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This topic explores the theory of numbers, an important branch of mathematics concerning the prop-
erties of integers. Integers are central to discrete mathematics because integer functions are used as the
measurement of time-complexity for computer algorithms and the properties of integers are crucial in
the encryption system of secure communications. In addition, the random number generator used in
stochastic simulation also has its foundation build on top of the theory of numbers.
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CLO3: Demonstrate various proof-techniques.

§3.1 Formal Characterisation of Numbers

This section discusses how to formally express the following number sets that we often encounter in
mathematics.

Symbol | Set
N Set of all natural numbers, i.e. {0,1,2,---}
7 Set of all integers, i.e. {---,—2,—1,0,1,2,---}

Q Set of all rational numbers, i.e. {g :p,q € Z,q# 0}
R Set of all real numbers, i.e. {%iy, - -igi1.didy--- :i;,d; € N}

They are related by N € Z € Q C R “semantically”. To differentiate positive, negative and nonzero
numbers, we introduce the following notations:

e Rt :={zeR:z>0} R :={zeR:z2<0},R* :={z eR:z #0}.
e Qt={z€eQ:2>0},Q ={zeQ:2<0},Q*:={zeQ:x#0}.
o Zt:={1,2,3,---}, Z~ :={—1,-2,-3,---}, Z* := {£1,£2,.--}.

A set of formal propositions, called axioms, are used to characterise the set of numbers mentioned
above.

§3.1.1 Natural Numbers

Peano axioms define the arithmetical properties of natural numbers, usually represented as N.
The symbols for the axioms includes a constant symbol 0 and a unary function symbol S and an equal
sign “=".

1.0eN

2 WO =T wininsnsminsnsminsmsminsusnsny every natural number has a “next” natural number.
3. AVz(~ (S(x) =0)) wevriiiii there is a 0 which has no “previous” natural number.
O e N reflexive
Be VYU =0 = = F) svimrimsmomonen s smsnsmsmsmsmsssme s o 6 55 55 58 58 58 68 65 58 58 68 65 54 64 symmetric
6. VEVYVZ(Z = YA Y = 2 =3 € 0 Z) ettt ettt e e et transitive

7. VaVy(S(m) = S(n) —» m =n)

8. Yy(p(0,y) AVz(d(z,y) = &(S(x),y)) = Ved(x,y)) «ovvereiian.. mathematical induction



N is implemented as Nat type in Lean 4’s Init/Prelude.lean

inductive Nat where
| zero : Nat -- same as O
| succ (n : Nat) : Nat -- same as n+1

With the above definitions, it is possible to obtain the “ordered semiring” properties of N below.

AL VEVY(Z Y = U &) oot Nat.add_comm
A2. VaVyVz((T + ) + 2 =T+ (Y4 2)) ovveeeeei e associative law
S T (e e P identity
M. ViVaple Y =T i) sssmemsmsusususmemenemsmsnsnmensasssususnsssssssssnenenssswsnsn commutative law
M2, VaVYVZ((Z - Y) - 2 = - (Y5 2)) weee et et associative law
M3, VZ(1 -2 =) A (02 =0) .erirtttt et e identity
D. VaVyVa(z - (U4 2) = @ YT 2)e oot distributive law
Ll. Vz ~ (z < x)
L2: YaVollo €yl (0 =) V [ L D)) cosni5s5m0.6055.85.5 008 55 5 5.8 5k 5k 5.5 5 58 B B 5.5 5 5k B total ordering

L3. VVyVz(((x < Y)A (Y < 2)) = & < Z) ettt et et transitivity
L4. VaVyVz((z <y) = (z+z < 2+ y))
L5. VaVyVz(((z < y) A (0< 2)) 5 2z < 2-y).
L6. VaVy((x < y) = Jz(x + 2z =y))
L7. (0 <1)A(Vz((x >0) = (z =1V >1)).
L8. Vz(z =0V 0 < z).
L ¢(0) A (VE(d(k) = @p(E+1))) =2 Vno(n) oo Induction Principle

Here ¢ is any well-form formula.

A1-D in Lean 4’s Init/Data/Nat/Basic.lean

variable (x y z : Nat)

example : x + y =y + x := Nat.add_comm x y

example : (x + y) + z = x + (y + z) := Nat.add_assoc x y z
example : 0 + x = x := Nat.zero_add x

example : x + 0 = x := Nat.add_zero x

example : x * y =y * x := Nat.mul_comm x y

example : (x * y) * z = x * (y * z) := Nat.mul_assoc x y z
example : x * 1 = x := Nat.mul_one x

example 1 * x = x := Nat.one_mul x

example : 0 * x = 0 := Nat.zero_mul x

example x x (y + z) x * y + x *x z := Nat.mul_add x y z
example x *x (y +2z) = x xy + x *x z := Nat.left_distrib x y z
example : (x + y) * z = x * z +y * z := Nat.add_mul x y z
example : (x + y) * z = x * z + y % z := Nat.right_distrib x y =z
theorem L3 : (x < y) /\ (y < z) -> x < z :=

fun h => Nat.lt_trans h.left h.right

theorem L4 : (x < y) -> (z + x < z + y) :=
fun h => Nat.add_lt_add_left h _
#check 0 + 1 =1 -- Print the type of the expression
#eval 0 + 1 = 1 -- Perform calculation to decide the value

From the Induction Principle, mathematicians have obtained the well-ordering principle stated below.

Theorem 3.1.1 (Well-Ordering Property of N). If S C N and S # 0, then there is an element m € S
such that m < k for all k € S.




§3.1.2 Integers: Even, Odd, Prime, Composite

A set of integers together with the mathematical operations makes it into a commutative ordered ring

with unit whose positive elements are well-ordered.

Definition 3.1.2. The commutative ordered ring with unit F is a set equipped with constants 0, 1,

addition 4, multiplication - and less than relation < such that

AL VEVY(T Y = Y @) oo et commutativity
A2 VaVyVz(( 4 y) + 2 =T 4+ (Y 2)); o veneeee e associativity
Ad: Va0 kB =8} isinininininininininininisin ninininisininisimininininisininisisy identity
A4 VaTy (@ 4 4 = 0)5 e e additive inverse
ML VNV (@ - = 4 )5 e ettt e e e commutativity
M2 YavVueE(lE-1) - 2 = Bo {1 B} sesivinssisinininincsininseisineaininesimsneessss associativity
Y T O R ) I ) identity

D VEVYVZ(Z - (Yt 2) = @ Y o 2 oeee et distributivity
OL VaVy((z =y) A~ (y <z)A~ (z<y)V~(@=y) Ay <z)A~ (z<yV~(@=yA~({y<

ARAR Y Ay PP total order

02. VaVyVz((z < Y) A (Y < 2) = (T < 2)) 5 o et transitivity

03. VaVyVz(z <y — (z +x < 2+ ¥));
O4. VaVyVz(((zx <y ) AN(0< 2)) >z -z < z-Yy)

Definition 3.1.3. The integer set Z is a commutative ordered ring with unit such that

L ¢(0) A (VE(d(k) = @p(E+1))) =2 Vno(n) oo Induction Principle

Z is implemented as Int type in Lean 4’s Init/Data/Int/Basic.lean

inductive Int : Type where

| ofNat : Nat -> Int -- n =0, 1, 2,

| negSucc : Nat -> Int -- negatives are -[1+n]
def negOfNat : Nat -> Int

| 0 => 0

| succ m => negSucc m

Al1-D in Lean 4’s Init/Data/Int/

variable (x y z : Int)
theorem Al : x + y = + x := Int.add_comm x y
theorem A2 : (x + y) z = x + (y + z) := Int.add_assoc x y z

theorem A3 : 0 + x =
theorem A3r: x + 0 =

:= Int.zero_add x
:= Int.add_zero x

MoK o< MM+ <

theorem M1 : x *x y = * x := Int.mul_comm x y

theorem M2 : (x * y) z = x *x (y * z) := Int.mul_assoc x y z

theorem M3 : 1 * x = := Int.one_mul x

theorem M3r: x *x 1 = := Int.mul_one x

theorem D : x * (y + z) = x * y + x * z := Int.mul_add x y z

theorem Dr : (x + y) * z = x * z + y *x z := Int.add_mul x y z

theorem 02 : (x < y) /\ (y < z) -> x < z := fun h => Int.lt_trans h.left h.right
theorem 03 : (x < y) -> (z + x < z + y) := fun h => Int.add_lt_add_left h _

Definition 3.1.4. Let n be an integer. n is even if there is an integer k such that n = 2k. n is odd if an

integer k such that n = 2k + 1.



Definition of Even and Odd in Lean 4

def is_even (n : Int)
def is_odd (n : Int)

exists k,
exists k,

n = 2xk
n = 2xk+1

Theorem 3.1.5. Fvery integer is either odd or even but not both.

Example 3.1.6. Use the definitions of even and odd to justify your answers to the following questions.

1. Is 0 even?

2. Is =501 odd?

3. If a and b are integers, is S8ab> + 6

even?

n, 0<n,

Definition 3.1.7. The absolute value of an integer n, |n| :=

—n, n<O0.

Definition 3.1.8. A integer n is called a prime (number) if n > 1 and “Vr¥s((r e NAs e NAn=r-s) =
((r=1)Vv(s=1)))". nis called composite if n > 1 and there are positive integers r and s such that

n=r-sandr#1and s # 1, i.e. those
is composite if |n| is composite.

Implementation of Even,

numbers that have more than two factors. A negative integer n

0Odd, Prime Checking Functions in Standard ML

fun isEven(n : int): bool = (n mod 2 = 0)
fun is0dd (n : int): bool = (n mod 2 <> 0)

(*

0 is neither prime nor composite.

Since any number times zero

equals zero, there are an infinite number of factors for

a product of zero.
1 has only 1 factor. For a number

to be classified as

a prime number , it should have exactly two factors.

*)
fun isPrime(n: int): bool =
let fun noDivisorsAbove(m: int)
if n mod m = 0 then false
else if m*m >= n then true
else noDivisorsAbove (m+1)
in

n > 1 andalso (n=2 orelse noDivisorsAbove (2))

end
fun isComposite(n: int): bool =
let fun hasDivisorsAbove(m: int)
if n mod m = 0 then true
else if m*m >= n then false
else hasDivisorsAbove (m+1
in

)

(abs n) > 2 andalso hasDivisorsAbove (2)

end

Theorem 3.1.9. Fvery integer greater than one is either a prime or a composite but not both.




Example 3.1.10. Let E(n) be “n is even”, P(n) be “n is prime” and C(n) be “n is composite.”
1. Translate the following into English without using the symbols 3 and V.
(@) InLPlR) A BlE)) siasnensusnonsusmsusns

(b) VR(E(n)V ~ P(n)) woovviniiiiian..

(c) ~Vn(Em)VPM)) oovviiiinan...

2. Determine the truth value of these statements.

(2) P(13) =~ E(13) oo ]
(D) P(2) =5 E(2) « et ]
() P0) e ]
(A) C0) e ]
() PlL) o ]
(B) CL) o ]
() C(=8) o ]
(M) C(mA) ottt ]

Example 3.1.11. 1. Write the first 6 prime numbers.

2. Write the first 6 non-negative composite numbers.

Example 3.1.12. Explain how the function isEven 3 work.

Solution: 3 (mod 2) =1 =0 is false.

Example 3.1.13. Explain how the function is0dd 3 work.

Example 3.1.14. Explain how the function isPrime 17 work.

Solution:
isPrime 17 = 17 > 1 and noDivisorAbove(2)

noDivisorAbove(2) = 17 mod 2 # 0 and 2*2 < 17 calls noDivisorAbove(3)

noDivisorAbove(3) = 17 mod 3 # 0 and 3*3 < 17 calls noDivisorAbove(4)

noDivisorAbove(4) = 17 mod 4 # 0 and 4*4 < 17 calls noDivisorAbove(5)
(

noDivisorAbove(5) = 17 mod 5 # 0 and 5*5 > 17 returns true
So isPrime 17 = true and true = true

Example 3.1.15. Explain how the function isComposite 16 work.

Definition 3.1.16. A counterezample to the universal statement Yz P(z) is a value ¢ for which v(P(c))

F.

Example 3.1.17. Determine the truth value of the following universal statements. If the universal

statement is false, suggest a counterexample to the universal statement.

1. For every x € {—2,0,4,6,8}, 22 is even.



Note: The technique used to show the truth of the universal statement in this example is called the
method of exhaustion. This technique is used when the domain has finite elements.

2. Ve(z €Z—-z+1<4).

3. Vz(x € ZT — (x — 1 is nonnegative)).

Example 3.1.18. Determine the truth value of each of the following existential statement.

1. There is an integer x such that a prime number x is an even number. .......

S FBBELNF =B F-TJ: somomomonsmsmonsnsmensmonsssmsnsssnsnsssninssnsnsn:sss

Example 3.1.19 (Tutorial 3, Q1). Assuming that m and n are particular integers, use the definitions of
even, odd, prime and composite to answer the following questions.

1. If m >n >0, is m? — n? composite?
2. Is 6m + 10n even?
3. Is 10mn + 13 odd?

4. If m > 0 and n > 0, is m? + 2mn + n? composite?

§3.1.3 Rational Numbers and Real Numbers

The set of rational numbers QQ is the “smallest” Archimedean ordered field and the set of real numbers
R is an Archimedean ordered field which is Cauchy complete. Hence, we will first define the notion of
ordered field.

Definition 3.1.20. A set F' (the domain for the predicates) is called an ordered field if it is a commu-
tative ordered ring with unit (Definition 3.1.2) and satisfies



M5, VZ(X £ 0 = (T, ¥ = 1)) et multiplicative inverse

Definition 3.1.21. We say an ordered field is Archimedean if for each € € F such that € > 0, there is
positive integer N such that 1 < Ne.

Definition 3.1.22. The rational number set Q is the smallest Archimedean ordered field. The member
of Q is called rational number.

Theorem 3.1.23. A rational number r € Q can be expressed as a quotient of two integers with a nonzero
denominator, i.e. there are integers a and b # 0 such that 3.

Theorem 3.1.24. FEvery integer is a rational number.
Proof. For any integer n, n =n/1. O
Example 3.1.25. Which of the following are rational numbers?

e —(4/35)

e (0.211

e 0.12.

m-+n .
a rational number?

Example 3.1.26. If m and n are integers and neither m nor n is zero, is
mn

Definition 3.1.27. Suppose F' is an ordered field and F C F. If there exists a 8 € F such that z < (3,
Vx € F, we say that E is bounded above and call 8 an upper bound of E. If the upper bound g of E also
satisfies the following property

e If v < 8 then 7 is not an upper bound of F.
Then S is called the least upper bound of E or the supremum of E and we write § = sup F.

Axiom. 31,28 (COMPIERETIOnS ArOT e o s s ms s e oosn s m e ns s s s oo ssu w565 0Hs w580 completeness
Let F be an ordered field and £ C F. If E # (), and E is bounded above, then sup F exists in F.

Definition 3.1.29. The real number set R is an ordered field that satistifies the Completeness Axiom.
The members of R are called real numbers.

Theorem 3.1.30. A rational number is a real number.
Definition 3.1.31. An #rrational number is a real number that is not rational.
By definition, every real number is either rational or irrational but not both.

Example 3.1.32. Determine the truth value of the following universal statements. If the universal
statement is false, suggest a counterexample to the universal statement.

1. Vz((x e RAO<zAz<1) =z <bx)



2. Vz(xr e R— 22 +1=0)

3.Ve(zeR— 22— 1= (z+1)(z - 1))

Example 3.1.33. Determine the truth value of each of the following existential statement.

L 3
2. 3u(
3. Az ERAXI =22 —2) oot
4. Fx(
5. Fu(

I'GR/\(%H:%)) .........................................

Example 3.1.34 (Tutorial 3, Q2). (a) Assume that a # 0 and b # 0 are both integers. Is (b — a)/(ab?)
a rational number?

(b) Assume that a and b > 0 are both integers. Is (5a 4+ 12b)/4b a rational number?

Example 3.1.35 (Tutorial 3, Q3). Suppose a, b, ¢ and d are integers and a # ¢. Suppose also x is a real
number that satisfies the equation
ar+b 1

cx+d ()

Is z rational?

Example 3.1.36 (Tutorial 3, Q4). Is the following argument valid?

Any sum of two rational numbers is rational.
The sum r + s is rational.

Therefore the numbers r and s are both rational.




§3.2 Methods of Proof

To confirm a mathematical statement is true, we need to prove it.

Let Ay, -+, A, be the axioms of mathematical objects (e.g. N, Z, Q, R).

We can derive theorems 17, - - -, T}, from the axioms A1, ---, A,. For a new mathematical statement
1, if we can prove it using the axioms and theorems, then it can be expressed as an argument below:

Agy, -y Ap, Ty, oo, T E 2. (3.1)

The techniques of direct proof and proof by contradiction are usually used to show the argument (3.1)
syntactically.
For a new mathematical statement in conditional form, the argument can be expressed as

A17"'7An7 T177Tm'_(¢—>¢) (32)

where ¢ and 1 be two formulas. The techniques of direct proof, contrapositive proof and proof by con-
tradiction are usually used to show the argument (3.1) syntactically. To know more about the different
aspects of mathematical proofs, one may want to read Ording [2019].

§3.2.1 Direct Proof

The direct proof of (3.2) starts from axioms, theorems and ¢ to reach .

Example 3.2.1. 12 is an even number.

Proof: 12 = 2 x 6 and by definition, 12 is even.

Proving in Lean 4

example : is_even (12) :=
have h : Int.ofNat 12 = 2%6 := rfl -- calculate & check equality
Exists.intro 6 h --k =6

Example 3.2.2. Prove that “there is an even integer n that can be written in 2 ways as a sum of 2 prime
numbers.”

Proof: Let n =10. Then 10 =5+ 5 =3 4+ 7 and 3, 5 and 7 are all prime numbers.
Let P(n) be the predicate “n is prime”. Then take n = 10, p1 = py =5, p3 = 3, py = 7 and

10=2-5A5£3ABLTASAT

AP(5) A P(5) A P(3) A P(T)A10 =5+ 510 = 3+ 7)

In, (Fk(n = 2k) A Ip13Ip23p33pa(p1 # p3 Ap1 # Pa A D2 # D4
AP(p1) A P(p2) A P(p3) A P(ps) An =p1+p2 An =p3+ps)

Due to the difficulty in manipulating formal proofs using appropriate tactics, we usually do not
use formal proofs in deriving results in mathematics.

Example 3.2.3. Use the method of exhaustion (useful for domain with finite values) to prove the
following statements:

1. If n is even and 4 < n < 20, then n can be written as a sum of 2 prime numbers.

10



Proof:
4=2+2 8=3+5H 12=54+7 16=5+11 20=7+13
6=3+3 10=5+5 14=11+3 18=7+11

2. Every even positive integer n which are less than 26 can be written as a sum of less than or equal
to 3 perfect squares.

Example 3.2.4 (Tutorial 3, Q7). Prove the following universal statement by using method of exhaustion.

For each integer n with 1 < n < 10, n? — n + 11 is a prime number.

Example 3.2.5. Suppose r and s are integers. Prove that “there is an integer k such that 22r + 18s =
2k .

Proof: Let £ = 11r + 9s. Then k is an integer because it is a sum of products of integers and
2k =2(11r 4+ 9s) = 22r + 18s.

Example 3.2.6. Prove that the sum of any two even integers is even.

Remark: In this case you might imagine some pairs of even integers, say 2 + 4, 6 + 10, 12 + 12,
28 4+ 54, and mentally check that their sums are even. However, since you cannot possibly check all
pairs of even numbers, you cannot know for sure that the statement is true in general by checking
its truth in these particular instances. Many properties hold for a large number of examples and yet
fail to be true in general.

To prove this statement in general, you need to show that no matter what even integers are given,
their sum is even.

Proof: Suppose m and n are any even integers.

By definition of even, m = 2r and n = 2s for some integers r and s.

Then m +n = 2r +2s = 2(r + s).

Let £k =r 4+ s. k is an integer because it is a sum of integers r and s.

Hence m + n = 2k where k is an integer. It follows by definition of even that m + n is even.

Proving in Lean 4

theorem even_plus_even (hl : is_even a) (h2 : is_even b) : is_even (a
+ b) :=
Exists.elim hl (fun wi (hwl : a
Exists.elim h2 (fun w2 (hw2 : b
Exists.intro (w1l + w2)
(calc a + b
2 x wl + 2 % w2
2 % (wl + w2)

2 *x wl) =>
2 % w2) =>

by rw [hwl, hw2]
by rw [Int.mul_addl)))

Example 3.2.7. Prove that the product of any two even integers is even.

11



Proof: Suppose m and n are any even integers.
By definition of even, m = 2r and n = 2s for some integers r and s.
Then mn = (2r) - (2s) = 2(2rs).
Let k = 2rs. Note that k is an integer because it is a product of integers.
Hence mn = 2k where k is an integer.
It follows by definition of even that mn is even.

Proving in Lean 4

theorem even_mul_even (hl : is_even a) (h2 : is_even b) : is_even (a
* b) :=
Exists.elim hl (fun wil (hwl : a = 2 * wil) =>
Exists.intro (wlx*b)
(calc a*b
= (2 *x wi1) * b :
- 2 *x (wl * b)

by rw [hwil]
by rw [Int.mul_assoc]))

Example 3.2.8. Prove that the sum of any two odd integers is even.

Proof.

Example 3.2.9 (Tutorial 3, Q8). Prove the following universal statements:

1. For all integers n, if n is odd then n? is odd.
2. If n is any odd integer, then (—1)" = —1.

Example 3.2.10 (Tutorial 3, Q6). Prove the following existential statements:

1. There are distinct integers m and n such that 1/m + 1/n is an integer.

2. There are real numbers a and b such that v/a + b # /a + V/b.
3. There is an integer n such that 2n? — 5n + 2 is prime.

Example 3.2.11 (Tutorial 3, Q5). Use the rules of inference and real number axioms to prove that
/. ¥x(3 <z — 25 < 2% + 51 + 2).

12




Theorem 3.2.12. Prove that the sum of any two rational numbers is rational.

Proof.

A corollary is a statement whose truth can be immediately deduced from a theorem that has already
been proved.

Corollary 3.2.13. The double of a rational number is rational.

§3.2.2 Proof by Contraposition/Contrapositive Proof

Proof by contraposition or contrapositive proof for a conditional statement ¢ — 1) is based on
the logical equivalence ¢ — ) =~ 1) —~ ¢. Formally, contrapositive proof of (3.2) can be expressed

as
A17 Tty Ana Tl’ 7Tm '_Nw—>N¢

The outline of the proof is given below:

1. Rewrite the statement ¢ — 1 to be proved in the contrapositive form ~ ) —~ ¢

2. Prove the contrapositive form using direct proof.

Example 3.2.14. Prove that for all integers n, if n? is even then n is even.

13



Proof: In contrapositive form: For all integers n, if n is odd then n? is odd.
Suppose n is any odd integer. Then n = 2k+1 for some integer k. n? = (2k+1)? = 4k?>+4k+1 =
2(2k% + 2k) + 1 So n? is odd.

Remark 3.2.15. The proof is similar to the direct proof given in Example 3.2.9.

Example 3.2.16. Prove that for all integers m and n, if m + n is odd, then m is odd or n is odd.

Proof: Suppose that m is even and n is even. By definition, m = 2k; for some k; and n = 2ko for
some ks.

Therefore m + n = 2k + 2ka = 2(k1 + k2) where k1 + kg is an integer. By definition, m + n is
even. ]

Example 3.2.17. Prove that for all integers n, if 3n + 2 is odd then n is odd.

Proof.

Example 3.2.18. Prove that for any natural numbers n, a and b, if n = ab, then a < v/n or b < /n.

Proof.

Example 3.2.19 (Tutorial 3, Q13). Prove the following statements by contraposition.

1. If a product of two positive real numbers is greater than 100, then at least one of the numbers is
greater than 10.

2. If a sum of two real numbers is less than 50, then at least one of the numbers is less than 25.

14



§3.2.3 Proof by Contradiction

Proof by contradiction for (3.1) can be expressed as
Ay, oo A, Ty, oo, Ty B~y = F (3.3)
The proof by contradiction for a conditional statement ¢ — 1 can be expressed as
Ay, -+, Ay, Ty, oo, Ty B (9N~ ) = F. (3.4)

This technique is very similar to the tableaux method for checking the validity of an argument.

Example 3.2.20. For all integers m and n, if mn =1thenm=n=1orm=n = —1.

This is of the form (3.4).

Domain: Z. m and n are integers and axioms and theorems of integers must the obey.
Hypotheses ¢: “mn =1".

Conclusion ¥: “m=n=1orm=n=—1".

Proof by contradiction.

Suppose “mn = 1" is true but “(m=1An=1)V (m=—-1An=—1)" is false.
So (m,neZ)AN(m#1)V(n£1)A({(m+#-1)V (n# —1)). This is logically equivalent to

m#1Am#% -1 Vn#lAm#-1)V(im#1An#-1)V(n#1An#-1).
We can classify into the following cases:

L.m#1Am# -1
(a) m< -1:
i. n =0: mn = 0. Contradicting with mn = 1.
ii. n < —1: mn > 1. Contradicting with mn = 1.
iii. » > 1: mn < —1. Contradicting with mn = 1.
(b) m = 0: mn = 0. Contradicting with mn = 1.
(c) m>1:
i. n=0: mn = 0. Contradicting with mn = 1.
ii. n < —1: mn < —1. Contradicting with mn = 1.
iii. » > 1: mn > 1. Contradicting with mn = 1.
2.n#F1Am# -1
(a) n>1Am>—1: mn =0V mn > 1. Contradicting with mn = 1.
(b) n>1Am < —1: mn < —1. Contradicting with mn = 1.
(c) n<1Am>—1: mn=0Vmn < 0. Contradicting with mn = 1.
(d) n<1lAm<—1: mn=0Vmn > 1. Contradicting with mn = 1.
3. m# 1 An # —1: This is similar to case 2., the only difference is m and n are exchanged.

4. n # 1 An # —1: This is similar to case 1., the only difference is m and n are exchanged.

All situation leads to contradiction. Hence, the conclusion cannot be false and hence the statement
is proved.

Example 3.2.21. Show that the rational number % is not an integer.

15



Proof: This is of the form (3.3). We will suppose ~ 1 and then obtain a contradiction (with known
results).

Suppose the rational number i is an integer. Then

4x —=1

and 1 can be factorised into two integers different from 1 and —1. This is contradicting with Exam-
ple 3.2.20.

Theorem 3.2.22. There is no greatest integer.

Proof: Suppose there is a greatest integer N. Then n < N for every integer n.

Let M = N + 1. Now M is an integer since it is a sum of integers. Also N < N 4+ 1= M by O3
from Definition 3.1.2.

Thus M is an integer that is greater than N.

However, N is the greatest integer, so M < N. Hence M < N AN < M which is a contradiction
violating O1 of Definition 3.1.2.

Thus the supposition is false and “there is no greatest integer” is true.

Example 3.2.23 (Tutorial 3, Q14(a)). Use proof by contradiction to prove that there is no greatest even
integer.

Theorem 3.2.24. Using the method of proof by contradiction to prove Theorem 3.1.5, i.e. “there is no
integer that is both even and odd.”

Proof: Suppose there is an integer n that is both even and odd.

By definition of even, n = 2a for some integer a. By definition of odd, n = 2b+ 1 for some integer
b.

By equality
20=2b+1=2(a—b)=1, a—beZ.

This is a contradiction since 1 cannot be factorised as proved in Example 3.2.20.

Example 3.2.25. Use proof by contradiction to prove that for all integers n, if n? is even then n is even.

Proof.

Example 3.2.26 (Tutorial 3, Q14(b)). Use proof by contradiction to prove that “for all real numbers z
and y, if = is irrational and y is rational then x — y is irrational.”

16



§3.2.4 Classical Theorems: Irrationality of v/2; Infinitude of Primes

There are two classical theorems which are derived using the proof by contradiction (using integer divis-
ibility results from Section 3.5).

Theorem 3.2.27. /2 is irrational.

Proof: Suppose /2 is rational. Then there are integers m and n with no common factors and n # 0

such that -
V2=—.
n
This implies
2

m
2=-——5 = o2n? =m?

n
So m? is even and m must be even (otherwise it must be odd, but the square of odd number must

be odd) and there is an integer k& such that m = 2k. Hence
o2n? = m? = 4k? = n? = 2k2.

2

Now, n” is even and so n is even. This implies that both m and n have a common factor of 2, which

contradicts the supposition that m and n have no common factors.

Using Theorem 3.2.27, we can show that something exists without finding the actual thing that
matches the predicate. This is called the non-constructive proof and is demonstrated below.

Example 3.2.28. Prove that “There exist irrational numbers x and y s.t. z¥ is rational”.

Proof.

Theorem 3.2.29 (Generalisation of Theorem 3.2.27). For a positive integer k, if V'k is not integer, then
Vk is irrational.

Remark: In mathematics, a proof by infinite descent is a particular kind of proof by contradiction
which relies on the facts that the natural numbers are well ordered and that there are only a finite
number of them that are smaller than any given one. One typical application is to show that a given
equation has no solutions.

17



Assuming an example with a particular property exists, one shows that another exists that is in
some sense ‘smaller’ as measured by a natural number. Then by infinitely repeating the same step,
one shows there are a yet smaller, then a yet even smaller, example, and hence there must be an
infinitude of ever smaller examples. Since there are only a finite number of natural numbers smaller
than the size of the initially postulated example, this is impossible — it is a contradiction, so no such
initial example can exist.

Proof: Let vk be a non-integer and rational. Then E = {b € N* : Ja(a € NAVE = a/b)} # 0
and by the Well-ordering principle 3.1.1, F contains the smallest value b.

Let vk = a1 /b1, a1 > 0, ¢ be the largest positive integer no greater than vk, i.e. Vk—1 < g < Vk.
Then

b b(Vk—q) bi((3) —a) B a; — biq a1 —big
Let ag = b1k — a1q and by = a1 — b1q. Since ¢ < \/E,

\/%:ﬂ_cn(\/ﬁ—q) avk—aiq  bivkxVk—aiq  bik—aq

b k
as :blk—alq:al(a—ik—q) :al(ﬁ —q) zal(\/%—q) >0

by = a1 —b1q=b1<% —q)=b(Vk—q)

This implies bQ — b1 = bl(\/E— q) — b1 = bl(\/E— q— 1) >0= bg > bl.
The positive integer by is smaller than b;. This contradicts with the definition of b;.

Remark: It is called “infinite descent” because, we can repeat the process above to get

aq as as
k=2 =2 =2 —=...
vk b1 b2 b3

where ag = bok — asq and b3 = ay — bag, - - -. The contradiction happens because by > by > bg > - - -
but in N, we cannot have a strictly decreasing sequence.

Example 3.2.30. Prove that log, 3 is rational.

Proof: There are integers m, n such that
10g2 3 = @
n
with n # 0. That would imply that
P s § o=y O JP,
This implies that an even number equals an odd number. A contradiction.

In general, any log, b where a,b € Z and a, b are mutually prime is irrational, since 2% = y® and
Unique Factorisation Theorem 3.5.21 leads to a contradiction.

Example 3.2.31. Prove that log;, 2 is rational.

Proof.

18



Example 3.2.32. Use proof by contradiction to show that the sum of any rational number and any
irrational number is irrational.

Proof.

Example 3.2.33. Prove that 1 + 3v/2 is irrational.

Proof.

Theorem 3.2.34 (The Infinitude of the Set of Prime Numbers). The set of prime numbers is infinite.

Proof: Suppose the set of prime numbers is finite. Then all the prime numbers can be listed, say,
in ascending order:

p1:27 p2:37 p3:57 p4:77 p5:117 *tty Dn-
Consider the integer

N =pipeps--pp+1>1

By Theorem of Divisibility by a Prime (Theorem 3.5.6), N is divisible by some prime number p. Since
p is prime, p must equal one of the prime numbers py, po, p3, -+ ,pn. Let p = pg for some 1 < k < n

and
p = pp|(N = pipaps - Pk pn+ 1)

=pPEM = p1P2pP3 - Pr Pn+ 1
=pr(m — p1paps - Pk—1Pk+1 - Pn) = 1

for some integer m. This implies 1 can be factorised into two integers which are larger than 1, a
contradiction.
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§3.3 Disproving Statements

Mathematical statements may not always be true. That is why we need to prove them! Sometimes, we

may want to disprove them if we cannot prove them.
Disproving a universal statement may not be difficult if we are able to find a counterexample as

illustrated in Section 3.3.1.
Disproving an existential statement would be tougher since we need to prove that its negation, which

is a universal statement, is true, as demonstrated in Section 3.3.2.

§3.3.1 Disproving Universal Statements with Counterexamples

Disproving a universal statement

Va(P(x) — Q(x)) (3.5)
is the same as assuming that
Vz(P(x) - Q(x)) = F = ~Va(P(zx) = Q(x)) = Jz(P(x)A ~ Q(x)).

Hence, to disprove (3.5) becomes finding a value s, called the counterexample, such that P(s)A ~
Q(s) is true.

Example 3.3.1. Disprove the statement “for real numbers n, if n is even, then ”TJ“Q is even” by finding

a counterexample.

Solution: Formally, we have Vn(even(n) — even(%£2)).
To disprove this statement: Let n = 4. 4 is even but 4‘5—2 = 3 is not even.

Example 3.3.2. Disprove the following statement by finding a counterexample:

For all real numbers a and b, if a®> = b then a = b.

Solution: Formally, the statement can be expressed as
Vavb(a e RAbER = (a®> =b* — a = b))

Though it is of different form from (3.5), to disprove it, we determine its negation
~Vavb(a e RADER = (a> =0 2 a=0b))=3aTb~ (a € RAVER = (a2 =0 = a=1b))
=3aIW(a e RADERA ~ (a®> =b* = a =1D))
=3JaI(a e RADERAG? =b? Aa #b))

This statement is true, i.e. there are @ = 1 and b = —1 such that a®> =12 = 1, »* = (-1)?> = 1 and
a? =b? but @ = 1 # b= —1. The original statement is disproved with the counterexample a = 1 and

b= —l.

Example 3.3.3. Disprove the statement “For real numbers a and b, if @ > b then a? > b2.”

Example 3.3.4. Disprove the following statement

For integers m and n, if 2m + n is even, then m and n are both even.
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Example 3.3.5 (Tutorial 3, Q18). Prove or disprove the following statements:

(a) Every positive integer is the sum of the squares of three integers.

(b) There are 100 consecutive positive integers that are not perfect squares (an integer which can be
written as s? for some integer s).

Example 3.3.6 (Tutorial 3, Q19). Disprove the following universal statements:

(a) For all real numbers a and b, if a < b, then a? < b?.

(b) For all integers m and n, if 2m + n is odd, then m and n are both odd.

Example 3.3.7 (Tutorial 3, Q21). Determine whether the statement is true or false. Justify your answer
with a proof or a counterexample, as appropriate.

(a) The product of any two even integers is even.

(b) For all integers m, if m > 2, then m? — 4 is composite.

(c) For all integers n and m, if n — m is even, then n3 — m? is even.

2

(d) For all integers n, n® —n + 11 is a prime number.

(e) The quotient of any two rational numbers is a rational number.

(f) If r and s are any two rational numbers, then “* is rational.
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§3.3.2 Disproving Existential Statements

Disproving an existential statement

Jx(P(z) A Q(x)) (3.6)

is the same as assuming that

Jz(P(z) ANQ(x)) = F = ~ Jx(P(x) A Q(z)) = Vz(P(x) =~ Q(x)).

Hence, to disprove (3.6) becomes making sure that nothing can make P(z) A Q(x) true.

Example 3.3.8. Disprove the following quantified statement over the real number domain:
Jz((x €ER)A (22 + 24+ 1 =0)).

Note: In Topic 1, I regard the z? + x + 1 = 0 as a predicate, not a statement. Once it is quantified (in
this case), it becomes a statement.

1 3
Disproof: The negation is true: Vz((x € R) — ((xz + 5)2 + Z) > 0).

Example 3.3.9. Show that there is no positive integer n such that n? 4 3n + 2 is prime.

Proof: Let P(n) be the predicate denoting “n is prime”. Then
~3n((n > 0)AP((n®+3n+2) =VYn((n > 0) -~ P((n*+3n+2)

is true since
n+3n+2=mn+1)n+2), n>1

is a product of integers n+1 > 1 and n + 2 > 1.
By Definition 3.1.8 (a prime number can only have two factors 1 and itself), n? + 3n + 2
has four factors 1, n 4+ 1, n + 2, n? + 3n + 2 and is not prime.

Example 3.3.10 (Tutorial 3, Q17). Disprove the existential statement “There exists an integer n such
that 6n2 + 27 is prime.”

Example 3.3.11 (Tutorial 3, Q20). Consider the following existential statement:

There exists an integer  with > 4 such that 2z — 5z + 2 is prime. (*)

1. Give a negation of the statement (*).

2. Prove that the statement (*) is false by showing that its negation is true.
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§3.4 Mathematical Induction

Mathematical induction is a method of proof developed to check conjectures about the outcomes of
processes that occur repeatedly and according to definite patterns based on the induction principle

(page 2).

Let P be a predicate of integer k. Proving a statement
VYn(n > a — P(n))
by mathematical induction is a two-step process:
1. Basis Step: Show that the P(a) is true for a particular integer a.

2. Inductive Step: Show that for all integers k > a, if P(k) is true then P(k + 1) is true.

To perform this step, assume that the property is true for n = k for some integer k£ > a. This
supposition is called the inductive hypothesis. Then show that the property is true for n = k+1.

It is based on the following principle of ordinary mathematical induction.

Theorem 3.4.1 (Principle of Ordinary Mathematical Induction). Let P(n) be a predicate that is defined
for integers n, and let a be a fixed integer. Suppose the following two statements are true:

1. P(a) is true.
2. For all integers k > a, if P(k) is true then P(k + 1) is true.
Then the statement “for all integers n > a, P(n)” is true.

Example 3.4.2 (Induction involving equality). Use mathematical induction to prove that the sum of the
first n odd positive integers is n? for n > 1.

Proof:
Let P(n): “1+3+4---+ (2n — 1) = n?".
Basis step: Show that P(1) is true.

LHS of P(1) =1, RHS of P(1) =1? =1 = LHS = RHS

So P(1) is true.
Inductive step: Suppose that P(k) is true for a positive integer k > 1, that is, assume

1+3+5+ -+ (2k—1) =k
and we try to show
Plk+1): 14345+ +2k—1D+2Fk+1)-1)=(k+1)>2%

is true.
LHSof P(k+1)=1+4+34+5+---+(2k—1)+(2k+ 1)

using assumption

= k2 4+ (2k+1) = (k+1)2 = RHS of P(k +1).

Hence P(k + 1) is true.
By mathematical induction, P(n) is true for all n > 1.
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Example 3.4.3 (Induction involving equality). Use mathematical induction to prove that
n

1
Zi:1+2+...+n:@'

=1

Proof.

n
Example 3.4.4. Use mathematical induction to prove that the equality Z 3= [ 5

i=1

Proof.
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We have learn the special cases of binomial theorem, i.e.
(z+y)? =2 +2zy+¢°
(z +y)3 = 23 + 322y + 3292 + 93
(z +y)* = 2* + 423y + 6222 + 4zy® + o2
where the coefficients above are related to Pascal triangle.

Theorem 3.4.5 (Binomial Theorem, must memorised). Let n > 0 [Epp, 2020, Chapter 9].

n
n o n n n
($+y)n — Z <i>l‘n—zyz =" + <1>mn—1y+ <2>$n—2y2 Aams <n_ 1>l,yn—1 + g™
1=0

Proof:
Basis step

LHS = (z +y)° =1; RHS:<8>J:OyO:1

Inductive step

k
Assume that (z +y)* = Z <k> i,

, 7
=0

k k
k+1 __ _ k i, k—i+1, i k—i, i+1
(z+y) =@+t (z+y) —(E y +y) = 20<i>w y+§ <Z>x Y

$
k]
_ k k+1 k k—i+1_ i k 7 Z+1 k k+1
—<O>x +Z<Z>az y—l—z +{ )y
k

1=

i=1
E-1] .
_l,lﬁ-l_{_ Z <i+1> —(i+1)+1 z+1+z<> k21+1+yk+1
1 =0

k k41
_(E+1N ke k+1\ ki1 i k+1\ pn k+1 1=l i
_<0>‘T +Z v )Y T ke) 2 g

/=0

() () =Gsmron eyt - e ey
_ k(kil.)---(k*i%—l) [@+1] _ (k.:+1>
i(i—1)---1 i+1 i+1

Example 3.4.6. Use mathematical induction or direct proof to prove that for all integers n > 1, 22" — 1
is divisible by 3.
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Proof by mathematical induction:
Let P(n): “3|22" — 17,
Basis Step: Show that P(1) is true.
22(1) — 1 = 3 is divisible by 3. So P(1) is true.
Inductive Step:
Suppose P(k) is true for a positive integer & > 1, that is 3|22k — 1. We must show that 22(:+1) _1

is divisible by 3.
3|22k — 1 = 22k — 1 = 3q for some integer a.
= 3(2%) + 30 = 3(2% + a) = 3[22++D) — 1,

Thus P(k + 1) is true.
Hence, by mathematical induction, P(n) is true for all integers n > 1.

Proof: By using the Binomial Theorem, we have

22”—124"—1:(3+1)”—1:3"+<T>3"*1+---+( "

i Qe ()

By definition 3|(22" — 1).

>3—|—1—1

n—1

Example 3.4.7 (Induction with inequality). Use mathematical induction to prove that

2n+1 < 2", for all integers n > 3.

Proof.

Refer to Tutorial 3 for answers to June 2024 Final Exam Q3 solutions.
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§3.5 Divisibility

Divisibility is the basic property of integers. In this section, various concepts and proof techniques
associated with divisibility used in Section 3.2 and Section 3.4 are discussed.

Definition 3.5.1. If n and d # 0 are integers, then n is divisible by d if there is an integer k such that
n = dk. In this case, n is called the multiple of d. d is called the factor or divisor of n. We also say
that d divides n and denote it by d|n. If d does not divide n, we denote it as d t n.

Remark 3.5.2. Based on our definition, divisors are assumed to be nonzero. If d is a divisor of n, then
n is also divisible by —d (indeed, n = dk implies that n = (—d)(—k)), so that the divisors of an integer
always occur in pairs. To find all the divisors of a given integer, it is sufficient to obtain the positive
divisors and then adjoin to them the corresponding negative integers. For this reason, we shall usually
limit ourselves to a consideration of positive divisors.

Example 3.5.3. 1. If a and b are integers, is 4a + 4b divisible by 27

2. Does 4 divides 187

3. Is 32 a multiple of —167

4. Is —9 a factor of 547

5. Suppose a and b are positive integers and alb. Is a < b?

§3.5.1 Properties of Divisibility

It will be helpful to list some immediate consequences of Definition 3.5.1.
Theorem 3.5.4. For integers a, b, ¢, the following hold:

(a) al0, 1|a, ala.

(b) all iff a = 1.

(¢) If alb and c|d, then ac|bd.

(d) If a|b and blc, then alc. (Transitivity of Divisibility)

(e) alb and bla iff a = £b.

(f) If alb and b # 0, then |a| < |b).

(9) If a|lb and alc, then a|(bx + cy) for arbitrary integers x and y.

Proof:

(a) 0=0(a), a =1(a), a = a(1).

(b) a|]l = 1=ak=a= =+l
a==+1=1=a? = a|l by definition.

(c) Suppose a|b and c|d, by definition, b = aky, d = cky. Hence, bd = ac(k1kz). By definition, ac|bd.
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(d) Suppose a, b and c are integers such that a|b and b|c. Then there are integers r and s such that

Hence, ¢ = (ar)s = a(rs) = ak, where k = rs is an integer since it is a product of integers r and
s. Thus alc.

(e) Suppose alb, bla, by definition, b = ak; and a = bky, so b = bkaok;. Hence kok; = 1 and
ko = k1 = +1. Therefore, a = bky = £b.

(f) If a|b, then there exists an integer ¢ such that b = ac; also, b # 0 implies that ¢ # 0. Upon
taking absolute values, we get |b| = |ac| = |al|c|. Because ¢ # 0, it follows that |c| > 1, whence
6] = lallc| = |al.

(g) The relations alb and a|c ensure that b = ar and ¢ = as for suitable integers r and s. But then
whatever the choice of x and v,

bx + cy = arz + asy = a(rz + sy).

Because rx + sy is an integer, this says that a|(bx + cy), as desired.

Remark 3.5.5. It is worth pointing out that property (g) of Theorem 3.5.4 extends by induction to
sums of more than two terms. That is, if a|by for k = 1,2, ...,n, then a|(byz1 + - - - + byxy,) for all integers
Llyeeey .

Theorem 3.5.6 (Divisibility by a Prime). Any integer n > 1 is divisible by a prime number.

Proof: Suppose n is a integer that is greater than 1. If n is prime, then n is divisible by a prime
number (namely itself), and we are done.
If n is not prime, then
n =1rTpso

for some integers 1 < rg < n and 1 < 59 < n. By definition of divisibility, ro|n.
If rg is prime, then rg is a prime number that divides n, and we are done.
If rg is not prime, then
To = T181

for some integers 1 < r1 < rgp and 1 < s1 < 79. By definition of divisibility, ri|ro. But ro|n.
Consequently, by transitivity of divisibility (Theorem d), r1|n.
If r1 is prime, then 1 is a prime number that divides n, and we are done.
If r1 is not prime, then
M = T282

for some integers 1 < ry < r; and 1 < sy < r1. By definition of divisibility, ra|r;. But rq|n.
Consequently, by transitivity of divisibility (Theorem d), ra|n.

If ro is prime, then r9 is a prime number that divides n, and we are done.

If r9 is not prime, then we may repeat the above process by factoring ry as r3s3. Continuing in
this way, factoring successive factors of n until we find a prime factor.

We must succeed in a finite number of steps because each new factor is both less than the
previous one and greater than 1, and there are fewer than n integers strictly between 1 and n
(justified by well-ordering principle). Thus we obtain a sequence rg, r1, 79, -, Iy, Where k > 0,
I<rg<rgi1<---<ra<ry<rg<n,andr;nfori=0,1,2,--- k. The condition for termination
is that r should be prime. Hence 7} is a prime number that divided n.
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§3.5.2 Greatest Common Divisor

An integer d is said to be a common divisor/factor of two integers a and b if d|a and d|b.
Because 1 is a divisor of every integer, 1 is a common divisor of a and b; hence, the set of positive
common divisors for a and b is nonempty.

The most important common divisor is the greatest common divisor/factor (abbreviated as
ged(a, b)) which has applications in modular arithmetic (Section 3.6) and thus encryption algorithms
such as RSA (Section 3.8.4).

Definition 3.5.7. Let a and b be given integers, with at least one of them different from zero. The
greatest common divisor of a and b, denoted ged(a,b), is an integer d with the following properties:

1. d is a common divisor of both a and b, i.e. d|a and d|b.
2. For all integers ¢, if ¢|a and c|b, then ¢ < d.

Example 3.5.8. Determine the greatest common divisor of —12 and 30.

Solution:
Positive divisors of —12 ={ 1, 2, 3,4, 6, 12 }
Positive divisors of 30 = { 1, 2, 3, 5, 6, 10, 15, 30 }
Positive common divisors of —12 and 30 are { 1, 2, 3, 6 }.
Because 6 is the largest of these integers, gcd(—12,30) = 6 by definition.

Example 3.5.9. ged(—5,5) =5, ged(8,17) =1, ged(—8,—36) = 4.
The next theorem indicates that ged(a, b) can be represented as a linear combination of a and b.

Theorem 3.5.10. Given integers a and b, not both of which are zero, there exist integers x and y such
that
ged(a, b) = ax + by.

Proof: Consider the set S of all positive linear combinations of a and b:
S = {au + bv|au + bv > 0; u, v integers}

Notice first that S # (). For example, if a # 0, then the integer |a| = au + b- 0 lies in S, where we
choose u =1 or w = —1 according as a is positive or negative.

By virtue of the Well-Ordering Principle, S must contain a smallest element d. Thus, from the
very definition of S, there exist integers x and y for which d = ax + by.

We claim that d = ged(a, b).

Taking stock of the Division Algorithm, we can obtain integers ¢ and r such that a = qd + r,
where 0 < r < d. Then r can be written in the form

r=a—qd=a—qlax +by) = a(l — qr) + b(—qy).

If r were positive, then this representation would imply that r is a member of S, contradicting the fact
that d is the least integer in S (recall that r < d). Therefore, r = 0, and so a = qd, or equivalently
d|a.

By similar reasoning, d|b, the effect of which is to make d a common divisor of a and b.

Now if ¢ is an arbitrary positive common divisor of the integers a and b, then part (g) of The-
orem 3.5.4 allows us to conclude that c|(ax + by); that is, ¢|d. By part (f) of the same theorem,
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¢ =|c| < |d| = d, so that d is greater than every positive common divisor of a and b. Piecing the bits
of information together, we see that d = ged(a, b) by Definition 3.5.7.

A perusal of the proof of Theorem 3.5.10 reveals that the greatest common divisor of ¢ and b may be
described as the smallest positive integer of the form ax + by.

Example 3.5.11. Consider the case in which ¢ = 6 and b = 15. Here, the set S becomes
S = {6u+ 15v|u,v € Z} = {6(—2) +15-1,6(—1) +15-1,6 -1+ 15-0,---} = {3,9,6,--- }.
We observe that 3 is the smallest integer in S, whence 3 = ged(6, 15).

The nature of the members of S appearing in this illustration suggests another result, which we give
in the next corollary.

Corollary 3.5.12. If a and b are given integers, not both zero, then the set T = {ax + by|z,y € Z} is
precisely the set of all multiples of d = ged(a, b).

Proof: =: Because d|a and d|b, we know that d|(ax + by) for all integers x, y. Thus, every member
of T is a multiple of d.

«<: Conversely, d may be written as d = axg + byg for suitable integers xzg and yg, so that any
multiple nd of d is of the form

nd = n(azo + byo) = a(nzo) + b(nyo).

Hence, nd is a linear combination of a and b, and, by definition, lies in T'.

It may happen that 1 and —1 are the only common divisors of a given pair of integers a and b, whence
ged(a,b) = 1. E.g. ged(2,5) = ged(—9,16) = ged(—27,—35) = 1. This situation occurs often enough to
prompt a definition.

Definition 3.5.13. Integers a and b, not both of which are zero, are called relatively prime or mutually
prime or coprime if ged(a,b) = 1. Integers aq,as,as, - ,a, are (pairwise) relatively prime if
ged(ag, aj) =1 for all integers i and j with 1 <4, j <n, and i # j.

The following theorem characterises relatively prime integers in terms of linear combinations.

Theorem 3.5.14. Let a and b be integers, not both zero. Then a and b are relatively prime iff there exist
integers x and y such that 1 = ax + by.

Proof:

=: If a and b are relatively prime so that ged(a,b) = 1, then Theorem 3.5.10 guarantees the
existence of integers x and y satisfying 1 = az + by.

<: As for the converse, suppose that 1 = az+by for some choice of x and y, and that d = ged(a, b).
Because d|a and d|b, Theorem 3.5.4 yields d|(ax + by), or d|1. Inasmuch as d is a positive integer,
this last divisibility condition forces d to equal 1 (part (b) of Theorem 3.5.4 plays a role here), and
the desired conclusion follows.

This result leads to an observation that is useful in certain situations; namely,

Corollary 3.5.15. If ged(a,b) = d, then ged(a/d,b/d) = 1.
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Proof: The fractions a/d and b/d are integers because d is a divisor both of a and of b.
Now, knowing that ged(a,b) = d, it is possible to find integers = and y such that d = ax + by.
Upon dividing each side of this equation by d, we obtain the expression

a b

l= (a)fﬁ + (E)y'

Because a/d and b/d are integers, an appeal to the theorem is legitimate. The conclusion is that a/d
and b/d are relatively prime.

Example 3.5.16. As an illustration of this corollary, observe that
ged(—12,30) = 6 = ged(—12/6,30/6) = ged(—2,5) =1

Corollary 3.5.17. If a|c and b|c, with ged(a,b) = 1, then ab|c.

Proof: Inasmuch as alc and b|c, integers r and s can be found such that ¢ = ar = bs. Now the
relation ged(a,b) = 1 allows us to write 1 = ax + by for some choice of integers = and y. Multiplying
the last equation by ¢, it appears that

c=c-1=c(ax + by) = acx + bey.
If the appropriate substitutions are now made on the right-hand side, then

¢ = a(bs)x + b(ar)y = ab(sx + ry) or, as a divisibility statement, ablc.

Our next result seems mild enough, but is of fundamental importance.

Theorem 3.5.18 (Euclid’s lemma). If albe, with ged(a,b) = 1, then alc.

Proof: From Theorem 3.5.10, writing 1 = ax + by, where x and y are integers. Multiplication of this
equation by ¢ produces
c=1-c=(ax + by)c = aczr + bey.

Because alac and albe, it follows that a|(acx 4 bey), which can be recast as alc.

The subsequent theorem often serves as a definition of ged(a,b). The advantage of using it as a
definition is that order relationship is not involved. Thus, it may be used in algebraic systems having no
order relation.

Theorem 3.5.19. Let a, b be integers, not both zero. For a positive integer d, d = ged(a,b) iff
(a) dla and d|b.
(b) Whenever cla and c|b, then c|d.

Proof:

=: Suppose that d = ged(a,b). Certainly, d|a and d|b, so that (a) holds. In light of Theo-
rem 3.5.10, d is expressible as d = ax + by for some integers x,y. Thus, if ¢|a and ¢|b, then c|(ax + by),
or rather c|d. In short, condition (b) holds.

<: Let d be any positive integer satisfying the stated conditions. Given any common divisor ¢ of
a and b, we have c|d from hypothesis (b). The implication is that d > ¢, and consequently d is the
greatest common divisor of a and b.
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§3.5.3 Unique Factorisation Theorem & Standard Factor Form

Prime numbers are special factors because they are the only factors greater than 1. Hence, a natural
question arises, how many prime numbers are there? Can integer greater than one be written as a
product of prime(s)?

Proposition 3.5.20. If p is a prime and a,b € Z such that p|ab, then pla or plb.

Proof: Assume p{a. Then ged(a,p) = 1. By Euclid’s Lemma 3.5.18, p|b. O

Any integer > 1 is either prime or can be written as a product of primes. The following theorem
characterises this property.

Theorem 3.5.21 (Unique Factorisation Theorem for the Integers). Given any integer n > 1, there
18 a positive integer k, distinct prime numbers p1,po,- -+ ,pr, and there are positive integers e1, eg, «--,
er such that

n=py'pyps Pyt
and any other expression of n as a product of prime numbers is identical to this except, perhaps, for the
order in which the factors are written.

Definition 3.5.22. Given any integer n > 1, the standard factored form of n is an expression of the
form

— . 7€13E25- €3 €L
N=p PyPg " "Pp, P1L<Pp2<--<DPg,
where k is a positive integer; p1,po, - , pir are prime numbers; e1,e9, - - - , € are positive integers.

Standard Factored Form in Standard ML

(* https://wiki.haskell.org/99 _questions/Solutions/35 x*)
fun primeFactors n =

let
fun primeFactorsAux n f = if f*xf > n then
[n] (* n is a prime if it does not have smaller factors *)
else if (n mod f = 0) then
[f] @ (primeFactorsAux (n div f) f)
else
primeFactorsAux n (f + 1)
in

primeFactorsAux n 2
end;

fun printIntlList x =

let
fun join (s : int list) = (* Taken from topiclttbl.sml *)
case s of
[] => nn
| x::xs => if xs=[] then (Int.toString x) else (Int.toString x)~" * "~ (join xs)
in
print (join x ~ "\n")
end
val _ = printIntlList (primeFactors 28234423783);

Example 3.5.23. Suppose m is an integer such that
8:-7-6-5-4-3-2-m=17-16-15-14-13-12-11-10.

Does 17|m?
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Example 3.5.24. In Topic 1, Example 1.1.1, write 28234423783 in standard factored form.

28234423783 = 229 x 641 x 192347

Solution: Using the Standard ML program, we obtain a standard factored form

Example 3.5.25. Write 3300 in standard factored form.

§3.5.4 Quotient-Remainder Theorem, div and mod

Theorem 3.5.26 (Quotient-Remainder Theorem). Given any integer n and positive integer d, there

exist unique integers q and r such that

n=qd+r,

0<r<d.

Definition 3.5.27. With the notation of Theorem 3.5.26, r is called the remainder of the division of
n by d. If r = 0, we say that n is a multiple of d, or that n is divisible by d, or d is a divisor of n,
or that d divides n, or that d is a factor of n. The number ¢ is called the quotient of n by d and is

denoted n div d.

We can also define the modulo operator:

n mod d=r.

Example 3.5.28. For each values of n and d, find integers ¢ and r such that n =dq+r and 0 <r < d.

n| d q r q, v with Standard ML
() 54| 4 54 div 4, 54 mod 4
(i) | =54 | 4 54 div 4, “54 mod 4
(iii) | 54 | 70 54 div 70, 54 mod 70
(iv) | =54 | 70 “54 div 70, "54 mod 70
(v 321 9 32 div 9, 32 mod 9

Example 3.5.29. What day of the week will it be 1 year from today?
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§3.5.5 Floor and Ceiling

It is often convenient to transform the problems of divisibility from the set of integers Z to the set of real
numbers R and vice versa. The two operations, floor and ceiling, that relates Z and R are defined below.

Definition 3.5.30. Given any real number x, the floor of x, denoted |z, is defined as follows:
|z | := the unique integer n such that n <z <n + 1.

Symbolically,
lz] =n, n<zx<n+1.

Definition 3.5.31. Given any real number z, the ceiling of z, denoted [x], is defined as follows:
[2] := the unique integer n such that n — 1 < z < n.

Symbolically,
[z] =n, n—1<z<n.

Example 3.5.32. Compute |z] and [z]| for each of the following values of z.

i |z] [x] Standard ML
(1) 25/4 floor (25.0/4.0); ceil (25.0/4.0);
(i) 0.999 floor (0.999); ceil (0.999);
(iii) | 0.999.-- floor (1.0); ceil (1.0);
(iv) —2.01 floor (72.01); ceil (72.01);
(v |—2] + L%j already in integer form, not supported

Example 3.5.33. The 1,370 soldiers at a military base are given the opportunity to take buses into town
for an evening out. Each bus holds a maximum of 40 passengers.

1. For reasons of economy, the base commander will send only full buses. What is the maximum
number of buses the base commander will send?

2. If the base commander is willing to send a partially filled bus, how many buses will the commander
need to allow all the soldiers to take the trip?

Example 3.5.34. If £ is an integer, simplify |k| and [k + %J as an expression of k.

Example 3.5.35. Is the following statement true or false?

For all real numbers z and y, |z +y| = |z]| + |y].
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Theorem 3.5.36. Vx € R, Vm € Z, |x + m| = |z| + m.

Proof: For any given real number z and any integer m. Let n = [z]. By definition of floor, n is an
integer and n <z <n+ 1. Add m to all sides gives

n+m<z+m<n+m-+1.

Now n 4+ m is an integer, and so, by definition of floor, the left-hand side of the equation to be shown
is

lx+m] =n+m=|x| +m. O

Theorem 3.5.37. For any integer n,

if n is even,

%1, if n is odd.

Proof: When n is odd, n = 2k + 1 for some integer k and

Lngvk;lJ :{k+%J :k+EJ :k+0:k:”;1

using Theorem 3.5.36.
When n is even, n = 2k for some integer k£ and

31- (3] --e

U

Theorem 3.5.38 (Raymond T. Boute). If n is an integer and d is a nonzero integer, and if ¢ = L%j
andr =mn— d[%j, then
n=dg+r, 0<r<d.

Proof: Suppose n is a nonnegative integer, d is a positive integer, ¢ = |5 | and » =n — d|%]. Then

wer=alz] s (o-al3)) =

and
q= L%J :>q§%<q+1:>dq§n<dq+d:>0§n—dq<d.
But n — dg =r. Hence 0 < r < d. O
Remark 3.5.39. From this we have n div d = L%J and n mod d=n — \dH%J
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§3.6 Modular Arithmetic

Using the modular arithmetic, we can define “congruence”, an equivalence relation over Z (Topic 4).
Modular arithmetic also has applications in cryptography (Section 3.8) and random number genera-
tion (Section 3.9).

§3.6.1 Properties of Congruence

Definition 3.6.1. Let a, b € Z and n € Z*. We say a and b are congruent modulo n provided that
n|(a —b). We write a = b (mod n) or a =, b which means a — b = kn for some integer k.

When n 1 (a — b), we say that a is incongruent to b modulo n, and in this case we write a Z b
(mod n).

Remark 3.6.2. Note that = for number theory is different from the logical equivalence found in mathe-
matical logic which is used in Topics 1 and 2.

Example 3.6.3. For n =7,
3=24 (mod?7), -31=11 (mod7), —15=—-64 (mod 7)

because 3 — 24 = (—3)7, =31 — 11 = (—6)7, and —15— (—64) =7 - 7.
25 # 12 (mod 7), because 7 fails to divide 25 — 12 = 13.

Example 3.6.4. 1. 12=7 (mod 5)? ........... | |

2. —6=—-8 (mod4)? ... ‘ ‘

3.0=—6 (mod 3)?7 ..ooiiiiiiii | |

Theorem 3.6.5. Let a, b, and n > 1 be any integers. The following statements are all equivalent:
n|(a — b)

a=b (mod n)

a =b+ kn for some integer k

a and b have the same (nonnegative) remainder when divided by n

S R Y

a mod n=> mod n

Remark 3.6.6. e Two integers are congruent modulo 2 when they are both even or both odd
e Any two integers are congruent modulo 1
e Congruence modulo 1 is not particularly interesting, the usual practice is to assume that n > 1.

Given an integer a, let ¢ and r be its quotient and remainder upon division by n, so that
a=qn+r, 0<r<n.

Then, by definition of congruence, a = r (mod n). Because there are n choices for r, we see that every
integer is congruent modulo n to exactly one of the values 0, 1,2,...,n — 1; in particular, a = 0 (mod n)
iff n|a. The set of n integers 0, 1, 2,..., n— 1 is called the set of least nonnegative residues modulo n.

Theorem 3.6.7. Va,b € Z, a = b (mod n) iff a and b leave the same nonnegative remainder when divided
by n.

Theorem 3.6.8 (Basic Arithmetic of Congruences). Let n > 1 be fized and a,b, c,d be arbitrary integers.
Then the following properties hold:
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(a) a=a (mod n).
(b) If a =b (mod n), then b=a (mod n).

)
(¢) If a=b (mod n) and b = ¢ (mod n), then a = ¢ (mod n).
(d) If a=0b (mod n) and ¢ =d (mod n), then a+c=b+d (mod n) and ac = bd (mod n).
(e) If a=b (mod n), then a4+ c=b+ ¢ (mod n) and ac = bc (mod n).
(f) If a=b (mod n), then a® = b* (mod n) for any positive integer k.

Proof:

(a) For any integer a, we have a —a = 0-n, so that a = a (mod n).

(b) If a=b (mod n), then a—b = kn for some integer k. Hence, b—a = —(kn) = (—k)n and because
—k is an integer, this yields property (b).

(c) Suppose that a = b (mod n) and also b = ¢ (mod n). Then there exist integers h and k satisfying
a—b=hnand b—c= kn. It follows that
a—c=(a—b)+(b—c)=hn+kn=(h+k)n

which is @ = ¢ (mod n) in congruence notation.
(d) Similar to (c), if @ = b (mod n) and ¢ = d (mod n), then we are assured that a — b = kjn and
¢ — d = kon for some choice of k1 and k9. Adding these equations, we obtain

(a+c)—(b+d)=(a—b)+(c—d) =kin+ kon = (k1 + ko)n

or, as a congruence statement, a +c¢ = b+ d (mod n).

As regards the second assertion of property (d), note that
ac = (b+ kin)(d + kan) = bd + (bko + dk1 + kikon)n
Because bko + dk1 + k1kon is an integer, this says that ac — bd is divisible by n, whence ac = bd
(mod n).
(e) The proof of property (e) is covered by (d) and the fact that ¢ = ¢ (mod n).

(f) The statement certainly holds for £ = 1, and we will assume it is true for some fixed k. From
(d), we know that a = b (mod n) and a* = b* (mod n) together imply that aa® = bb* (mod n),
or equivalently a**1 = b**! (mod n). Hence, the induction step is complete.

Corollary 3.6.9 (Congruence n is an Equivalence Relation). The congruence relation =, is an
equivalence relation on Z and the map {0,1,--- ,n—1} =2/ =,, r— 7 =r+nZ is a bijection.

Proof: From the Basic Arithmetic Theorem 3.6.8 (a), (b) and (c), we know that =, is reflexive,
symmetric and transitive. Therefore =,, is an equivalence relation.

The map is well-defined since for every r =0,1,--- ,n— 1, there is a set r 4+ nZ corresponding to
it.

To show that it is bijection, we show that it is an injection: assume 7 = 5 with 0 < r, s < n.
Then, by definition, r = s (mod n), so n|r — s and |r — s| < n, therefore r = s.

To show that the map is a surjection: Let a € Z/ =,,, by definition, a = {a + nk : k € Z}, by
Quotient-Remainder Theorem, there is an r € {0,1,--- ,n — 1} such that a = r + nm, hence r =, a
and by definition, 7 = a.
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In mathematics, Z/ =,, is denoted Z/nZ.

Modular arithmetic is important because all sorts of questions that are difficult to answer with
respect to Z are effectively (though not necessarily efficiently, if n is large) decidable with respect to
Z/nZ. 1f we can show in this way that something is impossible over Z/nZ, then this often implies a
negative answer for Z, too.

Some of the elementary properties of equality (reflexive, symmetry and transitivity) will make multi-
plication simple with congruence.

Corollary 3.6.10. Let a, b, and n be integers with n > 1. Then

ab = [(a mod n)(b mod n)] (mod n)

or, equivalently,
ab mod n = [(a@ mod n)(b mod n)] mod n

In particular, if m is a positive integer, then
am = [(a mod n)m| (mod n).

Note: Differentiate between the congruence relation (mod n) and the operation “mod n”.

Example 3.6.11. Show that 41 divides 220 — 1.

Proof: We begin by noting that 2° = —9 (mod 41), whence (2°)* = (—9)* (mod 41) by Theo-
rem 3.6.8(f); in other words, 22° = 81 - 81 (mod 41). But 81 = —1 (mod n), and so 81 -81 = 1
(mod 41). Using parts (b) and (e) of Theorem 3.6.8, we finally arrive at

220 _1=81-81-1=1-1=0 (mod 41)

Thus, 41|220 — 1, as desired.

Example 3.6.12. Calculate 1243 mod 713.

Solution: When the power is larger, we need to get the “binary” decomposition of the power:
43=32+8+2+1=2"+2°+2+1

so that we have

12%3 mod 713 = [(12%?)(12%)(12%)(12)] mod 713
= [(123% mod 713)(12% mod 713)(12? mod 713)(12 mod 713)] mod 713
= (485)(629)(144)(12) mod 713 = 527152320 mod 713 = 48

where
122 mod 713 = 144
12% mod 713 = 144* mod 713 = 629
1216 mod 713 = (692)% mod 713 = 639

1232 mod 713 = (639)% mod 713 = 485

The method mentioned above is not how real-world algorithm performs calculations.
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An implementation of modular exponentiation in Standard ML

fun powMod a n m = let
fun f _ 0 acc = acc
| £f x e acc = let
val x2 = x*x mod m
val g = e div 2
val m2 = if (e mod 2 = 1) then (x*acc) mod m else acc
in (

print ("x"2=""(Int.toString x2)""; q=""(Int.toString q)~"; ");

print ("m2=""(Int.toString m2)~"\n");
f x2 q m2 )
end
in
(f ((abs a) mod m) n 1) mod m
end

(* Example 3.6.12 x)
val = print (Int.toString (powMod 12 43 713) ~ "\n")

Example 3.6.13. Work through Example 3.6.12 using powMod algorithm.
Solution: The initial values z = 12, ¢ = 43, m2=1.

@ q/2 g mod 2 m2
122 = 144 =415 144 43/2=21 1 12
1442 = 20736 =713 59 | 21/2=10 1 12 x 144 = 1728 =713 302
592 = 3481 =713 629 10/2=5 0 302
6292 = 595641 =713 639 | 5/2=2 1 302 x 629 = 189958 =713 300

Example 3.6.14. Calculate 144* mod 713

Theorem 3.6.15 (Fermat’s Little Theorem). If p is any prime number and a is any integer, then a? = a
(mod p). If pta, then a?~* =1 (mod p).

Example 3.6.16. Calculate 71 mod 17.
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§3.6.2 Euclidean Algorithm

The Euclidean algorithm (also called Euclid’s algorithm) is an efficient method for computing the
greatest common divisor of two integers. It is named after the Greek mathematician Euclid, who
described it in Books VII and X of his Elements (https://en.wikipedia.org/wiki/Euclid27s_
Elements).

The algorithm has many theoretical and practical applications. It is a key element of the RSA
algorithm (Section 3.8.4). It is used to solve Diophantine equations, such as finding numbers that
satisfy multiple congruences (Chinese remainder theorem) or multiplicative inverses of a finite field.
It can also be used to construct continued fractions, in the Sturm chain method for finding real
roots of a polynomial, and in several modern integer factorisation algorithms. Finally, it is a basic
tool for proving theorems in modern number theory, such as Lagrange’s four-square theorem and the
fundamental theorem of arithmetic (unique factorisation).

The Euclidean algorithm is based on the following two properties: Let a,b,q,r € Z
e If a > 0 then ged(a,0) = a.
e Ifb#0,g>0,7r>0,a=bqg+r then ged(a,b) = ged(b,7)

An implementation of Kuclidean algorithm in Standard ML

(* Euclidean Algorithm for GCD *)
fun gecd (a, 0) a
| gecd (a, b) gcd (b, a mod b)

Example 3.6.17. Use the Euclidean algorithm to find ged (330, 156).

Solution:
ged(330,156) = ged(156,18)  [330 = 156(2) + 18]
= ged(18,12) [156 = 18(8) + 12]
= ged(12,6) [18 = 12(1) + 6]
= ged(6,0) [12 =6(2) + 0]

Definition 3.6.18. An integer d is said to be a linear combination of integers a and b if there exist
integers s and t such that as + bt = d.

Theorem 3.6.19. For all integers a and b, not both zero, if d = ged(a, b), then there exist integers s and
t such that as + bt = d.

Example 3.6.20. Express gcd (330, 156) as a linear combination of 330 and 156.

Solution: From Example 3.6.17, 6 = 18 — 12
= 18 — [156 — 8(18)]
= 18+ (—1)(156) + 8(18)
= 9(18) 4 (—1)(156)
= 9[330 — 2(156)] + (—1)(156)
= 9(330) + ( (156) + (—1)(156)
= 9(330) + ( (156)
Hence ged(330,156) = 9(330) + (—19)(156).

~18)
~19)

Example 3.6.21. Show that 660 and 43 are relatively prime, and prove that the statement Ju3v(660u +
43v = 1) is true in the integer domain.
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Theorem 3.6.22. If ca = ¢b (mod n), then a =b (mod n/d), where d = ged(c,n).

Theorem 3.6.22 gets its maximum force when the requirement that ged(c,n) = 1 is added, for then
the cancellation may be accomplished without a change in modulus.

Corollary 3.6.23. If ca = ¢b (mod n) and ged(e,n) =1, then a =b (mod n).
Corollary 3.6.24. If ca = ¢b (mod p) and p 1 ¢, where p is prime, then a = b (mod p).
Example 3.6.25. 33 =15 (mod 9) = 3-11=3-5 (mod 9) = 11 =5 (mod 3)

Corollary 3.6.26. For all integers a and n, if gcd(a,n) = 1, then there exists an integers s such that
as =1 (mod n). The integer s is called the inverse of a modulo n.

Example 3.6.27. 1. Find an inverse for 43 modulo 660. That is, find an integer s such that 43s =1
(mod 660).

2. Find a positive inverse for 3 modulo 40. That is, find a positive integer s such that 3s = 1 (mod 40).

§3.6.3 Linear Congruences
Solving a general equation in modular arithmetic is impossible. For a linear equation

ar=b (mod n) (3.7)

41



which is is called a linear congruence, the theory of linear congruences allows us to find a solution
xo € Z for which azg = b (mod n).

By definition, axg = b (mod n) iff n|lazg — b or axg — b = nyg for some integer yo. Thus, the problem
of finding all integers that will satisfy the linear congruence (3.7) is identical with that of obtaining all
solutions of the linear Diophantine equation

ar —ny = b. (3.8)

Theorem 3.6.28. The linear congruence (3.7) has a solution iff d|b, where d = ged(a,n). If d|b, then it
has d mutually incongruent solutions modulo n.

Proof: Note that the given congruence is equivalent to the linear Diophantine equation ax — ny = b.
From Theorem 2.4.4 of Topic 2, it is known that the latter equation can be solved iff d|b; moreover,
if it is solvable and xg, yq is one specific solution, then any other solution has the form

e=mg+ ot =1+ —t
— &0 d’ Y =10 d

for some choice of t.
Among the various integers satisfying the first of these formulae, consider those that occur when
t takes on the successive values t = 0,1,2,....,d — 1:

2n (d—1)n

n
x07m0+_7l‘0+g7"'71‘0+ d

d
We claim that these integers are incongruent modulo n, and all other such integers x are congruent
to some one of them. If it happened that

o + gtl =10+ gt2 (mod n)

where 0 < t1 <ty < d — 1, then we would have

n n
Etl = EtQ (mod n)

Now ged(n/d,n) = n/d, by Theorem 3.6.22 the factor n/d could be cancelled leading to
t1 =t2 (mod d)

which is to say that d|ta — t1. But this is impossible in view of the inequality 0 < to — t1 < d.

It remains to argue that any other solution xg + (n/d)t is congruent modulo n to one of the d
integers listed above. The Division Algorithm permits us to write t as t = gd+7r, where 0 < r < d—1.
Hence

n n n n
m0+gt:xo+g(qd+r):z0+nq+gr5xo+gr (mod n)

with xo + (n/d)r being one of our d selected solutions.

The argument that we gave in Theorem 3.6.28 brings out a point worth stating explicitly: If xg is any
solution of ax = b (mod n), then the d = ged(a, n) incongruent solutions are given by

$0,1‘0+%,IB0+2§,'-- 7$0+(’I’L—1)g.

Corollary 3.6.29. If gcd(a,n) = 1, then the linear congruence ax = b (mod n) has a unique solution
modulo n.

Example 3.6.30. Solve the linear congruence 18z = 30 (mod 42).
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Solution: Because ged(18,42) = 6 and 6 surely divides 30, Theorem 3.6.28 guarantees the existence
of exactly six solutions, which are incongruent modulo 42. By inspection, one solution is found to be
x=4.

The six solutions are as follows:

r=4+(42/6)t =4+ 7t (mod 42), t=0,1,...,5

or, plainly enumerated, x = 4, 11, 18,25, 32,39 (mod 42).

Given relatively prime integers a and n, the congruence ax =1 (mod n) has a unique solution. This
solution is sometimes called the (multiplicative) inverse of a modulo n.

Example 3.6.31. Solve the linear congruence 9z = 21 (mod 30).

To solve a general linear congruence (3.7), we need the https://en.wikipedia.org/wiki/Chinese_
remainder_theorem which is covered in “Number Theory” course.
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§3.7 Application: SMT For Number System

The Satisfiability Modulo Theories (SMT), which is mentioned in Topic 1, can combine the semantic logic
from in Topics 1 and 2 and some basic arithmetic of the number systems in this topic to form linear
integer arithmetic (LIA) theory and linear integer arithmetic (LRA) theory. In this section, explanations
and examples from https://jfmc.github.io/z3-play/ are adapted.

The basic building blocks of SMT formulas are constants and functions. Constants are just functions
that take no arguments. So everything is really just a function.

An Integer Example in Z3 SMT-LIB

;55 https://jfmc.github.io/z3-play/

(declare-fun f (Int) Int)

(declare-fun a () Int) ; a is a constant

(declare-const b Int) ; syntax sugar for (declare-fun b () Int)
(declare-const u Int)

(declare-const v Int)

(assert (> a 20))

(assert (> b a)) ; Are there numbers (a,b) s.t. a>20 and b>a?
(assert (= (f 10) 1)) ; Is there a function f s.t. f£(10) = 17
(assert (and (mot (= u 0)) (mnot (= v 0))))

(assert (= (+ (x 330 u) (x 156 v)) 6)) ; Example 3.6.20

(check-sat)
(get-model)

The SMT solver Z3 has builtin support for integer and real constants with support for some linear
arithmetic (and extremely limited nonlinear arithmetic). These two types (sorts) represent the mathe-
matical integers and reals rather than machine integers (32-bit or 64-bit) and floating point numbers.

After constants are declared, the user can assert formulas containing these constants. The formulas
contain arithmetic operators such as +, —, <, and so on. The command check-sat will instruct Z3 to
try to find an interpretation/model for the declared constants that makes all formulas true. The
interpretation is basically assigning a number to each constant. If such interpretation exists, we say it is
a model for the asserted formulas. The command get-model displays the model built by Z3.

Real constants should contain a decimal point. Unlike most programming languages, Z3 will not
convert automatically integers into reals and vice-versa. The function to-real can be used to convert an
integer expression into a real one.

Mixed Integer and Real Example in Z3 SMT-LIB

;55 https://jfmc.github.io/z3-play/
;5; https://smt-1lib.org/examples.shtml
(declare-const a Int)

(declare-const b Int)

(declare-const c Int)

(declare-const d Real)

(declare-const e Real)

(assert (> a b)) ; a > b

(assert (> a (+ b 2))) ; a > b+2

(assert (= a (+ (x 2 ¢c) 10))) ; a = 2c+10

(assert (<= (+ c b) 1000)) ; c+b <= 1000

(assert (>=d e)) ;0 d >= e

(assert (> e (+ (to_real (+ a b)) 2.0))) ; e > (a+b)+2
(assert (= d (+ (to_real c) 0.5))) ; d =c¢c + 0.5

(check-sat)
(get-model)
(get-value (a b c d e))

73 also has support for division, integer division, modulo and remainder operators. Internally, they
are all mapped to multiplication.
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Mixed Integer and Real Example in Z3 SMT-LIB

;53 https://jfmc.github.io/z3-play/
(declare-const a Int)
(declare-const rl1l Int)
(declare-const r2 Int)
(declare-const r3 Int)
(declare-const r4 Int)
(declare-const r5 Int)
(declare-const r6 Int)

(assert (= a 10))

(assert (= r1 (div a 4))) ; integer division
(assert (= r2 (mod a 4))) ; mod

(assert (= r3 (rem a 4))) ; remainder
(assert (= r4 (div a (- 4)))) ; integer division
(assert (= r5 (mod a (- 4)))) ; mod

(assert (= r6 (rem a (- 4)))) ; remainder

(declare-const b Real)
(declare-const c Real)
(assert (>= b (/ ¢ 3.0)))
(assert (>= c 20.0))
(check-sat)

(get-model)

To illustrate the combination of semantic logic and model theory for number systems, we adopt the
Job Shop Problem example from https://www.cs.toronto.edu/~victorn/tutorials/z3/index.html

Example 3.7.1 (Job Shop Problem). To schedule tasks for a problem (such as building a bike) on
different work stations, with some constraints:

e KEach task in a job must start only after the previous task has been completed.
e A task cannot be paused — the time it takes to complete cannot be divided.
e The work stations can only work on one task.

Suppose We have three jobs job0, jobl, job2 containing task. We define the problem parameters in the
following lists, where each element of the list is a pair (m, d) where m represents the machine where the
task has to be executed and d is the duration of the task:

e job0 = [(0,3), (1,2), (2,2)];
e jobl = [(0,2), (2,1), (1,4)];
e job2 = [(1,4),(2,3)];

The jobs are a list of tasks, and each task is a pair where the first element represents the machine number
that can execute the task and the second is the duration of the task.

Simple Job Shop Problem Solution in Z3 SMT-LIB

;5; https://www.cs.toronto.edu/"victorn/tutorials/z3/SMT.html
;33 Variables representing the starting times of the task:
(declare-const t00 Int)

(declare-const t01 Int)

(declare-const t02 Int)

(declare-const t10 Int)

(declare-const ti11 Int)

(declare-const t12 Int)

(declare-const t20 Int)

(declare-const t21 Int)
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;33 A first constraint we need to add is that all starting times
;;; for the tasks are positive:
(assert (and (>= t00 0) (>= t01 0) (>= t02 0)
(>= t10 0) (>= t11 0) (>= t12 0)
(>= t20 0) (>= t21 0)))
;33 "All tasks in a job should be executed sequentially" constraints:
(assert (and (<= (+ t00 3) t01) (<= (+ t01 2) t02)))
(assert (and (<= (+ t10 2) t11) (<= (+ t11 1) t12)))
(assert (and (<= (+ t20 4) t21)))
;55 "A machine can execute only one task at a time" constraints:
;3 Machine 0- only 2 tasks, it’s easy
(assert (or (and (<= (+ t00 3) t10))
(and (<= (+ t10 2) t00))))
;3 Machine 1: three tasks, so 6 possible sequences!
(assert (or (and (<= (+ t01 2) t12) (<= (+ t12 4) t20))
(and (<= (+ t01 2) t20) (<= (+ t20 4) t12))
(and (<= (+ t12 4) t01) (<= (+ t01 2) t20))
(and (<= (+ t12 4) £20) (<= (+ t20 4) t01))
(and (<= (+ t20 4) t01) (<= (+ t01 2) t12))
(and (<= (+ t20 4) t12) (<= (+ t12 4) t01))))
;3 Machine 2 : three tasks, so 6 possible sequences!
(assert (or (and (<= (+ t02 2) ti11) (<= (+ t11 1) t21))
(and (<= (+ t02 2) t21) (<= (+ t21 3) t11))
(and (<= (+ t11 1) t02) (<= (+ t02 2) t21))
(and (<= (+ t11 1) t21) (<= (+ t21 3) t02))
(and (<= (+ t21 3) t02) (<= (+ t02 2) t11))
(and (<= (+ t21 3) t11) (<= (+ t11 1) t02))))
(check-sat)
(get-model) ;5; Not an optimal model
;; define the max function (to have less idle time)
(define-fun max ((x Int) (y Int)) Int (ite (<K x y) y x))
;; optimisation problem
(minimize (max (+ t02 2) (max (+ t12 4) (+ t21 3))))
(check-sat)
(get-model)
(exit)

§3.8 Application: Cryptography

Cryptography is the study of methods for sending secret messages. It involves encryption, in which
a message, called plaintext, is converted into a form, called ciphertext, that may be sent over channels
possibly open to view by outside parties. The receiver of the ciphertext uses decryption to convert the
ciphertext back into plaintext. Pictorially, we have

Oscar

: z £l i
Alice encrypter decrypter Bob

Secure Channel

Key source

Cryptography is important today because computer security is crucial to business activities and com-
puter communication. Modular arithmetic is frequently used to append an extra check digit to identifi-
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cation numbers, in order to recognise transmission errors or forgeries. Personal identification numbers of
some kind appear on passports, credit cards, bank accounts, and a variety of other settings.

Definition 3.8.1. A cryptosystem is a tuple (£, ¢, % ,&,7) where
. & is a finite set of possible plaintexts;
. % is a finite set of possible ciphertexts;

1
2
3. X is a set of possible keys called the keyspace;
4

. For each k € £, there is an encryption rule and a decryption rule respectively as follows:
ek P €, dg: € — &

such that di (ex(z)) = x for every © € &2. The set of e is denoted & and the set of di is denoted
2.

Remark 3.8.2. When & = %, then each encryption function is in fact a permutation.

In the following subsections, we will investigate three classical (or private-key, symmetric-key) cryp-
tosystem and one public-key cryptosystem, the RSA cryptosystem. For simplicity, we limit ourselves to
Latin characters A to Z ignoring the difference between capital and small letters. We assume each letter
of the alphabet is coded by its position relative to the others as follows:

A=0, B=1, C=2, D=3, ---, X=23, Y=24, 7=25.

§3.8.1 Shift Cipher
Definition 3.8.3. Let & =€ = % = Zsg. For 0 < k < 25, define

ep(r) = (x + k) mod 26, di(y)=(y—k) mod 26
for every x, y in Zgg. Then (P, €, 4 ,&,9) is called a shift cipher.

Example 3.8.4. An encryption system once used by Julius Caesar, and now called the Caesar cipher,
encrypts messages by changing each letter of the alphabet to the one three places farther along, with X
wrapping around to A, Y to B, and Z to C.

If the numerical version of the plaintext for a letter is denoted M and the numeric version of the

ciphertext is denoted C, then
C = (M +3) mod 26

The receiver of such a message can easily decrypt it by using the formula
M = (C —3) mod 26

When a private key cryptosystem is used, a pair of people who wish to communicate in secret must
have a separate key. Since anyone knowing this key can both encrypt and decrypt messages easily, these
two people need to securely exchange the key.

Example 3.8.5. Use the Caesar cipher to encrypt the message HOW ARE YOU.

Solution: First translate the letters of HOW ARE YOU into their numeric equivalents:
7 14 22 0 17 4 24 14 20
Next encrypt the message by adding 3 to each number.
10 17 256 3 20 7 1 17 23
Finally, substitute the letters that correspond to these numbers. The encrypted messages becomes
KRZ DUH BRX
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[
Example 3.8.6. Use the shift cipher with key 3 to decrypt the message L. DP ILQH.

Shift ciphers can be broken by what we call a brute force attack. It only takes 25 trials to guess the
private key, hence, this is a useless cryptosystem in an information society.

Example 3.8.7. Consider Bob received a cipher text “haahjr ha khdu” encrypted using shift cipher.
What is the original message?

Solution: Apply every possible decryption key from 1 through 25. Look at the results and see which
one makes sense:
Shift: 0: haahjr ha khdu
Shift: 1: ibbiks ib liev
Shift: 2: jccjlt jc mjfw
Shift: 3: kddkmu kd nkgx
Shift: 4: 1leelnv le olhy
Shift: 5: mffmow mf pmiz
Shift: 6: nggnpx ng gnja
Shift: 7: ohhogy oh rokb
Shift: 8: piiprz pi splc
Shift: 9: qgjjgsa qj tgmd
Shift: 10: rkkrtb rk urne
Shift: 11: sllsuc sl vsof
Shift: 12: tmmtvd tm wtpg
Shift: 13: unnuwe un xugh
Shift: 14: voovxf vo yvri
Shift: 15: wppwyg wp zws]
Shift: 16: xqgxzh xq axtk
Shift: 17: yrryai yr byul
Shift: 18: zsszbj zs czvm
Shift: 19: attack at dawn
Shift: 20: buubdl bu ebxo
Shift: 21: cvvcem cv fcyp
Shift: 22: dwwdfn dw gdzq
Shift: 23: exxego ex hear
Shift: 24: fyyfhp fy ifbs
Shift: 25: gzzgiq gz jgct

§3.8.2 Affine Cipher

Definition 3.8.8. Let & = € = Zy and & = {(a,b) € Zog X Zog : ged(a,26) = 1}. For each
permutation (a,b) € £, define

eap(r) = (ax +b) mod 26, dup(y) =a (y—b) mod 26.

Since ged(a,26) = 1, a can only take values from 1,3,5,7,9,11,15, 17,19,21,23,25.
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Example 3.8.9. Encipher “ITS COOL” using an affine cipher with ¢ = 5 and b = 8.

Solution: Using e5 g(z) = (5x + 8) mod 26, we fill in the following table

plaintext I T S C O O L
& 8 19 18 2 14 14 11
5 +8 48 103 98 18 78 78 63

(52+8) mod 26 | 22 25 20 18 0 0 11
ciphertext W Z U S A A L

Example 3.8.10. Decipher “HPCCXAQ” using an affine cipher with a =5 and b = 8.

§3.8.3 Substitution Cipher

A substitution cipher is one in which letters are represented by other letters; it can be decriphered by
someone knowing the order of the cipher alphabet used. It is defined formally as follows.

Definition 3.8.11. Let &2 = ¥ = Zyg and % be the set of all possible permutations of the 26 symbols
in Z. For each substitution o € ¢, define

eo(x) = O-(:E)a da(y) = J_l(y)'
Remark 3.8.12. There are 26! permutations. Hence, finding the right private key may be difficult.
Example 3.8.13. Consinder the following permutation for substitution cipher:

(ABCDEFGHIJKLMN
S

O P Q@ R
R 2 B U Q K F C P Y FE V L N G W O X D J

Encode the word “HARDWORKING”.

Substitution ciphers are fairly easy to “crack” — the problem is that in English (or any language),
certain letters are far more likely to appear. In English, for example, the letter “E” is far more likely to
appear than the letter “Z”. In fact, we have the following English letter frequency table

A 82% | F 22% | K 08% | P 19% | U 28% |Z 01%
B 15% |G 20% L 40% | Q 01% |V 1.0%
C 28% H 61% | M 24% | R 6.0% | W 23%
D 43% |1 70% | N 67%|S 63% | X 01%
E 127% | J 22% | O 75% | T 91%|Y 20%
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The approximate percentages for the first few letters in the list below are:
E: 12.7%, T: 9.1%, A: 8.2%, O: 7.5%
and the percentages for the last few are:

J: 0.2%, Q: 0.1%, Z: 0.1%.

§3.8.4 RSA Cryptosystem

RSA is a popular public-key encryption method used in electronic commerce. In what follows, we will
learn how to encrypt and decrypt a message using RSA cryptography. First, we define RSA formally.

Definition 3.8.14. Let n = pq, where p and ¢ different prime numbers. Let & = ¥ = Z,,, define
H ={(n,p.g,a,b):ab=1 (mod ¢(n))}.

For every k € JZ, we define

b

ep(r) =2” mod n, di(y) =y* mod n

where x,y € Z, and ¢ is the FEuler phi function, which is an arithmetic function that counts the number
of positive integers less than or equal to n that are relatively prime to n. It is found mathematically to

be
o) =n [[ (1_]13).

pln
p is prime

The values n and b comprise the public key and the values p, ¢ and a form the private key.

Example 3.8.15 (Getting familiar with Euler ¢ function). Find the number of integers relatively prime
to 36.

Solution: i i i B
_ 252y _ _ & =Y _me LB
#(36) = ¢(2°3%) = 36 (1 2> (1 3> 36 53 12.

In words, this says that the distinct prime factors of 36 are 2 and 3; half of the thirty-six integers
from 1 to 36 are divisible by 2, leaving eighteen; a third of those are divisible by 3, leaving twelve
coprime to 36. And indeed there are twelve: 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, and 35.

Theorem 3.8.16. When p and q are prime numbers, ¢(pq) = (p—1)(¢ — 1).

To encrypt a message using the RSA cipher, a person needs to know the value of pg and of another
number b, both of which are made publicly available. But only a person who knows the individual values
of p, ¢ and a can decrypt an encrypted message.

Example 3.8.17. Suppose Alice decides to set up an RSA cipher. She chooses two prime numbers, say
p =5 and ¢ = 11, and computes n = pg = 55. She then chooses a positive integer b that is relatively
prime to (p — 1)(¢ — 1). In this case, (p — 1)(¢ — 1) = 4(10) = 40, so she may take b = 3 is relatively
prime to 40. The two numbers n = 55 and b = 3 are the public key, which she may distribute widely. To
decrypt the message, Alice needs to find the decryption key, a number a that is a positive inverse to b
modulo (p — 1)(¢ — 1). In this case, the key is

k = (55,5,11,a, 3).
1. Bobs wants to send Alice the message HA. Find the ciphertext for his message.

2. Find the value of a and decrypt the ciphertext 17.
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Solution: Given p =5, ¢ =11, n = pg = 55, b =3, ex(x) = 23 mod n, di(y) = y* mod n.

1. Bob will send his message in two blocks, one for the H and another for the A. The letters H and
A are encoded as 7 and 0 respectively. The corresponding ciphertext is computed as follows:
e(7) = 7% mod 55 = 343 mod 55 = 13,
e 0® mod 55 = 0.
Accordingly, Bob sends Alice the message: 13 0.

2. The integer a needs to satisfy
ab=3a=1 (mod ¢(55))

Here, ¢(55) = (p — 1)(¢ — 1) = 40. This problem is similar to Example 3.6.27(2), in which we
found that
a=3"1=27 (mod 40).

Then we compute
d(17) = 1777
= 1716+8+2+1
= [(17'% mod 55)(17® mod 55)(17% mod 55)(17 mod 55)] mod 55
= (16-26-14-17) mod 55
=99008 =8 (mod 55)

17?2 mod 55 = 17% mod 55 = 14
17* mod 55 = (14)? mod 55 = 31
17% mod 55 = (31)® mod 55 = 26
1716 mod 55 = (26)? mod 55 = 16.

where

Thus the plaintext of Bob’s message is 8. The letter corresponding to 8 is I.

In reality, RSA is used in setting up a secure communication channel as described in the following
example. These days, a key length of at least 2048 bits is required (https://stackoverflow.com/
questions/589834/what-rsa-key-length-should-i-use-for-my-ssl-certificates).

The Transport Layer Security, TLS for short (replaces the older Secure Socket Layer (SSL)), is a
protocol by which many services that communicate over the Internet can do so in a secure fashion. Before
we discuss how TLS works and what kinds of security it provides, let us first see what happens without
TLS.

Life on the Internet without TLS

Let us compare communications between computers on the Internet and communications between
people over the telephone. Without TLS, your computer-to-computer communications suffer from the
same security problems from which your telephone communications suffer:

e Who are you talking to? In a phone conversation, how can you be sure that the person who picks
up the phone at the other end is really the person you are trying to call (especially if you have never
spoken to them before)? What if your phone call was intercepted or re-routed, or what if someone
else is answering your call recipient’s phone? There really is no way to be sure you have reached
the right person, especially if they are actively trying to fool you (as what we seen in movies).
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Eavesdropping? As you are aware of from watching TV or reading, it is very easy to tap phone
lines: the police and spies do this all the time to covertly gather information. It is not easy to
detect if your lines are tapped. The same applies with communications over the Internet — how
can you be sure that your communications are not being “tapped” and recorded? This is especially
problematic in public wifi hotspots.

This results in two very real security issues for communications over the Internet: 1. knowing for
sure that you are connecting to the right servers (i.e. those at your bank and not those at a hacker’s
or phisher’s web site), and 2. knowing that your data is safe from prying eyes during transit to those
computers. This is where TLS comes in.

Enter the TLS (https://en.wikipedia.org/wiki/Transport_Layer_Security)

To solve these problems to a large degree, most Internet services support use of TLS as a mechanism
for securing communications. To illustrate how TLS works, let us use another analogy.

Client wants to communicate with a company to send important information back and forth. Client
wants to be 100% sure that s/he is communicating with this particular company and that no one can
eavesdrop on or intercept the communications. How can s/he do this?

Client sends a courier to the company’s address.

The company has envelopes that, when closed, can only be opened by the company. The company
and the courier go together to a trusted third party — a notary — which makes the company
provide documentation to prove its identity. The notary certifies the company’s secure envelopes
and the courier takes these back to the client.

The client gets the envelopes and, if it trusts the notary’s reputation, can be sure that they are
actually from the company indicated.

The client also has secure envelopes that, once sealed, only the client can open. It puts some of
these in one of the company’s secure envelopes and sends them back to the company.

The company gets the sealed secure envelope. It opens the envelope (as only it can). It now has
the client’s secure envelopes.

The company has another kind of envelope that can be opened and sealed only by using a special
combination. The company puts this special envelope with the combination lock, together with the
combination, into one of the client’s secure envelopes. The company seals the envelope.

The company has another type of secure envelope that anyone can open, but which only the company
can seal. If you open one of these sealed envelopes, you know for sure that it was sent by the company.
The company puts the whole package inside this and sends it to the client.

When the client gets the secure envelope, it opens it and thus knows that it came from the company.
It then opens the next secure envelope inside that can only be opened by the client. Inside it gets
out the combination-envelope and the combination itself.

The client the puts his data in the combination envelope, seals it and sends it to the company.

The company receives it, opens it, and puts the response in the same secure envelope and sends it
back.

The procedure is repeated as often as necessary for required communications.
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TLS relies on public key cryptography (e.g. RSA) to accomplish these tasks. In normal encryption,
the two parties communicating share a “password” and that password is used to both encrypt and decrypt
messages. While this is fast and efficient, how do you communicate these passwords to people you have
not yet met in a way that is itself secure?

In “public key cryptography”, each person has two keys — a public key and a private key. Anything
encrypted with the user’s public key can only be decrypted with the private key and vice versa. Fach
person then tells the world what his public key is and keeps his private key safe and secure, and private.

If John sends Mary a message encrypted with Mary’s public key, then only Mary can open it, as only
she has her private key. This is like an envelope that anyone can seal but which only Mary can open.

If John sends Mary a message encrypted with John’s private key, then anyone can open it, as everyone
has access to John’s public key. However, successfully opening the message proves that it was sent by
John and no one else, as only John has access to his private key. This is like an envelope that only John
can seal, but which anyone can open and thus prove that John sealed it.

TLS in Action
So, let’s see how TLS actually works for securing your communications over the Internet. Before the
communications occur, the following takes place:

e A company wishes to secure communications to their server company.com.

e They create a public and private key for company.com (this is also known as as SSL Certificate):

openssl req -out CSR.csr -new -newkey rsa:2048 -nodes -keyout privateKey.key ‘

e They go to a trusted third party company such as Thawte or Verisign: Thawte makes the company
prove its identity and right to use the company.com domain. This usually involves a lot of paperwork
and paying a hefty fee.

e Once the verification is complete, Thawte gives the company a new public key that has some
additional information in it. This information is the certification from Thawte that this public
key is for the company and company.com and that this is verified by Thawte. This certification
information is encrypted using Thawte’s private key.

Then, when Client wishes to communicate with the company at company. com,

e Client makes a connection to company.com with its computer. This connection is made to a special
“port” (address) on company.com that is set up for TLS communications only.

e When Client connects to company.com on its TLS-secured port, the company sends back its public
key (and some other information, like what Ciphers it supports).

e Client gets the public key and decides if it is OK

— If the public key has expired, this could be a problem
— If the public key claims to be for some domain that is not company . com that could be a problem.

— Client has the public key for Thawte (and many other third party companies) stored in its
computer — because these come with the computer. Thus, client can decrypt the validation
information, prove the validation is from Thawte and verify that the public key is certified by
Thawte. If Client trusts Thawte, then Client can trust that he/she is really communicating
with Company. If Client doesn’t trust Thawte, or whatever Third Party company is actually
being used, then the identity of who is running the computers to which Client is connecting is
suspect.

e If the client doesn’t trust the server, then the communication is terminated.
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e If the client has its own SSL certificate installed, it may send that to the server at this point to see if
the server trusts the client. Client-side SSL certificates are not commonly used, but provide a good
way for the client to authenticate itself with the server without using a username or password. In
the case where this is used, the server would have to know about the client’s certificate and verify
it in a similar way to how the client verified the server. If this fails, the connection is terminated.
If a client-side certificate is not needed, this step is skipped.

e Once the client is happy with the server (and the server with the client, if needed), then the
client choose an TLS Cipher to use from the list of encryption methods provided by the server, and
generates a “symmetric key” (password) for use with that Cipher. The client encrypts this password
using the server’s public key and sends it back to the server. The server (and only the server) can
decrypt this message and get this password, which is now shared by both the client and server.

e The client will then start communicating with the company by encrypting all data using this pass-
word and the chosen Cipher. Normal “symmetric” (password-based) encryption takes place from
this point forward because it is much faster than using the public and private keys for everything.
These keys were needed to enable the company (and possibly the client) to prove its identity and
right to domain.com and to enable the client and server to generate and securely communicate a
common password.

§3.9 Application: Random Number Generator and Simulation

https://en.wikipedia.org/wiki/Random_number_generation is a process by which, often by means
of a random number generator (RNG), a sequence of numbers is generated that cannot be reasonably
predicted better than by random chance.

True random number generators can be hardware random-number generators (HRNGs),
wherein each generation is a function of the current value of a physical environment’s attribute that
is constantly changing in a manner that is practically impossible to model.

https://en.wikipedia.org/wiki/Pseudorandom_number_generator is a computer algorithm
for generating a sequence of numbers whose properties approximate the properties of sequences
of random numbers. It is important in practice for their speed in number generation and their
reproducibility.

Random number generators have applications in statistical sampling, computer simulation, cryp-
tography, completely randomised design (for agriculture/scientific experiments), and other areas
where producing an unpredictable result is desirable. Generally, in applications having unpredictabil-
ity as the paramount feature, such as in security applications, hardware generators are generally
preferred over pseudorandom algorithms, where feasible.

http://en.wikipedia.org/wiki/Linear_congruential_generator (LCG) is the most popular ran-
dom number generator, which is one of the oldest algorithm based on modular arithmetic (Section 3.6)

and recurrence relation:
Xn+1 = (X, +¢) mod m (3.9)

where X, is the sequence of pseudo-random values, and m > 0 is the modulus, 0 < a < m is the
multiplier, 0 < ¢ < m is the increment, 0 < X; < m is the seed respectively. They are integer
constants that specify the generator. If ¢ = 0, the generator is often called a multiplicative congruential
method, or Lehmer RNG. If ¢ # 0, the generator is called a mixzed congruential method.

Only m different values are possible, the period surely cannot be longer than m. Can we achieve the
maximum length, m? The following theorem provides a way for us to check if the maximum period is
achieved.

Theorem 3.9.1. The linear congruential sequence defined by (3.9) has a period length m if and only if
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1. c is relatively prime to m;
2. b=a —1 is a multiple of p, for every prime p dividing m;
3. b is a multiple of 4, if m is a multiple of 4.

Example 3.9.2. Consider a = 5, ¢ = 1, and m = 8. If the seed Xj is set to 2, find the resulting sequence.

Efficient LCGs have an m equal to a power of 2, most often m = 232 or m = 2%, because this
allows the modulus operation to be computed by merely truncating all but the rightmost 32 or 64 bits.
The following table lists the parameters of LCGs in common use, including built-in rand () functions in
runtime libraries of various compilers.

LCGs are fast and require minimal memory (typically 32 or 64 bits) to retain state. This makes them
valuable for simulating multiple independent streams.

However, LCGs should not be used for applications where high-quality randomness is critical. For
example, it is not suitable for a Monte Carlo simulation because of the serial correlation (among other
things). They should not be used for cryptographic applications; see http://en.wikipedia.org/
wiki/Cryptographically_secure_pseudo-random_number_generator for more suitable generators. If
a LCG is seeded with a character and then iterated once, the result is a simple classical cipher called an
affine cipher; this cipher is easily broken by standard frequency analysis.

A further problem of LCGs is that the lower-order bits of the generated sequence have a far shorter
period than the sequence as a whole if m is set to a power of 2. In general, the nth least significant digit
in the base b representation of the output sequence, where b¥ = m for some integer k, repeats with at
most period b™.

Nevertheless, LCGs may be a good option. For instance, in an embedded system, the amount of
memory available is often severely limited. Similarly, in an environment such as a video game console
taking a small number of high-order bits of an LCG may well suffice. The low-order bits of LCGs when
m is a power of 2 should never be relied on for any degree of randomness whatsoever. Indeed, simply
substituting 2™ for the modulus term reveals that the low order bits go through very short cycles. In
particular, any full-cycle LCG when m is a power of 2 will produce alternately odd and even results.

The following are random number generators supported by C++11 <random>:

e linear_congruential_engine: implements linear congruential algorithm

e mersenne_twister_engine: implements Mersenne twister algorithm (used in Python)

e subtract_with_carry_engine: implements a subtract-with-carry (lagged Fibonacci) algorithm
e philox_engine (C++26): a counter-based parallelizable generator

The following are predefined random number generators by C++:

e default_random_engine (C++11): It defaults to using minstd_rand0 or CPU random generator
(e.g. Intel https://en.wikipedia.org/wiki/RDRAND on GNU/Linux is shown as /dev/random).

e minstd_rand0 (C++11): discovered in 1969 by Lewis, Goodman and Miller & adopted as “Minimal
standard” in 1988 by Park and Miller std::linear congruential engine<std::uint fast32 t,
16807, 0, 2147483647>

e minstd_rand (C++11): a newer “Minimum standard”, recommended by Park, Miller,
and Stockmeyer in 1993 std::linear congruential engine<std::uint fast32 t, 48271, O,
2147483647>
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e mt19937 (C++11): a 32-bit Mersenne Twister by Matsumoto and Nishimura in 1998
std: :mersenne twister_engine<std::uint fast32 t, 32, 624, 397, 31, 0x9908b0df,
11, Oxffffffff, 7, 0x9d2c5680, 15, 0xefc60000, 18, 1812433253>

e mt19937_64 (C++11): a 64-bit Mersenne Twister by Matsumoto and Nishimura,
2000 std: :mersenne_twister_engine<std::uint _fast64_t, 64, 312, 156, 31,
0xb5026£5aa96619e9, 29, 0x5555555555555555, 17, 0x71d67fffeda60000, 37,
O0xf£ff7eee000000000, 43, 6364136223846793005>

e ranlux24_base (C—|——|—11): std::subtract_with_carry_engine<std::uint_fast32_t, 24, 10,
24>

e ranlux48_base (C—|——|—11): std::subtract_with_carry_engine<std::uint_fast64_t, 48, 5,
12>

e ranlux24 (C++11): a 24-bit RANLUX generator by Martin Liischer and Fred James, 1994
std::discard block engine<std::ranlux24 base, 223, 23>

e ranlux48 (C++11): a 48-bit RANLUX generator by Martin Liischer and Fred James, 1994
std::discard block engine<std::ranlux48 base, 389, 11>

e knuth_b (C++11): std::shuffle order_engine<std::minstd rand0, 256>

e philox4x32 (C—|—+26): std: :philox engine<std::uint fast32.t, 32, 4, 10, 0xCDOE8D57,
0x9E3779B9, 0xD2511F53, 0xBB67AE85>

e philox4x64 (C++26): std::philox engine<std::uint fast64 t, 64, 4, 10,
0xCABA826395121157, 0x9E3779BO7F4A7C15, 0xD2E7470EE14C6C93, OxBB67AE8584CAA73B>

In statistics, a sample is a subject chosen from a population for investigation; a random sample is one
chosen by a method involving an unpredictable component. Random sampling can also refer to taking a
number of independent observations from the same probability distribution, without involving any real
population. The sample usually is not a representative of the population of people from which it was
drawn — this random variation in the results is termed as sampling error. One method of producing
random samples is by using LCG.

Example 3.9.3. Consider a small town of 25 people with the following salaries:

3000 2100 5100 3400 6000 2500 4800 3900 5100 3200
4900 5600 4300 5800 3400 3300 5300 5400 2100 2400
2300 4000 4100 3400 3600

A company only has the budget to survey 5 person, use the LCG with m = 25, ¢ = 3, a = 6 and the
seed Xy = 2 to find the five random values, the sample average and compare it to the population average.
[Note: The first person is labelled with number 0, the second is labelled number 1, etc.]

Example 3.9.4. A C++ program to generate 10000 normally distributed random numbers with a mean
of 10 and a standard deviation of 3.

Solution

// https://en.cppreference.com/w/cpp/numeric/random.html
#include <random>

#include <map> // for histogram

#include <iomanip>
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#include <iostream>
#include <string>

int main ()

{
// std::seed_seq consumes a sequence of integer-valued data and
// produces a requested number of 32-bit unsigned integer values,
// based on the consumed data.
std::seed_seq seedno{2025, 2035, 2015, 2075};
std::mt19937 rand_engine (seedno);
// Generate a normal distribution
const double mean = 10, stdev = 3;
std::normal_distribution<> rnorm(mean, stdev);
std::map<int, int> hist;
for (int n = 0; n < 10000; ++n)
++hist [std::round (rnorm(rand_engine))];
std::cout << "Normal (" << mean << ", " << stdev << "):\n"
<< std::fixed << std::setprecision(1l);
for (auto [x, y] : hist)
std::cout << std::setw(2) << x << ’ ’ << std::string(y / 100, ’*’) << ’\n’;
}

Output of the C++ program
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Exercise with Past Year Questions

Example 3.9.5 (Final May 2021 Sem, Q3 (during MCO)). (a) Use direct proof to show that if n is an
odd number, then n3 4+ n is even. (3 marks)

Solution: By definition, if n is odd, there is a k such that n =2k +1. ............... [1 mark]

nd+n=(2k+1)%3+ (2k+ 1)
—8k3 +3 x4k +3x2k+1+2k+1 [1.5 marks]
= 2(4k® 4 6> 4 4k + 1)
Since 4k3 + 6k% + 4k + 1 is an integer, by definition, n® +niseven. ................. [0.5 mark]

(b) Prove that /6 is irrational using the method of contradiction. Hence, use the result to prove that
V2 4+ /3 is irrational. (3 marks)

Solution: Suppose that v/6 is rational and it can be written as a ratio of two relatively prime
integers p and gq:
V=2 [0.5 mark]
q

By squaring both sides and rearranging terms, we have
6¢° = p°. [0.5 mark]

The left-hand-side indicate that p? is an even number, hence, p is even (otherwise, we will have
a contradiction): There is an integer k such that

p =2k [0.5 mark]

Therefore
6q> = 4k? = 3¢ = 2k [0.5 mark]

Since 3¢? is even, ¢ has to be even (otherwise a contradiction). There is an integer ks such that
q = 2ks. [0.5 mark]

This is a contradiction to the fact that v/6 is rational with p and ¢ relatively prime.
Suppose v/2 + v/3 is rational and can be expressed as

V2+v3=12

q2

where po and ¢ are some integers. By squaring both sides of the equality, we have

2 2 _ 5,2
2+2\/6+3:]9—§:>\/6:u [0.5 mark]

q5 2(]3

which contradicts with the fact that /6 is irrational.

(c) Use mathematical induction to prove that for all integers n > 1,

-1
1+4+7+---+(3n—2):%- (4 marks)
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Solution: Let the predicate P(n) be 1 +4+7+---4+ (3n—2) = n(?’g_l).

Base step: When n =1,
13-1)

RHS = =1=LHS [1 mark]

Inductive step: Suppose that the predicate P(k) is valid when n = k, i.e.

k(3k —1
1+4—|—7+---+(3k—2):(32). [0.5 mark]

We want to show that the predicate P(k) implies P(k + 1):

LHSof P(k+1)=14+44+7+---+Bk—-2)+ 3(k+1)—-2) [0.5 mark]
k(3k — 1
= % +3k+1 [0.5 mark]
—_——
using P(k)

k(3k — 1) + 6k + 2

_ . [0.5 mark]
_ 3K +5k+2  (k+1)(3k+2) [0.5 mark]
_ (k? + 1%(3(143 + 1) - 1) — RHS of P(k + 1) [0.5 mark]

2

Therefore P(k) implies P(k+ 1). By the principle of mathematical induction, for all n > 1, P(n)
is true.

[Total: 10 marks]

Exercise with Past Year Questions
Only 2021 questions are set by me. The rest are by other lecturers.

UECM1304 Jan 2021 Semester

Example 3.9.6 (Final May 2021 Sem, Q3 (during MCO)). 1. Use direct proof to show that if n is an
odd number, then n3 + n is even. (3 marks)

Proof: By definition, if n is odd, there is a k such that n =2k +1. ................. [1 mark]

nd+n=02k+1)7>+ 2k +1)
=8k +3x 4k +3x2k+1+2k+1 [1.5 marks]
= 2(4k% 4 6k% 4 4k 4 1)

Since 4k3 + 6k% + 4k + 1 is an integer, by definition, n +n iseven. ............... [0.5 mark]

2. Prove that v/6 is irrational using the method of contradiction. Hence, use the result to prove that
V2 + /3 is irrational. (3 marks)
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Proof: Suppose that /6 is rational and it can be written as a ratio of two relatively prime
integers p and g:
VE="2 [0.5 mark]
q

By squaring both sides and rearranging terms, we have
6¢° = p°. [0.5 mark]

The left-hand-side indicate that p? is an even number, hence, p is even (otherwise, we will have
a contradiction): There is an integer k such that

p =2k [0.5 mark]

Therefore
6q> = 4k% = 3¢° = 2K>. [0.5 mark]

Since 3¢? is even, ¢ has to be even (otherwise a contradiction). There is an integer ko such that
q = 2ko. [0.5 mark]

This is a contradiction to the fact that /6 is rational with p and ¢ relatively prime.
Suppose V2 + /3 is rational and can be expressed as

V2+v3=1

q2

where py and ¢o are some integers. By squaring both sides of the equality, we have

-5
2+2vV6+3= :> V6 = q2 [0.5 mark]
7 2q2

which contradicts with the fact that v/6 is irrational.

3. Use mathematical induction to prove that for all integers n > 1,

n(3n —1)

144474+ 3n—-2)= 5 (4 marks)
Proof: Let the predicate P(n) be 1 +4+ 7+ -+ (3n—2) = ”(32_1).
Base step: When n =1,

13- 1)
RHS:TzlzLHS [1 mark]
Inductive step: Suppose that the predicate P(k) is valid when n = k, i.e.
kE(3k — 1

1+4+7+'-'—|—(3k—2):(T). [0.5 mark]
We want to show that the predicate P(k) implies P(k + 1):
LHSof P(k+1) =1+44+7+---+(3k—-2)+ (3(k+1)-2) [0.5 mark]
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-1
_ 7]‘7(3""2 ) 13k 41
—_——

using P(k)
 k(3k—1) + 6k +2

2
3k2+5k+2  (k+1)3k+2)

(ke Bk +1) - 1)

5 = RHS of P(k + 1)

P(n) is true.

[0.5 mark]

[0.5 mark]
[0.5 mark]

[0.5 mark]

Therefore P(k) implies P(k + 1). By the principle of mathematical induction, for all n > 1,

[Total: 10 marks]

UCCM1363 Jan 2024 Semester

Example 3.9.7 (Final Jan 2024 Sem, Q2). (a) Given the sequence, a,, = 2a,,—1+3 for all integers n > 1,

(11:2.

(i) List FOUR (4) iterations of the sequence by starting from the given initial condition. (4 marks)

Solution: a1 = 2
az = 2a1 + 3 =2(2) 7
as = 2a2 + 3 =2(7) 17
a4 =2a4+3=2(17)+3 =37
Standard ML:

+3=
+3=

fun a n = if n<=1 then 2 else 2 * (a (n-1)) + 3;
tl (List.tabulate (5, a)); -- skip a(0)

(ii) Use the iterations in (i) to guess an explicit formula of the sequence. (4 marks)
Solution: Suppose a, = 2" -a +b.
a; = 2. q +b=2
az=22-a+b="7
Solving the above equations gives (4 —2)Ja=7—-2=5=a=Jandb=2-2!.5=-3.

Therefore a,, = 5- 271 — 3.

5 =

(b) Propose a formula for the sum of the first n positive odd integers. Then prove your formula using
(9 marks)

mathematical induction.

write down the formula but ask the students to write it down.

Remark: This is basically Example 3.4.2. However, the lecturer setting the question did not

Letn>1.14+3+ -+ (2n—1)=n?
Proof:
Base step: Whenn =1, 1 = 12,

61

Inductive Step: Suppose 1+ 3+ --- + (2k — 1) = k%, we use it on the left-hand-side (LHS) of
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P(k+1):

14+3+-+ (2k—1) +(2(k+1)—1) = K®+(2(k+1)—-1) = k*+2k+1 = (k+1)* = RHS of P(k+1).

LHS of P(k)

Therefore P(k) — P(k + 1). We have proven that (*) is true for all n > 1.

(c) Show the following equation using the method of differences.

n
2 3n2 + 5n
— 8 k
Zr(r+2) 2(n+ 1)(n + 2) (8 marks)
Proof:
zn: B n [1 ] n il n 1 B Zn: 1 n+2 1
r= T+2 r=1 " r+2 r:lr r:lr+2 T=1T 7"=3T
_1+l_ 1 _%(n+1)(n+2)—(n+2)—(n—|—1)
B 2 n+l n+2 (n+1)(n+2)
_3(n?+3n+2)—22n+3) 3’ +9In+6—4n—6  3n’+5n
2(n+1)(n+2)  2n+1D)(n+2)  2(n+1)(n+2)
Exercise: Try to prove it using mathematical induction.
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