \lor q) \to [q \to (p \land q)]$

Slide 1: Logical Equivalence & Logical Implication

- 7. Answer true or false.
 - (a) An equivalent way to express the converse of "p is sufficient for q" is "p is necessary for q".
 - (b) An equivalent way to express the inverse of "p is necessary for q" is " $\sim q$ is sufficient for $\sim p$ ".
 - (c) An equivalent way to express the contrapositve of "p is necessary for q" is " $\sim q$ is necessary for $\sim p$ ".
- 8. Rewrite the following statements in if-then form.
 - (a) Fix my ceiling or I won't pay my rent.
 - (b) Study hard or I won't pass Discrete Mathematics.
 - (c) Catching the 7am bus is a sufficient condition for my being on time for school.
 - (d) Doing homework regularly is a necessary condition to pass the course.
 - (e) Ali studies calculus only if he is a math major.
 - (f) P is a square only if P is a rectangle.
 - (g) n is divisible by 6 is a sufficient condition for n to be divisible by 2 and n is divisible by 3.
- 9. Determine whether the 2 statements forms are equivalent.
 - (a) $p \to (q \to r)$ and $(p \to q) \to r$.
 - (b) $p \leftrightarrow q$ and $(p \wedge q) \lor (\sim p \land \sim q)$.
 - (c) $(p \lor q) \to r$ and $(p \to r) \land (q \to r)$.
- 10. Explain why the statement "If today is not cold, then today is cold" is logically equivalent to the statement "Today is cold".
- 11. (a) Show that the following statement forms are all logically equivalent.

 $p \to (q \lor r), \quad (p \land \sim q) \to r \quad \text{and} \quad (p \land \sim r) \to q.$

- (b) Use the logical equivalences in (a) to rewrite the sentence "If n is prime, then n is odd or n is 2." in 2 different ways.
- 12. Use the laws of logical equivalence to show the following:
 - (a) $(p \land (\sim (\sim p \lor q))) \lor (p \land q) \equiv p$.
 - (b) $\sim (p \lor \sim q) \lor (\sim p \land \sim q) \equiv \sim p.$
 - (c) $\sim ((\sim p \land q) \lor (\sim p \land \sim q)) \lor (p \land q) \equiv p.$
 - (d) $(\sim p \lor \sim q) \rightarrow (p \land q \land r) \equiv p \land q.$

13. Simplify the following statement to a statement with no more than 3 logical connectives involving \sim , \lor and \land by stating the law used in each step of the simplification:

$$[[[(p \land q) \land r] \lor [(p \land q) \land \sim r]] \lor \sim q] \to s.$$

- 14. Verify that
 - (a) $(p \to q) \land [\sim q \land (r \lor \sim q)] \equiv \sim (p \lor q)$
 - (b) $p \lor q \lor (\sim p \land \sim q \land r) \equiv p \lor q \lor r$
 - (c) $(p \leftrightarrow q) \land (q \leftrightarrow r) \land (r \leftrightarrow p) \equiv (p \rightarrow q) \land (q \rightarrow r) \land (r \rightarrow p)$
- 15. In logic circuit design, one of the basic logic gate is the NAND gate. It is logically equivalent to $\sim (p \wedge q)$ and denoted by $(p \uparrow q)$ for any statements p and q.
 - (a) Represent the logic gates (i) $\sim p$ and (ii) $p \rightarrow q$ using the NAND gate.
 - (b) Are $p \uparrow (q \uparrow r)$ and $(p \uparrow q) \uparrow r$ logically equivalent?
- 16. Use comparison tables to determine whether the argument forms are valid.

$$p \to (q \lor r)$$
(a) $\sim q \lor \sim r$
 $\overrightarrow{ \therefore \quad \sim p \lor \sim r}$
(b) $(p \land q) \to \sim r, \ p \lor \sim q, \ \sim q \to p/ \therefore \sim r$

17. Write the symbolic form of each of the following arguments and then determine its validity.

- (a) If Tom is not on team A, then Hua is on team B.If Hua is not on team B, then Tom is on team A.Therefore Tom is not on Team A or Hua is not on Team B.
- (b) If I graduate this semester, then I will have passed Calculus. If I do not study Calculus for 5 hours a week, then I will not pass Calculus. If I study Calculus for 5 hours a week, then I cannot play basketball. Therefore, if I play basketball, I will not graduate this semester.
- (c) If f is integrable, then g or h is differentiable. If g is not differentiable, then f is not integrable but it is bounded. If f is bounded, then g or h is differentiable. Therefore, g is differentiable.

Slide 1: Rules of Inference

- 18. Use the rules of inference to show that $p \wedge \sim s, q \to (r \to s) \vdash (p \to q) \to \sim r$.
- 19. Show that $p \to q \vdash p \to (r \to (s \to q))$.