UECM1304 DISCRETE MATHEMATICS WITH APPLICATIONS
Torics 1 & 2: LoGIC & ARGUMENTS OF PROPOSITIONS &
QUANTIFIED STATEMENTS
(PREDICATE CALCULUS, FIRST-ORDER LOGIC)

Lecturer: Dr. Liew How Hui
Email: 1liewhh@utar.edu.my

124+-8=20 lecture hours

Discrete mathematics is the study of mathematical structures that are fundamentally discrete as
opposed to mathematical structures that are continuous (based on real number line) as in Calculus.
The objects studied in discrete mathematics are

e First Order Logic (Week 1-6):

— Logic of Compound Statements (propositions) and Quantified Statements (predicates) —
Model Theory

— Valid and Invalid Arguments — Proof Theory

Elementary Number Theory and Methods of Proof (Week 6-9)

Set Relations (Week 10-12)

Graph Theory (not cover in this course)

Functional Data Structures, Algorithms and Complexity Analysis (not cover in this course)

Main reference:

1. Epp, S.S., 2020. Discrete Mathematics with Applications. 5th ed. Boston, MA: Brooks/Cole
Cengage Learning. (Amazon: In 2019, US$ 232.45)

Additional references:

2. Rosen, K.H., 2019. Discrete Mathematics and its Applications. 8th ed. New York: McGraw-
Hill. (Amazon: In 2019, US$ 94.50)

3. Scheinerman, E.R., 2013. Mathematics: A Discrete Introduction. 3rd ed. Boston, Mass.:
Brooks/Cole. (Amazon: In 2019, US$ 258.98)

Other references: [Halmos, 1960, Devlin, 1993] formalise “logic” using set theory as the “meta-
language”. Kac et al. [2008], http://openlogicproject.org/, Huth and Ryan [2004], Mendelson
[1997], Rautenberg [2010], Forster [2003], Hinman [2005], etc.

Class arrangement

e Week 1 : Tutorial class starts. We try to complete all classes by Week 13 (we need 46 hours lecture

and 12 hours tutorial)

e Week 1 Friday : Awal Muharram public holiday

e Week 11 Friday : Prophet Muhammads’s Birthday public holiday
e Week 6/7, 11/12 : Tests.

Coursework Assessment (40%)

e Test 1 (20%, Week 6 or Week 77, Covering Topics 1 & 2)

e Test 2 (20%, Week 11 or Week 127, Covering Topics 3 & 4)
Final Exam (60%)

e 4 Questions: Each 15% (1 optional 4+ 3 compulsory)

When completing this subject, one should be able to:

CLO1 Recognise statements and quantified statements. (Topic 1) Bloom’s Taxonomy Level: C1
CLO2 Determine the validity of an argument. (Topic 2) Bloom’s Taxonomy Level: C2
CLO3 Demonstrate various proof-techniques. (Topic 3) Bloom’s Taxonomy Level: C3

CLO4 Express relations correctly with their mathematical properties (Topic 4)

.. Bloom’s Taxonomy Level: C2

Contents

1.1 Syntax of Compound Statements (Topic 1a) 9
1.2 Semantics of Statements and Truth Table 14
1.3 Logical Equivalences and Laws of Logical Equivalences 19
1.4 Applications: Logic Circuits, Solving Logic Puzzles, etc. 28
1.5 Logical Implication and Argument for Statements (Topic 2a) 32
1.6 Tableaux: Using Diagram to Check Validity 39
1.7 Rules of Inference for Statements 43
1.8 Syntax of Quantified Statements (Topic 1b) 47
1.9 Formal versus Informal Language 49
1.10 Semantics of Quantified Statements 55
1.11 Logical Implication and Arguments for Quantified Statements (Topic 2b) 62
1.12 Satisfiability Modulo Theories (SMT) 66
1.13 Rules of Inference for Quantified Statements 69

(Mathematical) logic is an abstraction of mathematical and some real-world statements into
formalism, i.e. expressing statements in terms of symbols.
In this topic, we are introducing two domains of mathematical logic:

e semantics : https://en.wikipedia.org/wiki/Model_theory; and
e syntactic : https://en.wikipedia.org/wiki/Proof_theory

for propositional logic/calculus and predicate logic/calculus.

A Programming Language from Mathematical Abstraction

To illustrate the relation of discrete mathematics to computer science, we introduce Standard ML
(ML stands for Meta Language), a kind of typed functional programming language which is
developed from the abstraction of mathematical functions. We will also be using Standard ML to
illustrate how “functions” can be composed to perform computation.

Standard ML is not a popular programming language because it does not have good programming
libraries compare to popular languages such as Python, Java, C++, etc. as well as other functional
programming languages such as Haskell, Ocaml, Scala, Scheme, Common Lisp, Lean 4, Rocq (Coq)
etc.

Despite being not popular, Standard ML is used here because it is a simple programming language
which has little changes since 1997. PolyML (https://www.polyml.org/) and MLton (http://mlton.org/
are two freely available Standard ML software.

In a typed functional programming language, the paradigm of programming is
programming = compositions of functions of compatible types
where
A function from a type 77 to a type T5 takes every element of the type 71 to an element of

the type T5.

Basic Types and Compound Types

Types are like sets but are “syntactic” rather than “semantic”.

Example 1.0.1. 2 is of ‘integer’ type while 4/2 can be regarded as of ‘rational’ type or real number type
but not integer type despite having the same meaning (value).

The following are the basic types defined in Standard ML (beware that tilde is used to denote
negative sign):

Type | Object Examples Operations

int integers 2,~3 ~, 4+, -, * div, mod, quot, rem, sign, ...,
between Int.compare (a, b), =, <>, >, >=, <, <=
Int.minInt
and
Int.maxInt

real floating- 2.0, ~ 3.2 ~, 4+, -, * /, abs, sign, .., Real.compare
point (a, b), >, >=, <, <=, Real.sqrt, Realsin,
numbers Real.cos, Real.atan, Real.exp, Real.ln, Real.tan,

Real.asin, Real.acos, Real.logl0, ..., Real.isNan,
Real.isNornal

string | string of | "Strings" -
ASCII
characters
(no UTF-8)
char Single char- | #"y", #"\n" ord #"y", chr 98
acter
bool | Boolean true, false not, andalso, orelse
values
unit | Conceptually] () print : string — ()
the
“empty”
type

Note: and is a keyword used in recursive function definition, so andalso is used for Boolean operation.
Some “basic type” conversion and relational functions are:

e convert tobool : 1 = 2,1 <> 2,1.2 > 1.3, 1.2<=1.3, ...

e convert to int : round 2.5 (or Real.toInt IEEEReal.TO_NEAREST 2.5), ceil 2.1 (or
Real.toInt IEEEReal.TO_POSINF 2.1), floor 2.5, trunc 2.5,val0f (Int.fromString "~3"),
size "string", ord #"a", ...

e convert to real : Real.fromInt ~3, valOf (Real.fromString "-4.9"), ...

e convert to string (for use with print to output): Int.toString, Real.toString, str, Bool.toString,
concat, implode, ...

e convert to characters or list of characters: chr #"a", explode "abc",

The following are ways to form compound types in Standard ML (Ref: https://en.wikibooks.
org/wiki/Standard_ML_Programming/Types):
e tuple :
(1, ~ 1.2, (false, "abc")) : int * real * (bool * string) is a 3-tuple with integer type,
floating number type and a 2-tuple (pair) of boolean type and string type.
e records (named tuples) :
{ a=5.0, b ="five" } : {a:real, b:string}.

Note: tuples are just a special case of records, i.e. (1, ~ 1.2, (false, "abc") is the same as {1
=1, 2 = ~12, 3 = (false, "abc") }.

Conditional Expression, Values and Functions

There are two conditional expressions in Standard ML:
e if condition then expressionl else expression2

e case value of patternl = expressionl | pattern2 = expression2 | ... end

In the programming of functional programming language, there are only two basic concepts
e values : the elements of a type, defined using val.

e functions : the “mapping” from a type to another type, defined using fun (must have a name) or
fn (can be anonymous).

Example 1.0.2. Values can be basic types, compound types, ... or functions

Binding an expression to a name, i.e. val name = expression
val atuple = (1, “1.2, (false, "abc"));

val £f = fn x => 2.0 * x * x - 3.0 * x + 1.0;

fun f (x : real) = 2.0 * x * x - 3.0 * x + 1.0;
Type is inferred by Standard ML

fun g x = 1 div x; (* g : int -> int *)
fun h x = 1.0 / x; (* h : real -> real x)
fun factorial (m : int) : int =

if n < 1 then 1 else n * factorial (n-1);

Since all values in a type needs to be evaluated in a function. g(z) = 1 div x over integer type is not
a function “by definition” because g(x) is undefined at x = 0.

Checking all values of a type is impossible and so Standard ML handles this by introducing Exception
(“Division Exception” in this particular situation).

Functions of forms below:

L] f : T1XT2X-"XTn—>Tn+1
o f Ty 5Ty — -+ — T, = Tpyq whichmeans f : Ty — (Ty — -+ — (T, = Tht1))

are equivalent according to the notion of currying.
With the first definition, the function call is f(¢1,to,...,t,) while with the second definition, the
function is f t1 t2 - -+ 5 (the use of tuple is not necessary).

Currying Example

(* A binary function in tuple form *)
fun h1 (x, y) = 2.0 / (1.0/x + 1.0/y);

(* A binary function in a compact currying form *)
fun h2 x y = 2.0 / (1.0/x + 1.0/y);

(¥ h2 can also be written in currying form x*)

val h3 = fn x => fn y => 2.0 / (1.0/x + 1.0/y);

(* Functions hl, h2, h3 all perform the same computations but
may have different function calling syntax *)

hi (1.0, 2.0);

h2 1.0 2.0;

hd3 1.0 2.0;

There are some functions which are in infix form such as addition, subtraction, multiplication, etc.
Standard ML allows a function with a pair of values to be used in infix using the infix function and for
any infix function, it can be expressed as a function using op or change back to the normal form using
nonfix.

Infix Form Example

fun xor (p, q) = (p orelse q) andalso not (p andalso q);
xor (true, true);

(* 2 is the level of precedence, larger means higher x*)
infix 2 xor;

true xor true;

(¥ turn of infix form for xor function *)

nonfix xor;

(op +) (3, 4); (* Change addition to prefix form x*)

For writing large functions, we may be using case function form and local declarations.
Case function form:

fun f patternl = expression 1
| £ pattern2 expression 2
I

| £ patternN = expression N

Local declarations in a function:

fun £ t1 ... tn =
let
val vl =
val vM = ...
fun f1 ... =
fun fN ... =
in
expression using v1 ... vM f1 ... £fN
end

Local Declaration Example

fun leapYear (year : int) =
let
fun isDivisible (a, b) = (a mod b) = 0
in
isDivisible (year, 4) andalso (
not (isDivisible (year, 100)) orelse (isDivisible (year, 400))
)

end

List Type

So far, the data and function we define above have fixed size. But in real-world data analysis, we need
data of variable length. The mathematical concept that captures this is list!
In SML, a list can be

e empty: [] or nil
e having an element: [x1] is the same as x1::[]

e more than en element: [x1,x2,...], is the same as
x1::x2:: ... ::[]

Understanding structure of a list allows us to implement operations associated with a list. For example,
the length function can be defined as

Length of a List in Case Function Form

fun mylength [] = O
| mylength (_::es) = 1 + (mylength es);

Note that we do not need to define the basic functions related list since they are available in Standard
ML:

e alist @ blist : joins two list into one

e null : checks if a list is empty

length : returns the length of a list

hd : returns the first element (head) of a list

e tl: returns the list removing the head of a list

e rev : returns a reverse of a list
e map f [x1, x2, ..., xn| : returns [f x1, f x2, ..., f xn]
e List.filter predicate list : only keep those elements from list which the predicate is true

e foldr (op ") "End" ["a","b","c"]: ("a" ~ ("b" =~ ("c¢" ~ "End"))) (folding a binary oper-
ation from the right of the list, i.e. the “tail” is put to the right)

e foldl (op ~) "End" ["a","b","c"]: ("c" ~ ("b" "~ ("a" ~ "End"))) (folding a binary oper-
ation from the left of the list, i.e. the “tail” is put to the left)

A typical example of list is the polynomial
ap + a1z + asx® + -+ - + apz”. (1.1)
It can be represented by a list in Standard ML
[@0, a1, a2, ..., an]

The function to evaluate the polynomial (1.1) at a particular value x can be implemented in Standard
ML using the Horner form of (1.1):

ap+ x(ay +x(ag+---+x-ay))). (1.2)

Evaluate a Polynomial using Horner Form

fun evalpoly [] x = 0.0
| evalpoly (a::p) x = a + x * (evalpoly p x);

Suppose we want to calculate 1 + 2z + 322 at x = 0.5, we can run the first command which expands
as follows.

evalpoly [1.0, 2.0, 3.0] 0.5

= 1.0 + 0.5 * (evalpoly [2.0, 3.0] 0.5)

= 1.0 + 0.5 * (2.0 + 0.5 * (evalpoly [3.0] 0.5))

= 1.0 + 0.5 * (2.0 + 0.5 *x (3.0 + 0.5 * (evalpoly [] 0.5)))
= 1.0 + 0.5 * (2.0 + 0.5 * (3.0 + 0.5 * 0.0))

= 1.0 + 0.5 x 2.0 + 0.572 x 3.0

= 2.75

Adding two polynomials is slightly more complex as follows:

Adding two polynomials

fun addpoly polyl (1] = polyl
| addpoly [] poly2 = poly2
| addpoly (a::pl) (b::p2) = (a+b) :: (addpoly pl p2);

DataType

Datatypes are used for two basic purposes.
Purpose 1: to define enumerates like C programming language

datatype mybool = Mytrue | Myfalse
datatype day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

Purpose 2: In contrast to record (or tuple), which is logically like an “and” (product type).
Datatypes is used for defining sum types or or types — when something needs to be one type or
another.

In particular, suppose we want to define a new type “number” that includes both integers and reals.
This can be accomplished in SML by using the datatype definition.

(* https://www.cs.cornell.edu/courses/cs312/2008sp/recitations/rec02.html *)
datatype num = Int_num of int | Real_num of real

fun num_to_real(n:num):real =
case n of
Int_num(i) => Real.fromInt (i)
| Real_num(r) => r;

Datatype can be used to define binary trees, which is fundamental in computer science.

(* https://www.jeremykun.com/2013/04/07/a-sample-of-standard-ml-and-the-treesort
datatype ’a Tree = empty

| leaf of ’a

| node of ((’a Tree) * ’a x (’a Tree))

val t2 = node(node(leaf(2), 3, leaf(4)), 6, leaf(8))
fun breadth(empty) = O
| breadth(leaf(_)) = 1

| breadth(node(left, _, right)) = breadth(left) + breadth(right)

fun depth(empty) = 0
| depth(leaf(_)) = 1

| depth(node(left, _, right)) =
let
val (lDepth, rDepth) = (1 + depth(left), 1 + depth(right))
in
if 1Depth > rDepth then 1Depth else rDepth
end

fun flatten(empty) = []
| flatten(leaf(x)) = [x]
| flatten(node(left, x, right)) =
flatten(left) @ (x :: flatten(right))

fun sort(L) = flatten(foldl(insert) (empty) (L))

Datatype with recursion is used the logic section to represent the propositions.

-algoritl

§1.1 Syntax of Compound Statements (Topic 1a)

Informally, statements or propositions, are sentences that are either true or false, but not both.
Normally they will be denoted as p, g, r, etc. or the indexed letters py, po, etc. These letters are called
statement variables, that is, variables that can be replaced by statements.

Example 1.1.1. Determine whether the following sentences are statements or not. If it is a statement,
determine its truth value.

(a) The year 1973 wos o leap year. scoisissnsnsinsaininsnsnsnsasainsasasasass

(b) 28234423783 is a prime number.ooiiiiiii

(c) The equation 22 + 3z + 2 = 0 has two different roots in R.

(d) 22 +2+1=0, zisareal number.ccooiiiiiiiiiiiiiaaiiiin.

(e) She is a computer SCIeNCEe MAJOT.outntntneet e,

(f) Maths is fum.oi i

(g) Is 210 — 1 an even integer?ooeiuiiiiiiiie i

(h) Read a maths book.

General mathematical statements are combinations of simpler statements formed through some choice
of the words not, and, or, if ... then ..., and if and only if. These are called (logical) connectives (Ref:
https://en.wikipedia.org/wiki/Logical_connective) and are denoted by the following symbols:

Connectives | Examples Meaning

e —|,! NP, —|P, ﬁ, —P, P Not

N, & && | PANQ, P-Q, PQ, P&Q, P&&(Q | And

vV, +, |, | PvQ, P+Q, PlQ, P||Q Or

—, D P—Q, P>Q If ..., then ...
“ P+ Q If and only if

The following logical connectives are used more often in electronics (e.g. MOS integrated circuit design)
rather than mathematics:

Connectives | Examples Meaning
K7T77 PKQaPTCLPQ NAND
v, |+ PVQ,PlQ, P+Q NOR

A, @ PVQ, P Q XOR

Formally, the rules to form a proper proposition (or statement) is stated in the following definition.

Definition 1.1.2 (Well-Formed Formula). Statements (or propositions) are either atomic or compound.

1.

Constants T', T, L, F' and single statement variables p, ¢, r, s, t, p;, i = 1,2,3,-- - are atomic (or
simple or primitive) statements or formulas.

If ¢ and v are statements (abbreviated notations), then the expressions

(N ¢)7 (QS/\’(,Z)), (QZ)\/w)v (¢_>1Z))> (¢<—>¢)

are (compound) statements or (compound) formulas.

Too many parentheses in a formula (Definition 1.1.2) can be annoying. Parentheses are usually
“simplified” in writing based on the precedence:

A

Evaluate parentheses first;
Then evaluate negations;
Then evaluate A;

Then evaluate V;

Then evaluate —;

Then evaluate <.

This means that the “simplified” expression p A ¢V ~ r means (p A q) V (~ 7). If you intend to mean
p A (qV ~ r), you must use the parentheses. The expression p — ¢ — r means p — (¢ — r) [Huth and
Ryan, 2004, Convention 1.3]. When — and <+ appear together, it is advisable to write the parentheses.

Representation of Proposition in Standard ML

(* File name:

t
datatype Prop = T | F | Atom of string
|
|
|
|
|

opiclprop.sml *)

Neg of Prop

Conj of Prop * Prop
Disj of Prop * Prop
Impl of Prop * Prop
Iff of Prop * Prop
infix 1 Iff
infixr 2 Impl
infix 3 Disj
infix 4 Conj
fun str prop = case prop of
T => "T"
| F => "F"
| Atom a => a
| Neg f1 => "7(" ° (str f1) -~ ")
| £1 Conj £2 => (" =~ (str £1) =~ ")}/\\(" ~ (str £2) =~ ")"
| £1 Disj £2 => (" = (str £1) = "\\/(" ~ (str £2) ~ ")"
| £1 Impl £2 => "(" ~ (str £1) ~ ")->(" ~ (str £2) ~ ")"
| £1 Iff f£2 => "(" ~ (str f1) =~ ")<->(" =~ (str £2) =~ ")";
val propl = Atom "p" Impl Atom "q" Iff (Atom "q" Disj Atom "p" Conj Atom "q") Im
val _ = print (str propl =~ "\n");
Example 1.1.3. (a) L5 S 7 atomic statement

10

(b) A dog is not an animal. ... compound statement
(c) If the earth is flat, then 34+ 4 ="7. ... compound statement
Reading formulas:

~ ¢ or —¢ is read as “not ¢”. This statement is called the “negation of ¢”.

statement or implication. In ¢ — 1, the statement ¢ is called the hypothesis and the statement v is
called the conclusion or consequent. The statement ¢ is called the sufficient condition for v and v is
called the necessary condition for ¢.

(e) p +» q is read as “¢ if and only if ¢” and is normally written as “p iff ¢” (popularised by the
mathematician Paul Halmos). This form of statement is called the biconditional of ¢ and 1) and ¢ is
called the necessary and sufficient condition for .

Remark 1.1.4.
1. An English sentence “¢ but ¢” usually means “¢ and ”.
2. An English sentence “neither ¢ nor 1" usually means “~ ¢ and ~ .

3. The notation for inequalities involves “and” and “or” statements. Let a, b and ¢ be real numbers.
Then
e a < bmeans “a <b” or “a="5"

e o <b< cmeans “a <b” and “b < c”.
Let us practise how to “read” the statements in English with a few examples.
Example 1.1.5. Given the following atomic statements:

1. p: The integer 10 is even.

2. ¢:2+3>1

3.r3+7=10

4. p1: It is snowing. ¢1: 1 am cold.
5. p2: 0< 2. gor =2 <0.

Read the compound statements (a) ~ p; (b) ~ ¢; (¢) ~r; (d) p1 Aqq; (€) g Ap2V qa.

(a) |
b) |

(
(©]
(
(

d) |
o] |
Example 1.1.6 (Tutorial 1, Q1).

Let p, q, 7 and s denote the following statements.

p: Ali is inside q: Ali is watching TV
r: Ali is taking his dinner s: Ali is riding his bicycle

11

(a) Translate the following into English sentences.

(i) sA(qv~r1)

(i) p—(gVvr)

(iii) (pVs)A(p—q)
(iv) ~s—=(pA(gVr))

(b) Translate the following into logical notation.

(i) Ali is neither inside nor is he riding his bicycle.
(if)
(iii) Ali is not watching TV only if he is outside.
)
)

(v) If Ali is not watching TV, then if he is not taking his dinner, he is outside.

Ali is inside, and he is taking his dinner while watching TV.

(iv) Ali is inside and taking his dinner implies that he is not riding his bicycle.

Remark 1.1.7. A variety of informal sentences are used to express p — ¢:

If p then ¢

p implies ¢

q follows from p

p is sufficient for ¢

q is necessary for p

q when p

qifp

p only if ¢

Note that to say “p only if ¢” means that p can take place only if ¢ takes place also. That is, if ¢ does
not take place, then p cannot take place (symbolically “~ ¢ —~ p”). Another way to say this is that if p
occurs, then ¢ must also occur.

Definition 1.1.8. Let p and g be statement variables:
1. The negation of p — q is pA ~ q.
2. The contrapositive of p — q is ~ ¢ =~ p.
3. The converse of p — ¢ is ¢ — p.
4. The inverse of p — q is ~ p —~ q.

Example 1.1.9. Write the negation, contrapositive, converse and inverse of the following conditional
statements:

1. If 3 is positive then 3 is nonnegative.

12

Solution:

Negation: 3 is positive and 3 is not nonnegative.
Contrapositive: If 3 is not nonnegative then 3 is not positive.
Converse: If 3 is nonnegative then 3 is positive.

Inverse: If 3 is not positive then 3 is not non-negative.

2. If you study hard, then you will not fail UECM1303.

Example 1.1.10 (Tutorial 1, Q4). Give the negation, converse, inverse and contrapositive of each the
following statements.

(a) I will pass the course if I work hard.
(b) If A=BnNC, then A CC.

(c) If =2 < 4 and 3 + 8 = 11, then sin(7/2) = 1.

13

§1.2 Semantics of Statements and Truth Table

Every language has two aspects: syntax and semantics. The syntax in Section 1.1 deals with the form
or structure of the language of propositional logic. The semantics in this section adds “meaning” to the
form. In the mathematical set theory language, suppose all the compound statements form a set Prop,
the “semantics” or (truth) assignment is a mapping

v : Prop — {T,F}.

Definition 1.2.1. The truth value of a statement/proposition is true (T or 1), if it is a true statemen-
t/proposition and false (F or 0), if it is a false statement /proposition.

Definition 1.2.2. [Hinman, 2005]

1.

value in {T,F} (or {T,L}).

An atomic truth assignment is a function v that maps an atomic symbol (Definition 1.1.2) to a

2. A truth assignment (or a model or a valuation) is a function v such that for any sentences ¢
and 1,
(a) v(~ ¢) = if v(¢) = F then T else F
(b) v(p V) =if v(¢) =T or v(yp) =T then T else F
(c) v(p AN) = if v(p) =F or v(¢p) =F then F else T
(d) v(¢p —) =if v(¢) =F then T else v(v))
(e) v(p >) =if v(¢p) = v(¢)) then T else F
Implementation of the Evaluation of Proposition in Standard ML
use "topiclprop.sml";
fun teval p tvals = case p of
T => true
| F => false
| Atom a => #2(hd (List.filter (fn (x,y) => x = a) tvals))
| Neg f£1 => not (teval f1 tvals)
| £f1 Conj f2 => (teval f1 tvals) andalso (teval f2 tvals)
| £1 Disj £f2 => (teval f1 tvals) orelse (teval f2 tvals)
| £1 Impl £f2 => (not (teval f1 tvals)) orelse (teval f2 tvals)
| £f1 Iff £2 => (teval f1 tvals) = (teval f2 tvals)

(* Example 1.2.3 x)

val

val

val
val

prop2 = Atom "q" Impl (Neg (Atom "r") Impl (Atom "r" Impl
(Atom "p" Disj Atom "s")));

_ = print (str prop2 ~ "\n");

tvals = [("p", true), ("q", true), ("r", false), ("s", false),

_ = print (Bool.toString (teval prop2 tvals) ~ "\n");

(lItlI,

false)l|;

Example 1.2.3. Suppose v(p)=T, v(q)=T, v(r)=F and v(s)=F, find v(¢ = (~r = (r = (pV 5)))).

Solution: Given v(p) =v(q) =T, v(r) =v(s) =F.
vo(a= (v (0= (V)
=T ifv(q) =F else ’U(NT—) (r— (p\/s))> :v<~r—> (r— (p\/s))>

14

=T ifv(~7r)=F else v(r — (p\/s))
= Tif (T if v(r) =F else F)=F else v<r — (pV s))

= T if T=F else v(r — (pV s))) = U<r = (pV s))) =Tifv(r)=Felsev(pVs) =T.
It is easier to understand this if we draw the parse tree of the statement ¢ — (~r — (r — (pVs))).

q/_>\—>
AS
1"/ \\/
p/ \8

Example 1.2.4 (Tutorial 1, Q2). Given that p and ¢ are true and r, s and ¢ are false, find the truth
value of each statement below.

(a) (pV~q) = (rAsAt)

(b) (@=(r=s)A(p—s)—=(~1)

Example 1.2.5. Determine the hypothesis and conclusion for each of the following conditional state-
ments. Then determine the truth value.

1. The moon is square only if the sun rises in the East.

Solution: p: The moon is square, ¢: the sun rises in the East.
v(p) =F, v(g) =T.
According to remark 1.1.7, the informal statement could be written as p — q.

15

Therefore, v(p — q) = T.

2. 1 and 3 are prime if 1 multiply 3 is prime.

Solution: p: 1 multiply 3 is prime
q: 1 and 3 are prime
v(p) =T, v(q) =F,sov(p = q) = F.

3. (sinm)(cosm) = 0 when sin7m = 0 or cosm = 0.

Solution: p: sinm =0 or cosm =0
q: (sinm)(cosm) =0
v(p) =T, v(q) =T, sov(p—q)=T.

4. If 1 + 1 = 3, then cats can fly.

Solution: p: 1 +1=3
q: cats can fly
v(p) =F,v(q) =F,sov(p—q)=T.

Example 1.2.6. Determine the truth value of the following statements:

1.3 <bhand 5467 1. oo

2. The integer 2 is even but it is a prime number.,

3. 30T =D IS MEGALIVE. .« .ottt

4. /2 or 7 is an INEBEEF: cumsnsnsnemiminsm i imi N O Rz N iHs0iNiNiNsRzNaNiminanan

6. 2 is prime if and only if it is multiple of 2.

7. 2 is negative if and only if 4 is negative.

By ML 1% 2] wiwsmswsmswsnsmsmsnswsms mewsussss newsgs

Example 1.2.7 (Tutorial 1, Q3). If statement q is true, determine all truth values assignments for the
statements p, r and s for which the truth value of the following statement is true:

(= [(~pVrA~s)Al~s = (~rAg)

16

Some statements in propositional logic is special, i.e. for all possible assignments, it will be true.
Going through all possible assignments leads to the notion of truth table.

Definition 1.2.8. The truth table for a given statement displays the truth values that correspond to all
possible combinations of truth values for its atomic statement variables.

Remark 1.2.9. If a statement s has n atomic statements, there will need to be 2" rows in the truth
table for s. So truth table is only viable for statements with less than 6 atomic statement variables for
manual calculation.

Inefficient Implementation Truth Values Generation in Standard ML

(* File Name: topiclttbl.sml (inspired by the following website)
https://stackoverflow.com/questions /20333184 /easier-way-to-generate-a-truth-tabl
*)

fun tt [] = [[]]
| tt (x :: xs) = (* n atom(s), n >= 1 *)

let
val txs = tt xs (* xs has (n-1) atom(s) *)

in
map (fn 1 => (x, true) :: 1) txs @ (*x Join (x,T) to 27 (n-1) truth values
map (fn 1 => (x, false) :: 1) txs (* Join (x,F) to 2" (n-1) truth values

end

(* A function to print a truth table generated from the function tt *)
fun ttstr (tab : (string * bool) 1list list) =

let
val sep = " | ";
fun myconcat (s : string list, sep : string) =
let
fun join (s : string list) =
case s of
[] => v
| x::xs => if xs=[] then x else x "~ sep "~ (join xs)
in
join s
end

fun b2str(x : (string * bool) list) =

myconcat ((map (fn (_, e) => (if e then "T" else "F")) x), sep)
val N = (length (List.hd tab))*(1+(size sep))-(size sep)
val hl = myconcat (map (fn (t, _) => t) (List.hd tab), sep)

val h2 = concat (List.tabulate (N, fn x=>"-"))
val st = (foldr (fn (s1l, s2) => s1 =~ "\n" ~ s2) "" (map b2str tab))
in
h1 ~ ||\n|| ~ h2 -~ ||\n|| ~ st
end
val tab = tt [upu, ||qn’ ||r||]
val _ = print (ttstr tab);
Output of topiclttbl.sml Program
pl gl r«r
TITIT
TI TIF

17

*)
*)

R I
I I I
I

Theorem 1.2.10 (Logical Unary Operation). Let p be an atomic statement. If v(p) = T, then v(~
p) = F; if v(p) = F, then v(~ p) = T. This can be summarised as the truth table below by ignoring the
cumbersome evaluation symbol v().

Truth Table for ~ p

b |~p
T| F
F| T

Theorem 1.2.11 (Logical Binary Operations). Let p and q be atomic statement variables. The evaluation
of the logical binary operations N, V, —, <> are given by the following truth table.

v(p) | v(g) || v(PAg) | v(pVg) | v(p—q) | v(p<q)
T | T T T T T
T | F F T F F
F | T F T T F
F | F F F E T

The truth assignment v(-) will be ignored in the construction of a truth table.

Example 1.2.12. Construct a truth table for the statement (p A q)V ~ 7.

Solution: Steps to construct a truth table for the statement:

1. This statements involves p, g and © ...t 3 statement variables.
2. Set up columns labeled p, ¢, r, ~r, (p Aq) and (p A q)V ~ 7.

3. Fill in the p, ¢ and r columns with all the logically possible combinations of T’s and F’s. There
are altogether 23 = 8 possible combinations of truth values for p, ¢ and r.

4. Use the truth tables for A and V to fill in the ~ r and (p A ¢) columns with the appropriate
truth values.

5. Finally, fill in the (p A ¢)V ~ r column by considering truth values for (p A ¢) and ~ r.

The truth table for (p A q)V ~ r is shown below:

2
<
2
o

(p A

2
<

p

Q

E3|Reslesllesl ReslResl R Il |

i=5|Resiies el SIS RS I IS
| | 33| | | 3 e

Sl R I sl T s T |

=l Rl N s N T

= lRes| Nl Resi N Res Nl les!

Example 1.2.13. Construct a truth table for each statement in (a) g\ ~ (~ p — 7); (b) (~ p <>~
)V (r < q).

18

Example 1.2.14. Construct the truth table for ¢: (p1 A p2) V (p3 A pg).

§1.3 Logical Equivalences and Laws of Logical Equivalences

The truth table is used to define “logical equivalence”. First, we introduce the concept of “tautology”
(and related concepts).

Definition 1.3.1.

1. A statement ¢ is said to be a tautology or a tautologous statement if for all truth assignments
for the atomic statement variables in ¢, v(¢) = T, i.e. its truth values in the truth table are all
true. If ¢ is a tautology, it is denoted as |= ¢.

2. A statement ¢ is said to be a contradiction or a contradictory statement if its truth values in
all rows in the truth table are all false.

3. A statement ¢ is said to be a contingency if it is neither a tautology nor a contradiction.

Remark 1.3.2. The constant 7" or T is a tautology and the constant F or L is a contradiction.

Example 1.3.3. Let p, ¢ and r be statement variables. Show that the statement form

19

1. ~pV pis a tautology.

Proof: First, we construct the truth table for ~ p V p:
pl~p|~pVp
T| F T
F| T T
The truth values of ~ pVp are all true in the truth table, so it is a tautology by Definition 1.3.1.

2. ~ p A p is a contradiction.

Proof: We construct the truth table for ~ p A p:

pl~p|~pAp
T| F F
F| T F
The truth values of ~ p A p are all false in the truth table, so it is a contradiction by Defini-

tion 1.3.1.

3. (p A q)V ~ ris a contingency.

Proof: From the truth table in Example 1.2.12, some of the truth values of (p A q)V ~ r are
true and some are false and so it is a contingency.

Example 1.3.4 (Tutorial 1, Q5). Construct truth tables for the following statements:

(a) (prq) « (~po~q)
(b) ~p—(pVq)
() p—=q) ¢ (~q—~p)

Then determine whether each statement above is a tautology, a contingency or a contradiction.

Example 1.3.5 (Tutorial 1, Q6). Determine whether the following statements are tautologies.

(@) p—=1lg— (PA9)]
(b) (VoA ~(q— q)
() (pVg)—lg— (pAq)

20

Applying all truth assignments to the proposition from Example 1.3.5(¢c)

use "topiclttbl.sml";
use "topiclteval.sml";

fun merge (ttbl : (string * bool) list 1list) (tvals : bool list) (s : string) =
let
val 11 = length ttbl and 12 = length tvals
in
if 11 <> 12 then
[[("Different lengths", false)]]
else
if 11 = 0 then
(]
else
[(hd ttbl) @ [(s, hd tvals)]] @ (merge (tl ttbl) (tl tvals) s)
end

(* Example 1.3.5(c): merge all possible truth assignments into the proposition *
val prop3 = (Atom "p") Disj (Atom "q") Impl (Atom "q" Impl Atom "p" Conj Atom "q
val ttbl = (tt ["p", "q"1);

val tvals = map (fn tv => teval prop3 tv) ttbl;

val = print (ttstr (merge ttbl tvals (str prop3)));

The following example illustrates the use of the notation = for tautology.

Example 1.3.6 (Final Exam May 2013, Q1(a)). Use truth table to show that = (p — ¢) A (r — s) —
((pAT) = (gAs)). The truth table must contain columns for both (p — ¢) A(r — s) and (pAT) — (gA).

(10 marks)
Solution: Let s denote (p — q) A (r — s) = ((pA 1) — (¢ As)). The truth tableis [9 marks]
plalr|s|=2gA(r—=s) | AT) = (aAs) s
T|T|T|T T T T
T|T|T]|F F F T
T|T|F | T T T T
T|T|F|F T T T
T|F | T|T F F T
T|F|T|F F F T
T|F|F | T F T T
T|F|F|F F T T
F|T|T|T T T T
F|T|T|F F T T
F|T|F|T T T T
F|T|F|F T T T
F|F|T|T T T T
F|F|T]|F F T T
F|F|F|T T T T
F|F|F|F T T T
Since s is always T, it 1S & SAUBOLOZY: « vt e svvmvmvssmsmomsmsmsnsmensmsmsmessnssensssssnss [1 mark]

Two compound statements that have the same truth values in all possible truth assignments are called
logically equivalent. We can also define this notion as follows.

Definition 1.3.7. [Hinman, 2005, Definition 1.3.2] Two statements ¢ and 1 are called logically equiv-
alent or tautologically equivalent if ¢ <> i is a tautology. We use notations ¢ = ¢ and ¢ < 9 to
denote that ¢ and 1) are logically equivalent.

21

Il);

In the following examples, we will show that we can either use the truth table of ¢ <> ¥ or comparing
the truth tables of ¢ and v to determine if ¢ = 1.

Example 1.3.8. Let p and ¢ be two statement variables. Determine whether the following statements
are logically equivalent or not.

1. ~pV ~qgand ~ (pVq)

Solution: By Definition 1.3.7, we can construct a truth table for (~ pV ~ q) <> (~ (pV q)) to
determine if it is logically equivalent.

plal~pl~q|pVg|~pVy | ~pW~qg | (~pV~g & (~(pVa)
T|T| F | F i F F T
T|F| F | T T F T F
F|T| T | F G F T F
FIF| T | T F T T T

Since (~ pV ~ q) <> (~ (pV ¢q)) is not a tautology, ~ pV ~ ¢ and ~ (p V ¢) are not logically
equivalent.

2. p—~>qgand ~q—~p

Example 1.3.9 (Tutorial 1, Q7). Answer true or false. An equivalent way to express

(a) the converse of “p is sufficient for ¢” is “p is necessary for ¢”. il |:|

~ pis sufficient for ~¢”. |:|
~ q is necessary for ~p”. oL I:l

Example 1.3.10 (Tutorial 1, Q8). Determine whether the 2 statements forms are equivalent.

“

(b) the inverse of “p is necessary for ¢” is

“

(c) the contrapositve of “p is necessary for ¢” is

(a) p<rgand (pAg)V(~pA~q).
(b) p—(¢—r)and (p—q) — 7.

(¢c) (pVqg)—rand (p—=r)A(g—rT).

22

Mathematicians have identified the useful laws for simplifying statements based on the concept of
logical equivalence. They are summarised in the following theorem.

Theorem 1.3.11 (Laws of Logical Equivalences). Given any atomic statements p, q and r, the
following logical equivalences hold [Epp, 2020).

1. Double negative law: 7. Absorption laws:

o ~(~p =p
Idempotent laws:

e pV(pAgq) =p;
e pA(pVaq) =p.

e pAp=p; 8. Associative laws:
e pVp=p. e (DA AT=pA(qAT);
3. Universal bound laws: e (pVg)Vr=pV(qgVr).
e pvVT =T, 9. Distributive laws:
e pANF=F. e pA(qVr)=(pAq)V(pAT);
4. Identity laws: e pVgAT)=(pVag A(pVr).
e p AT = p; 10. De Morgan’s laws:
*pVF=p. o ~(pAg)=~pVr~yg
5. Negation laws: e ~(pVqg) =~pA~q.
e pV ~p=T; 11. Implication law:
e pA~p=F. e p—qg=~pVgq
6. Commutative laws: 12. Biconditional law:

®* pAG=qAp;
e pVqg=qVp.

epq=pP—>q9AN(q—p)

Proof: Since any statements can only be T or F, truth table can be used to prove 1. to 12.

following are just two demonstrations and the rest are left as exercises.

7. One of the absorption law

The

pla|phg|pVpAg | (pV(PAQ) < p
T |'T | T i T
T F| F T T
F|T| F F T
F|F| F F T

Since = (pV (p A q)) ¢ p, by definition, p vV (p A q) = p.
11. Implication law

~p|p—=>q|~pVg

b |4

T|T| F T T
T|F| F F F
F|T| T T T
FIF| T T T

The last two columns have the same truth values, hence the two statements are logical equivalent.

An important application of the logical equivalence laws is to write sentences in more readable form
as demonstrated in the following example.

Example 1.3.12. Write the negation of the given statements:

1. John is smart but lazy.

In~ (pAqg) form: ... i John is not “smart and lazy”.

In equivalent form ~pV ~ q: ... ‘ John is not smart or he is not lazy.
2.2< V2

In~(pVg) form:o 242

In equivalent form ~ pA ~ q: ...

Note that the statement ~ (p A q) is called the negation of conjunction of p and q while the statement
~ (pV q) is called the negation of disjunction of p and q.

Example 1.3.13 (Tutorial 1, Q9). Rewrite the following statements in (the logically equivalent) if-then
form.

)
)
)
d) Doing homework regularly is a necessary condition to pass the course.
) Ali studies calculus only if he is a math major.

)

)

24

To make the laws of logical equivalences useful, mathematicians have shown that the logical equivalence
“=" is an equivalence relation (see Set Relations in later topic). We also require logically equivalent
statements to be logically equivalent under substitution [Chiswell and Hodges, 2007, Herrmann, 29 Jan
2006].

Definition 1.3.14 (Uniform Substitution). If ¢, v, 1); are statements/formulas, and p; are (atomic)
propositional variables, then ¢[i)/p;] denotes the result of replacing each occurrence of p; by an occurrence
of 1 in ¢; similarly, the simultaneous substitution S of p1, ---, p, by formulas 1, -- -, ¥, is denoted by
Y1/p1, s Yn/Pn-

Theorem 1.3.15 (Substitution Theorem). Let S be a simultaneous substitution (Definition 1.3.14) and
¢ = . Then ¢[S] = [S]. More generally, let ¢; and 1; be statements such that ¢; = i, 1 < i < n.
Then ¢[¢1/p1, e 7¢n/pn] = ¢[¢1/p1, T 7¢n/pn]'

Proof. See Chiswell and Hodges [2007, Theorem 3.7.6]. O

Example 1.3.16. Show each logical equivalence below using laws of logical equivalences (Theorem 1.3.11).

L (pvoA(pVaVr)A~(~(pVq)=pVg

Proof: To illustrate the power of the substitution, we note that a substitution of p Vv q for p
and r for ¢ in absorption law gives

(pvgA((pvgVr)=pVag.

This leads to the first step in the following logical equivalence, the rest of the steps are of similar
reasoning.

(Vg A((pVgVrA~(~(pVQq)

VYN~ (~(pVaq) (Absorption law)
(Double negative law)
(Idempotent law)

1l
A
< <
K
=
>
=
&
L=

2. (pVOA~(~pAg =p

3.~ [~ (VO AT)V~g=gnr

25

Example 1.3.17 (Tutorial 1, Q10). Explain why the statement “If today is not cold, then today is cold”
is logically equivalent to the statement “Today is cold”.

Example 1.3.18 (Tutorial 1, Q11). (a) Show that the following statements are all logically equivalent.

p—(qVr), (pA~q)—r and (pA~rT)—q.

(b) Use the logical equivalences in (a) to rewrite the sentence “If n is prime, then n is odd or n is 2.” in
2 different ways.

The laws of logical equivalence can be used to simplify some long statements to logically equivalent
shorter statements as demonstrated below.

Example 1.3.19. Simplify the following statement to a statement with no more than 3 logical connectives
by stating the law used in each step of the simplification:

(V@O APA(rVg AV ~pVr)A(rA~q).

Solution:

VO APA(TV @AV ~pVr)A(rA ~q)
(VO APA(NV QAT Vr)A(rA~q)
(V@O APA(rV g AT A(rA~q)

Negation)
Commutative and Universal Bound)

(p

= (

= (

=pA[(rve) A (rA ~q) (Absorption, Identity)
=pA[(rA(rA~q))V(gA (rA ~q))] (Distributive)
=pAl((rAT)A~q)V(gA(~gqgAT))] (Associative, Commutative)
=pAl(rA~q)V (FAT)] (Idempotent, Associative, Negation)
=pA(rA~gq)V F| (Universal bound)

=pA(rA ~q) (Identity)

Example 1.3.20 (Tutorial 1, Q12). Use the laws of logical equivalence to show the following:

(a) (A (~(~pV@))V(PAq) =p.

(b) ~ (pV ~q)V (~pA~q)=~p.

() ~((~pA@)V(~pA~q)V(pAg) =p.

26

(d) (~pvV~q) = (pAgAT)=pAg.

Example 1.3.21 (Tutorial 1, Q13). Simplify the following compound statement to a statement with no
more than 3 logical connectives involving ~, V and A:

[[(pA@ ATIVIPADA ~]IV ~q] = 5.

Example 1.3.22 (Tutorial 1, Q14). Verify that
(@) P2 N[~gA(V~q)]=~(pVq)

(b) pVaV(~pA~qgAT)=pVgVr

() pogN(@or)AN(rop)=@—=>9AN(q@—>1)AN(r—D)

Solution: One can use truth table to prove that they are logically equivalent, this is simpler
compare to using laws of logical equivalence as follows (let the right hand side be ¢ and the
associative law and commutative law are sometimes used without explicitly mentioned).

First, we reduce the right-hand-side to an equivalent form involving only negation, conjunction
and disjuction.

Y=(~pVgA(~gqgVr)A(~rVp) [implication law]
=(~pA~ gV~ pATV A~ gV gAT) A (~ TV D) [distributive law]
=(~vpA~ gV ~pATVGAT)A(~ TV D) [negation & identity laws|
= (~pA~NGA~TV ~ A~ GADY ~PATA~TV ~DATAD

VgATA~1VgATAD) distributive law]
=(~pA~gh~T)V(DAGAT) [negation & identity laws|

27

(P @) A(ger)A(r < p)
= AN@=p)A@=>1)AN([r—=q A —p)A
=N g=>r)ANr=>p)A(@=D)A(T—=qgA

p—T [biconditional law

)
p — r) [associative & commutative laws

~

]

]

=YPA(~gVP)A(~TVYOA(~pVr) [implication law]

SYAN(~gAN~TV~gAGVDPA~TVDAGQNA(~pVT) [distributive law]

=yA(~gAN~rVEVPA~TVpAG A(~pVT) [negation law]

=UA(~gA~rVDPA~TVDPDAQA(~pVT) [identity law]
=UYA(~gA~TA~DPV ~gA~T AT

VPA ~ 1A~ DV PA~TATNVDAGA~DPNV DPAGAT) [distributive law]

=yA(~gAN~rAN~pVFVFEFVFVFEVpAgAT) [negation law]

=YA(MPA~GA~TNDAGAT) =Y AY =1 [identity law]

Hence the two statements are logically equivalent.

§1.4 Applications: Logic Circuits, Solving Logic Puzzles, etc.

Logical equivalence is used in logic circuit design [Nisan and Schocken, 2005] and in digital signal processing
systems [Woods et al., 2008] to identify logical equivalent circuits which are minimal to save power (larger
circuits use more power).

Example 1.4.1. Simplify the logic diagram below.

T) —
| =) o
}

For the names of the symbols, see Nisan and Schocken [2005, Chapter 1].

Solution: Step 1: Obtain the formula of the circuit: Out = (~pAq)V (pA ~q)V (p A q)
Step 2: Simplify the above formula:

Out = (~pAgq)V(PA(~qVQq) (Distributive Law)
=(~pAg)V(pAT) (Negation Law)
=(~pAq)Vp (Identity Law)
= (~pVpP)A(qVp) (Distributive Law)
=TAN({pVq (Negation Law & Commutative Law)
=pVyq (Identity Law)

p
Step 3: The above circuit is equivalent to an or-gatg :Z>7 Out

Example 1.4.2 (Tutorial 1, Q15). In logic circuit design, one of the basic logic gate is the NAND gate.
It is logically equivalent to ~ (p A q) and denoted by (p T ¢) for any statements p and q.

(a) Represent the logic gates (i) ~ p and (ii) p — ¢ using the NAND gate.

28

(b) Are p1 (¢ 1) and (p 1 q) 1 r logically equivalent?

We will introduce generalised concepts related to the “truth assignment” from Definition 1.2.2. Note
that we will use the notion of formula (which includes propositions and predicates) rather than just
proposition.

Definition 1.4.3. [Schoning and Toran, 2013] A formula ¢ is called satisfiable if there exists an assign-
ment v such that v(¢) = T. Otherwise, ¢ is called unsatisfiable (or contradiction as defined above).

The set of all satisfiable formulas is denoted by SAT. A satisfying assignment v for a formula ¢ is
often also called a model for ¢, in which case we write: v |= ¢. (Generation of Definition 1.2.2).

A formula ¢ is called valid or tautology if, for all assignments v, v(¢) = T. The set of tautologies is
denoted by TAUT. The notation |= ¢ expresses that ¢ is a tautology.

A formula 1) follows from ¢ (or, 1 is a consequence from ¢, denoted by ¢ |= 1, if ¢ — ¢ (or ~ ¢V 1))
is a tautology.

Based on the definition, ¢ is a tautology iff ~ ¢ is unsatisfiable; ¢ is satisfiable iff ~ ¢ is not a
tautology.

Apart from the truth table method, another method to check for satisfiability is the tableaux
method, which checks a proposition ¢ is satisfiable by expanding ¢ to conjunction and disjunction
forms using laws of logical equivalences and identify “open” branches.

Example 1.4.4. Use tableaux method to check the satisfiability of the proposition ~ ((pA ~ 7)V(~ gAr)).

Solution:
L. ~((pA~71)V(~qAT)) Hypothesis
2. (~(pA~T)A(~(~gqgAT)) De Morgan
3. ~pVr 2 Conjunction & De Morgan
4. qVv ~r 2 Conjunction & De Morgan
5. ~p r 3 disjunction
6. q ~T q ~T 4 disjunction
2y
5,6

From the right tree, we can see that a valuation v(¢) = T and v(r) = T to make v(~pVr) =T
and v(qV ~ r) = T. Hence the hypothesis is satisfiable.

From the example above, we can see that encoding propositions into propositions involving only
negation, conjunction and disjunction is the way to solve satisfiability problem (it is important
because it is at the crossroads of logic, graph theory, computer science, computer engineering, and
operations research). CNF is used in the computerisation of SAT solver as well as the generalisation
to SMT (Satisfiability Modulo Theories) solvers.

29

Definition 1.4.5. A literal is an atom p or a negated atom ~ p.
A clause is a disjunction of literals.
A formula ¢ is in conjunctive normal form (CNF) if it is a conjunction of clauses:

F=CiNCyN---NC,,

where C; = u;1 VuiaV -+ Vg, i = 1,...,m are clauses, u;; are literals. If |C;| = k; < k for some
constant k for all 4, ¢ is said to be in k-CNF.
A formula ¢ is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of literals.

Example 1.4.6. (pV ~q)A(~pVr)A(¢gVr)isa CNF.
Example 1.4.7. The proposition ~ ((pA ~)V (~ ¢A 7)) from Example 1.4.4 has a logically equivalent

CNF:
(~pVa@)A(gV~r).

Exercise: Feel free to check if the lecturer is correct by using truth table or comparison table.

Theorem 1.4.8. For every proposition ¢, there exists a CNF formula which is equivalent to ¢. However,
finding the equivalent CNF usually requires exponential computation time.

Theorem 1.4.9 (Tseitin). For every proposition ¢, there exists a sat-equivalent formula ¢ in 3-CNF.
The transformation from ¢ to ¢ can be done efficiently in polynomial time.

When a formula ¢ is transformed into an equivalent conjunctive normal form (CNF), the DPLL
algorithm, named for its developers Davis, Putnam, Logemann, and Loveland, is an efficient approach
to solving boolean satisfiability (SAT) problems.

1: function DPLL(®)

2 if p=true then return true

3: if ¢ contains a false clause then return false

4: for all unit clauses ¢ in ¢ do

5: ¢ < UNIT-PROPAGATE(Y, ¢)

6: for all literals ¢ occurring pure in ¢ do

T: . ¢ — PURE-LITERAL-ASSIGN(Y, ¢)

8: ¢+ CHOOSE-LITERAL(¢) return DPLL(¢ A £) V DPLL(¢pA ~ £)

There are many SMT solvers. https://en.wikipedia.org/wiki/Z3_Theorem_Prover, developed by
Microsoft, is one of the most popular and will be used in this course.

Example 1.4.10. Use the Z3 Theorem Prover to solve the SAT problem for the proposition ~ ((pA ~
r)V (~ Ar)) from Example 1.4.4

Solution: A program using Z3 SMT solver to solve SAT problem from Example 1.4.4 is shown below.

;55 Example 1.3.26 and 1.3.30: “((p & “r) v ("q & 1))
(declare-const p Bool)
(declare-const gq Bool)
(declare-const r Bool)
(define-fun proposition () Bool
(not (or (and p (mot r)) (and (mnot q) r))))
(assert proposition)
(check-sat)
(get-model)
(exit)

The truth assignment found by Z3 SMT solver is shown below.

sat

30

(define-fun p () Bool
false)
(define-fun q () Bool
false)
(define-fun proposition () Bool
(not (or (and p (mot r)) (and (mnot q) r))))
(define-fun r () Bool
false)

Although SAT/SMT solvers use CNF in the algorithm, many logical puzzles are expressed in DNF as
illustrated in the following example.

Example 1.4.11. Four candidates A, B, C and D are to be selected to participate in a chess competition.
However, only two candidates will be chosen in the final list and the following constraints must be obeyed:

e Only one from A and B will participate.

e If C participates, then D will also need to participate.

e At most one of B and D will participate.

e If D is not participating, then A is also not participating.

Solution: Let a, b, ¢, d denote the statements A, B, C, D participates in the competition respectively.
Then the constraints can be written as

[(ah ~B)V (~aAB)] Afe— dA~ (A A [~ d—~ d]

Let us denote it by p and we can either construct a truth table or use the law of logical equivalence
to simplify the expressions to involving negations and conjunctions.

p=[(aA~b)V(~aAb)]A[~cVdA[~bV~dA[dV ~ a
V(~aAb)]Al(~eN~a)VdA[~bV ~d]
V(~aAb)|A[(~eA~a)A[~bV ~dVdA[~bV~d]
V(~aAb)|A[~aA~cA~bV~aN~cA~dV~bAdV ~dAd]
ahN ~b)V (~aAb)|A[~ah~bA~cVr~aN~cA~dV~bAd]
=aA~bA~aAN~ DA ~cVaAh~ DN ~aN~cA~dVaN~bAN~bAd

Ve aADAN~aN~ DA~ eV ~vaADA~aN~cA~dV ~aAbBAN~DAd

=FVFVaAN~bANdAV FV~aAb\~cA~dVF
Since we need two participants (so ~ a A bA ~ ¢/ ~ d is not useful because only B goes), they
are A and D.

a ~ b))V

Nt Nt M N

;55 Example 1.3.32: participate = true; not participate = false
(declare-const A Bool)

(declare-const B Bool)

(declare-const C Bool)

(declare-const D Bool)

(assert (or (and A (not B)) (and (not A) B))) ; condition 1
(assert (implies C D)) ; condition 2
(assert (not (and B D)))

(assert (implies (not D) (mot A)))

(check-sat)

(get-model)

31

(exit)

The output matches our mathematical analysis above.

sat
(
(define-fun A () Bool
false)
(define-fun D () Bool
false)
(define-fun B () Bool
true)
(define-fun C () Bool
false)

§1.5 Logical Implication and Argument for Statements (Topic 2a)

Logical equivalence (Definition 1.3.7) is defined in terms of the connective of “ordinary” equivalence <.
Analogously, the notion of logical implication can be defined in terms of “ordinary” implication “—”.

Definition 1.5.1. We say that a statement ¢ logically implies a statement ¢ or v is a tautological
consequence of ¢ [Hinman, 2005, Definition 1.3.2], denoted by ¢ = 1), when the statement ¢ — 9 is a
tautology, i.e. = ¢ — 1. When this happens, we sometimes say that the statement ¢ is stronger then .

Remark 1.5.2. The distinction between implication and logical implication is fundamental. Whereas
p — ¢ is a compound statement, the statement p = ¢ describes a relationship between two compound
statement p and ¢, it is a meta language!!|

The link between logical equivalence and logical implication is as follows.
Theorem 1.5.3. Let ¢ and ¥ be two statements. Then ¢ = iff o = ¥ and Y = ¢.

By definition, to show that “¢ = 1", i.e. a statement ¢ logically implies another statement v, we can
create the truth table for the statement ¢ — ¢ and examine its last column.

Example 1.5.4. Show that pA¢=pVq.

Proof: The corresponding truth table is

p q|pAhg pVa|pAg—pVyg
T T| T T T
T F| F T T
F T|| F T T
F F|| F F T

Since the last column consists entirely of T’s, the implication p A ¢ — pV ¢ is a tautology, i.e.
EpAgq—pVgsothat pAg=pVgq.

Remark 1.5.5. For statements related to logical implication, the final step of the truth table is always
to evaluate the implication. The comparison table, which is a striped version of a truth table, lacks the
last column since for implication, can be used. We know that as long as there is no T' — F', we know that
the implication will be true.

Example 1.5.6. Show that ~ p = p — ¢ using comparison table.

32

An argument is an assertion that the conjunction of several statements implies another statement as

defined below.

Definition 1.5.7. For any statements ¢1, ¢o, -- -, ¢, and 1,
P1
b2
{gbl? ¢27 Ty ¢n} /¢ or
Pn
Y
are called arguments (or deductive argument, see https://en.wikipedia.org/wiki/Deductive_reasoning).
We call {¢1, ¢2, -+, ¢} the set of hypotheses, premises or assumptions and 1) the conclusion of

the argument. It is customary to ignore the “bracket” for convenience [Herrmann, 29 Jan 2006].
When there is no hypothesis, an argument is written as / .- 1.

Definition 1.5.8. When the premises ¢, ¢1, ¢2, - -- and ¢, are true, ¥ is true, then we say the argument
is valid. 1 is said to be deduced or inferred from the premises, and that ¢ follows logically from or is
a logical consequence of the premises or that ¢». An argument that is not valid is said to be invalid or
fallacious.

Three methods for determining the validity of an argument are

Method 1 : using “truth table” or “comparison table”;
Method 2 : using laws of equivalences and implications;

Method 3 : https://en.wikipedia.org/wiki/Method_of_analytic_tableaux or “truth tree”.

Method 1: In a “truth table”, an argument is valid if for all truth assignments, the truth value of

GLAG2 N Ny =

are all true, i.e. the above proposition is a tautology. Otherwise, the argument is invalid. In a “comparison
table”, an argument is valid when there is no truth assignment such that v is false but ¢1, ¢, - -+ and ¢,
are true. If there is one case where ¢1, @9, -+ and ¢, are true but v is false, the argument is invalid.
A mathematical formalism of method 1 is given by the deduction theorem below.

Theorem 1.5.9 (Deduction Theorem). Let I' be any finite (possible empty) set of formulas, ¢, ¢1, -+,
O and ¢ be formulas [Herrmann, 29 Jan 2006, Section 2.8].

LT, ¢y ifiT o .
2. 01, O EVIUfFOLN NGy, e O E D where 1 < i < n.

Based on this theorem, an argument ¢, -+, ¢, /.. 1 is valid iff = ¢1 A -+ A ¢, — 1; otherwise, the
argument is invalid.

Example 1.5.10. Determine if pV g/ .". p A q is valid.

33

Solution 1: The truth table for the argument is listed below.

plalpVva|prg] (pVe = (pAg)
T[T | T T T
T|F| T F F
F|lT| T F F
F|F| F F T

According to the last column the statement (pV ¢) — (p A q) is not a tautology. By definition, the
argument is invalid.

Solution 2: We don’t need to write down the whole comparison table to confirm that the argument
is invalid, we only need to find one case where the conclusion p A ¢ is false but the premise p V ¢ is
true.

Suppose v(p A q) = F, then we can have v(p) = T and v(q) = F. However, v(pV q) = T. We
found one case where the premise is true but the conclusion is false. Hence the argument is invalid!

Example 1.5.11. Determine the validity of the argument pV (qVr), ~r/ .. pVq.

Solution: We will use the comparison table to check the validity of the argument.

=
<4
32
2
<

pV(pVq

IS IS P

5| hesl Resiies e Rl Rl Rl s
5 e Wl | e s Ren | N 1S

5|l st e | s R les| Ml i

R H H B H A

= e eS| N s R s

In each situation where the premises are both true, the conclusion is also true, so the argument
is valid.

Example 1.5.12. Determine the validity of the argument p — ¢V ~ 7, ¢ = pAr /... p — r by using the
comparison table.

Example 1.5.13 (Tutorial 1, Q16). Use comparison tables to determine whether the arguments are valid.

(a) p—(qVr), ~qV~r/ ~pV~T

34

(pANq) =~r

PV ~q
~q—=p

~T

Some sequence of English sentences with logical meaning and behaves like statements can be formalised
and be analysed as “arguments” as illustrated in the examples below.

Example 1.5.14. Is the following argument valid?

If interest rates are going up, stock market prices will go down.
Interest rates are not going up.
Therefore stock market prices will not go down.

Solution: Let p: “Interest rates are going up”; ¢: “stock market prices will go down”. The argument
can be written formally as p — ¢, ~p /.~ q.

It is not valid since the third row of the comparison table indicates that we have a case where
the premises are true but the conclusion is false:

pPlag|pPp=>q|~p|~4g
T|T T F F
T | F F F T
F|T T T F
F|F T T T

35

Example 1.5.15 (Tutorial 1, Q17(a)). Write the symbolic form of each argument below and then deter-
mine its validity.

If Tom is not on team A, then Hua is on team B.
If Hua is not on team B, then Tom is on team A.
Therefore Tom is not on Team A or Hua is not on Team B.

Example 1.5.16. Show that the argument ~ p — F/ . p is valid using truth table.

Similar to the laws of logical equivalences (Theorem 1.3.11), the laws of logical implications can be
obtained using the truth table method.

Theorem 1.5.17 (Laws of Logical Implications). Let F' be contradiction. Given any atomic statements
p, q and r, the following arguments are valid [Epp, 2020].

1. Modus Ponens (MP in short): 5. Congunction:
P—=¢ plEq P, aEPAg
2. Modus Tollens (MT in short): . Elmination:
P—q ~qF~p pPVaq ~qEp
3. Generalisation: pVag, ~pEq
PEPVY 7. Transitivity:
1F=PVaq

p—=q, gq—=rEP—T
4. Specialisation:
PAGED
PAGEQ ~p—>FEp

8. Contradiction Rule:

To apply the laws of logical implications to general propositions, we need the following theorems
[Herrmann, 29 Jan 2006, Section 2.8].

Theorem 1.5.18 (Substitution of Equivalence). If§ = ¢y, and ¢1, -+, dn-1, dn E U, thendr, -+, dp—1, £
.
Theorem 1.5.19 (“Partial Ordering” Theorem). Let ¢;, 1, £ be formulas.

36

1, gbla"' 7¢n |:¢7, fo'l" eachizl,--- , M.
2. [f¢1, ,Qbi |:17b]’ 'Ll)he’l”ej::h--. D, andd}l’... ’Qz)p |:§, the'I'LQSl"'- ,an |:£

Method 2: When an argument is valid, most of the time, it is possible to use on the laws of logical
equivalences, laws of logical implication and the various substitution theorems, to show that the conclusion
follows from the premises using the laws. However, this method does not directly allow one to check for
invalidity. One can use laws of logical equivalences on ¢1 A - -+ A ¢, — ¥ and perform forward checking
to find possible assignments to make it false.

Example 1.5.20. Show that the hypotheses

e ¢1: “If John takes the computer course, then John stays in the hostel”
e (o: “John does not stay in the hostel”

e ¢3: “If John does not take the computer course, then John takes the language course or stay at
home”

o 4. “If John takes language course then John buys a motorcycle”
e ¢5: “If John buys a car, then John does not buy motorcycle”

e ¢g: “John buys a car”

lead to the conclusion &: “John stays at home”.

Solution: Let

r1: John takes the computer course
ro: John stays in the hostel

r3: John takes the language course
r4: John stays at home

r5: John buys a motorcycle

r¢: John buys a car

The above argument can be formally written as
L —> T2, ~To, ~T1 —>T3V 7y, 3 —75 Tg—>~T5, T¢ / 4.
Instead of using a comparison table, we use the logical equivalence and logical implication rules
together with the “Partial Ordering” Theorem to show that the above argument is valid.

o1 L — T2 premise

p2: ~To premise

P3: ~ry—=>r3Vry premise

¢4 r3s — 15 premise

@5 re —~T5 premise

®6 : 76 premise

(I ~ T 01, ¢2, Modus Tollens
o : r3Vry ¢3, 11, Modus Ponens
3 : ~Ts o5, ¢g, Modus Ponens
(I ~ T3 ¢4, 3, Modus Tollens
§: T4 o, 14, Elimination

Example 1.5.21 (Tutorial 1, Q17(b)). Write the symbolic form of the argument below and then show
that it is valid using laws of logical implications.

37

If I graduate this semester, then I will have passed Calculus.

If I do not study Calculus for 5 hours a week, then I will not pass Calculus.
If I study Calculus for 5 hours a week, then I cannot play basketball.
Therefore, if I play basketball, I will not graduate this semester.

38

§1.6 Tableaux: Using Diagram to Check Validity

Method 1 (truth table or comparison table) is not applicable to propositions with too many atomic
variables while method 2 (logical laws) cannot be used to show that an argument is invalid. Method 3
(tableaux) can be used to check relatively large arguments.

Method 3: Tableau (the plural form is tableaux) or truth tree can be used to check the validity of
an argument by examining the premises and the negation of the conclusion. If they are satisfi-
able, the argument is invalid; If they are unsatisfiable or a contradiction, the argument is valid (recall
Definition 1.4.3).

A tableaux proof is done by constructing a tableau or truth tree of which the nodes are la-
belled by formulas of the logic. In particular, every proof is begun with a tree consisting of a sin-
gle node and then expanded by applying the procedure (https://en.wikipedia.org/wiki/Method_of _
analytic_tableaux):

1. Pick an open leaf node. The leaf node in the initial chain is marked open.
2. Pick an applicable node on the branch above the selected node.

3. Apply the applicable node, which corresponds to expanding the tree below the selected leaf node
based on expansion rule.

1. PAQ i PvQ 1. E
2 P 1. /\ 2, logical equivalent form 1.
3. Q 1. 2. P Q 1. 3. of F from page 23

where E can be ~ (PAQ) (De Morgan), ~ (PVQ) (De Morgan), ~ (~ P) (double negative), P — @
(implication), ~ (P — @) (implication + De Morgan + double negative), P <> @ (biconditional),
~ (P <> Q) (biconditional + De Morgan).

4. For every newly created node that is both a literal /negated literal, and whose complement appears
in a prior node on the same branch, mark the branch as closed. Mark all other newly created nodes
as open.

As mentioned in the Section 1.4, tableaux method is tightly link to SAT/SMT solvers. So we will
illustrate the use of tableaux method with Z3 SMT solver in the following examples.

Example 1.6.1. Determine the validity of the argument pV (¢ V r),~ r/ ... pV ¢ from Example 1.5.11
using truth tree/tableaux method and a SMT (Satisfiability Modulo Theories) solver.

Solution: 1. pV(gVr) Premise
2. ~r Premise
3. ~ (pVq) Negated conclusion
4 ~p 3 De Morgan
) ~ q 3 De Morgan
6. P qVvrT 1 disjunction
®
4,6 /\ : s i
7. q r 6 disjunction
® ®
5,7 2,7
(set-logic QF_UF) ; QF_UF supports Bool (propositional variables)
(declare-const p Bool)

39

(declare-const gq Bool)
(declare-const r Bool)
(define-fun argument () Bool
(=> (and (or p (or gq r)) (mot r))
(or p q)))
(assert (not argument))

(exit)

(check-sat) ; unsat means that there is no (p q r) making the argument invalid

Example 1.6.2. Use truth tree/tableaux method and an SMT prover to show that the arguments below

from Example 1.5.13 is invalid.

(a) p— (qVr),~qVr~r /. ~pV~r;

Solution: 1. p—(qVr) Vv Premise
2. ~qgVe~r Y Premise
3. ~(~pV~T) Y Negated conclusion
4 D 3 De Morgan+Double Negative
5 r 3 De Morgan+Double Negative
6. ~q ~r 2 disjunction
/\ ®
5,6 o .
7. ~p qVr 1 disjunction
®
4,7 /\ - - .
8. q r 6 contradiction; 7 disjunction
®
6,8

]

The leaf r is open, so the argument is invalid.

(declare-const p Bool)

(declare-const q Bool)

(declare-const r Bool)

(define-fun argument () Bool

(=> (and (=> p (or q r)) (or (mot q) (mot r)))

(or (mot p) (mot r))))

(assert (not argument))

(check-sat)

(get-model) ; p=T, gq=F, r=T only

(exit)

(b) (pAq) =~r, PV ~qg, ~q—p /o~

40

Example 1.6.3 (Tutorial 1, Q17(c)). Write the symbolic form of the argument below and then determine
its validity.

If f is integrable, then g or h is differentiable.

If ¢ is not differentiable, then f is not integrable but it is bounded.
If f is bounded, then g or h is differentiable.

Therefore, g is differentiable.

Solution: Let p: “f is integrable”, q: “g is differentiable”, r: “h is differentiable”, s: “f is bounded”.
Then the argument can be written formally as

p—(qVr), ~qg—=(~pAs), s—>(qVr)/. .q.
Using Method 2, we assume conclusion and try to find if it is possible to make
l.o(p—(gvr)=T
2. v(~qg— (~pAs)) =T requires v(~ pAs) =T since v(~ q) =T.

3. v(s—>(qgVvr)=T

i

Item 2. suggests that ‘v(p) =F

v(s) = T‘ and then Item 3. suggests ‘v(q vr)y=wv(r)=T ‘

41

42

§1.7 Rules of Inference for Statements

Previous laws for “logical inference” are based on semantics of logic. In this section, we will venture
into syntactic implication or https://en.wikipedia.org/wiki/Natural_deduction) which is
going to be fundamental tools for mathematicians and computer scientists to conduct proving in
future.

There are many syntactic proving software such as Lean 4 prover, Rocq prover, Isabelle prover,
etc. We will be using Lean 4 prover, developed by Microsoft, and is becoming very popular among
mathematicians since 2020(7) because it supports Unicode on VS Code editor and mathematicians
are trying to integrate Al into it to help mathematicians perform proving.

Most of the syntactic proving software use typed functional programming (FP) (e.g. Stan-
dard ML, Ocaml) [Harrison, 2009] to implement https://en.wikipedia.org/wiki/Curry%E2%80%
93Howard_correspondence:

Logic | Proposition | Proof | Implication Conjunction | Disjunction T K

FP Type Term | function type | Product Type | Sum Type | identity? | ()

There are many notations for natural deduction/syntactic implication:
e Gentzen (sequent calculus) syntax: Gallier [2015], Boolos et al. [2007, Chapter 14]).

o boz-and-line syntax or Jaskowski nested bor syntax: Huth and Ryan [2004], Bornat [2005] (used in
Jape, see http://japeforall.org.uk).

e https://en.wikipedia.org/wiki/Fitch_notation: Barwise and Etchemendy [1999], http://
forallx.openlogicproject.org/.

We will be using the Fitch notation which is relatively easy to understand compare to Gentzen syntax
used in computer science.

In natural deduction, we have such a collection of rules of inference. They allow us to infer a
conclusion (a formula) from a set of premises by applying inference rules in succession (called a
proof) [Huth and Ryan, 2004].

Let ¢, 1, £ be any statements. Mathematicians have identified the following essential rules of inference
for natural deduction [Bornat, 2005]:

1. A-introduction: ¢, YEPAY

2. A-elimination: dAYEP or PAYEY

3. —-introduction or Conditional Proof (CP in short): F(p—)

4. —-elimination: =, oY

9. V-introduction: pbEoVYy or YPEoVY

6. V-elimination: OGNV, |9, -, &, 7/)7"',5"_5
7. —-introduction or ~-introduction: b~ ¢

8. —-elimination or ~-elimination: ¢~k L

9. l-elimination: Lo

Note that 1. and 2. are called the rules of conjunction, 3. and 4. are called the rules of implication, 5.
and 6. are called the rules of disjunction, 7. and 8. are called the rules of negation [Bornat, 2005].
In the following examples, we will show how to apply the 8 rules to perform inference.

Example 1.7.1. Show that p — ¢k p— (p A q).

43

Proof:

P—q
D
q
PAg

[U N

p—=>DpAq

premise
assumption

1,2 —-elimination
2,3 A-introduction

2,4 —-introduction

Proof in Lean 4:

theorem egl_synO1 (P Q Prop):
(P -> Q) -> (P -> (P /\ Q) :=
fun hi P -> Q =>
fun h2 : P =>
And.intro h2 (hl h2)

/- Print types -/
#print egl_synO1

Lines 2—4 serve to justify line 5, but they cannot be used in any subsequent line of the proof, they
are closed off from the rest of the proof, but you are free to use line 5 as you need it.

Example 1.7.2 (Modus Tollens). Show that p — ¢, ~ g F~ p.

p—4q
~dq

Proof: e

q
1

S Ot e W N =

~p

premise

premise
assumption

1, 3 —-introduction
2, 4 —-elimination

—-introduction

Reference: Huth and Ryan [2004, Section 1.2.2].

Proof in Lean 4:

/- Not X = X -> False -/
theorem modus_tollen:
(P -> Q) -> (Not Q) -> (Not P)
fun hi P ->Q =>
fun h2 : Q -> False =>
fun hp : P =>

show False from h2 (hl hp)

Example 1.7.3 (Hypothetical Syllogism (Transitivity)). Show that p — ¢, g > rFp— 7.

Hypothetical Syllogism is very easy because — corresponds to function mapping of types in type

functional programming.
1 p—4q

q—r

Proof: s

q

T

S Ot s W N

p—r

premise

premise
assumption

1, 3 —-elimination
2, 4 —-elimination

3,5 —-introduction

Proof in Lean 4:

-- Hypothetical Syllogism

theorem transitivity (P Q R Prop):
(P -> Q) -> (@ ->R) -> (P -> R) :=
fun hi1: P -> Q =>
fun h2: Q@ -> R =>
fun hp: P =>

show R from h2

Example 1.7.4 (Tutorial 1, Q18). Show that p - q¢Fp — (r = (s — q)).

44

Example 1.7.5. Show that pA ~s, ¢ — (r = s)F (p — q) =~ .

-- term
theorem
(P /\
(P ->
fun

fun

fun

fun

mode

syn02 (P Q R S : Prop):
Not S) -> (Q -> (R -> 8)) ->
Q) -> Not R :=

hi
h2
h3
hr

(P /\ Not 8) =>
(Q -> (R -> 8)) =>
(P -> Q) =>
R =>

(And.right h1) ((h2 (h3
(And.left h1))) hr)
#print syn02

-- tactic mode (keyword: by)
theorem syn0O2b (P Q R S : Prop):

(P /\ Not S8) -> (Q -> (R -> 8))
(P -> Q) -> Not R := by

intro hil

intro h2

intro h3

intro hr
exact (And.right hil)
((h2 (h3 (And.left h1))) hr)
#print synO2b

Proof: Using Lean 4, we can prove using direct Curry-Howard correspondence on the left or the
Lean 4 tactics on the right.

=>

Example 1.7.6 (Disjunctive Syllogism). Show that pV ¢, ~pkq; pVgq, ~qk p.

Proof:

o N O Ot = W NN

pVyq

premise

premise
assumption

2, 3 —-elimination
—-introduction

assumption

1,3,5,6,7 V-elimination

Proof in Lean 4:

theorem disjunctive_syllogism:
(P \/ Q) -> (Not P) ->Q :=
fun hi: P \/ Q =>
fun h2: P -> False =>
Or.elim hi
(fun hp: P =>
(show Q from
False.elim (h2 hp)))
(fun hq: Q =>
(show Q from hq))
#print disjunctive_syllogism

Example 1.7.7. By using the rules of inference, show that ~pVgq, ¢ =1, g—s, p FrAs.

45

Mathematically, semantic argument (using truth table) and natural deduction (using type match-
ing) are different. The former is defined through the concept of valuation and the later is defined through
a proof (solely using rules). They are linked through the following theorems [Johnstone, 1987, Barnes
and Mack, 1975].

Definition 1.7.8. A logic system is said to be sound if ¢1,- -+ , ¢, F ¢ implies ¢1,- -+, ¢, = .
Definition 1.7.9. A logic system is said to be adequate if ¢1,-- - , ¢, = 1 implies ¢y, -, dp F 1.
Theorem 1.7.10 (The Soundness Theorem). If ¢p1,- -+, ¢n b 2, then ¢1,--- , dn E 1.

Theorem 1.7.11 (The Completeness Theorem). If ¢1,-- -, ¢, =10, then ¢1,--- , dp 1.

Proof. Refer to Johnstone [1987] or Forster [2003, p. 94] Theorem 20. O
Theorem 1.7.12 (The Decidability Theorem). Given propositions/statements ¢1, -+, ¢pn, 1. There is
an algorithm that determines whether or not ¢1,--- ,¢n - 1.

46

§1.8 Syntax of Quantified Statements (Topic 1b)

Propositional logic is too simple when we need to describe infinitely many statements!
For example, when we want to compare two things, e.g. x =y. 2—1=1,1=3— 2, etc. It is
infeasible to list all of them.
We need predicates, a function that takes in data and return true or false, as well as quantifiers
to turn predicates into propositions (which summarised “similar” propositions into one or a few
propositions).

The simplest logic system to include propositional logic and handle predicates and quantified
statements is the first order logic. Similar to propositional logic, there are two key parts in first order
logic, i.e. syntax and semantics. The syntax determines which collections of symbols are legal expressions
in first-order logic, while the semantics determine the meanings behind these expressions.

The (well-formed) formula or quantified statement for first order logic are the generalisation of
Definition 1.1.2.

Definition 1.8.1. [Manin, 1977, Chapter 1] Terms and well-formed formulae are defined recursively as
follows.

e terms: they represent objects, i.e.

— Variables (normally denoted z,y,x1,x9,--- ,y1,---) and constants (normally denoted as a, b,
ai,az, ---) are atomic terms.

— If f is a function (which returns a value) of degree (or arity) r and t1,--- ,t, are terms, then
ft1,--- ,ty) is a term.

e formulae: they are relations or functions, i.e.

— If P is a relation (refer to the Sets and Relations in Topic 4) of degree (or arity) r and t1,--- ,t,
are terms, then P(t1,--- ,t,) is an (atomic) formula.

— If ¢ and ® are formulae (abbreviated notation!), and z is a variable, then the expressions

~ (@), (D) A (¥), (@) V (¥), (¢) = (¥), (&) & (¢), Va(¢), Fz(¢)

are formulae.

Remark 1.8.2. A predicate with no arguments is an atomic statement, as in propositional logic (Defi-
nition 1.1.2).

Representation of First-Order Logic in Standard ML

(* https://www.rbjones.com/rbjpub/logic/log021.htm *)
infix 1 Iff

infixr 2 Impl

infix 3 Disj

infix 4 Conj

datatype term = V of string

and formula =

P of string * term 1list

Neg of formula

|

| Conj of formula * formula
| Disj of formula * formula
| Impl of formula * formula
| Iff of formula * formula
| FA1l of string * formula;

47

Similar to propositional calculus, conventions have been developed about the precedence of the logical
operators, to avoid the need to write parentheses in some cases:

e ~ is evaluated first

e A and V are evaluated next

e Quantifiers V and 3 are evaluated next

e — and < are evaluated last.

Remark 1.8.3. In English, the “predicate” is the part of the sentence that tells us something about the

subject. For example, James is a student at UTAR.
—
subject predicate

Example 1.8.4.

She BIVES 11 The GIEY: memsmsmemamenumsmemsmenamsmemsmesamsmswsmssansssmsmessnsssnsmessnsssnsn neither
Ursil, 50k G LB THL 0 sos e 0m mem 0.0 550 6. mm w52 w0 6 0 5 3 5 . 8 56 6.8 508 6.8 552 predicate (of degree / arity 2)
live(Mary, Austin): “Mary lives in Austin.” proposition (or predicate of degree / arity 0)

Example 1.8.5. The expression VzVy(P(f(x)) —~ (P(x) — Q(f(y),x,2))) is a formula where f is a
unary function symbol, P a unary predicate symbol, and @ a ternary predicate symbol.

Example 1.8.6. Consider the following logic formula

(Vz.Jy. P(f(c,y)) AQ(g(9(2)),y)) — (Fz.Vw. ~ R(z,w))
N—_——

®2 P2 3
1 Y1

we can study the formula formally by applying the rules mentioned in Definition 1.8.1. We can also
identify

e function symbols: f,c,g.
e predicate symbols: P, Q, R. |

Example 1.8.7. The expression Vax x — is not a formula. It is just a string of symbols!

Example 1.8.8 (Tutorial 2, Q1). Let P be a proposition and Q(z,y) be a predicate. Are the following
strings well-formed formula?

(b) (~ (P))A(P)
(c) Va((P — Q(=,y)) V (P))
d

z? + % — 322

| |
| |
| |
~ VxQ(:L',xQ) =dr~ Q(:B,332) ‘ ‘
| |
| |

22 4+9y*-322=0

In a formula, a variable may occur free or bound. Intuitively, a variable is free in a formula if it is not
quantified: in Vy P(x,y), variable x is free while y is bound.

Definition 1.8.9. The free and bound variables of a formula are defined inductively as follows.

e Atomic formulas. If ¢ is an atomic formula then x is free in ¢ if and only if x occurs in ¢. Moreover,
there are no bound variables in any atomic formula.

48

e Negation. x is free in ~ ¢ if and only if z is free in ¢. x is bound in ~ ¢ if and only if x is bound
in ¢.

e Binary connectives. z is free in (¢ — 1) if and only if x is free in either ¢ or ¢. x is bound in
(¢ — 1) if and only if x is bound in either ¢ or 1. The same rule applies to any other binary
connective A, V, <> in place of —.

e Quantifiers. x is free in Vy¢ if and only if x is free in ¢ and x is a different symbol from y. Also, x
is bound in Vy¢ if and only if z is y or x is bound in ¢. The same rule holds with 3 in place of V.

Example 1.8.10. Determine if the variables x, y, z, w are free, bound or neither in the formula VzVy(P(z) —
Qz, f(x),2)).

Solution:

e x and y are bound variables
e 2 is a free variable

e w is neither because it does not occur in the formula.

Freeness and boundness can be also specialised to specific occurrences of variables in a formula.

Example 1.8.11. For the formula P(z) — Vx Q(z), the first occurrence of z is free while the second is
bound, i.e. the z in P(z) is free while the x in Yz Q(z) is bound.

Example 1.8.12 (Tutorial 2, Q2). Let a be a constant, f; be functions and P; be predicates. Determine
the bound and free variables of the following formula.

(a) (VxoPi(z1,22)) = Pi(x2,a). ‘ ‘

(b) P1 ($3) —r V:El\f:rng(xl, :L‘Q). ‘ ‘

(c) Voo (Pr(fi(z1,22), 1) = V1 Pa(a3, f2(71,72))) | |

§1.9 Formal versus Informal Language

We use informal languages such as English, Chinese, etc. in real life. Informal languages are difficult for
computer to process. To ask computer to help us solve problems, we need to express human knowledge in
a formal language. The results are represented formally by computer and they will normally be converted
to informal languages for human comprehension.

First, let us define the classes of formal statements that we constantly encounter in mathematics.

Definition 1.9.1. Let P(z) and Q(z) be any predicates with free variable .
1. A universal statement is a formula of the form
YePlx)
It corresponds to these English sentences: “For all x P(x)”, “For every x P(z)” and “For any x
Plas)”.
2. An ezistential statement is a formula of the form

It corresponds to these English sentences: “There is/exists an x such that P(x)
one x such that P(z)”, “Some z satisfies P”, “P(z) for some z”, etc.

2

, “There is at least

3. A wuniversal conditional statement is a formula of the form

Va(P(z) = Q(x)).
It corresponds to the English sentence “For every z, if P(x) then Q(x)”.

49

Formal to Informal Translation

It is generally straightforward to translate from formal language into English, since you can just turn each
logical operator directly into an English word or phrase. We will be introducing some notations which
are defined in later sections: N, Z and R which are the set of natural numbers, integers and real numbers,
respectively.

Example 1.9.2. Let

A(x) := x is an animal.
C(x) :=xisa cat.
S(x := x is small.

)
GP(x) := x is a good pet.
Translate the universal conditional statement
Vz(S(x) AN A(z) - GP(x)) (%)

into English literally.

Solution: We could write the formal sentence (x) into any of the following English sentences.

1. For every thing, if that thing is small and that thing is an animal, then that thing is a good
pet.

This is graceless English, but at least it’s comprehensible and correct. The style can be improved:
2. Everything which is small and which is an animal is a good pet.

Even better would be:

3. Small animals make good pets.

Such stylistic improvements in the English are optional. It is important to be sure that the effort to
improve the literary style doesn’t affect the meaning, but this is a question of proper usage of natural
language, not of formal logic.

Example 1.9.3. Rewrite the following formal statements in a variety of equivalent but more informal
ways without using the formal symbols V and 3.

1. Vz(zx € R — 22 > 0).

Solution: Any of the following English sentences are acceptable.

e All real numbers have nonnegative squares.

e Every real number has a nonnegative square.

e Any real number has a nonnegative square.

e has a nonnegative square, for each real number z.

e The square of any real number is nonnegative.

2. Vz(z € R — 22 # —1).

50

Solution:

e All real numbers have square not equal to —1.

e No real numbers have square equal to —1.

3. Im(m € ZAm? =m).

Example 1.9.4. Rewrite the following formal statement in a variety of informal ways. Do not use
quantifiers or variables.
Vr((x € R) A (z > 2) — (22 > 4)).

Informal to Formal Translation

It is sometimes tricky to translate from an informal sentence into a formal sentence, precisely because the
informal sentence may not correspond obviously to the logical quantifiers and operators.

Example 1.9.5. Translate the sentence ‘Some birds can fly’ into logic. Let B(x) mean ‘z is a bird’ and
F(z) mean ‘z can fly’.

Solution: ‘Some birds can fly’ is translated as
dz(B(x) A F(x)).

If we translate this back to ‘unpolished’ English, it would be ‘there is something which is a bird and
this thing can fly.’

Remark 1.9.6. Warning! A common pitfall is to translate ‘Some birds can fly’ as
Jz(B(z) — F(r)) Wrong translation!

To see why this is wrong, let p be a frog that somehow got into the universe. Now B(p) is false, so
B(p) — F(p) is true (remember F' — F = T). This is just saying ‘If that frog were a bird then it
would be able to fly’, which is true; it doesn’t mean the frog actually is a bird, or that it actually can fly.
However, we have now found a value of x — namely the frog p — for which B(x) — F(z) is true, and
that is enough to satisfy Jz(B(z) — F(z)), which is different from Jz(B(x) A F(z)) which requires us to
find a flying bird from birds.

o1

Example 1.9.7. Using the notations from Example 1.9.2, the English sentences in on the left side of the
table below can be translated into logic formulae on the right side of the table:

Informal Formal

Cats are animals. Vx(() = A(x))

Cats are small. Va(C(x) = S(x))

Cats are small animals. Va(C(z) = S(z) A A(x))
Small animals are good pets. | Va(S(z) A A(x) — GP(x))

Example 1.9.8 (Tutorial 2, Q16). Let H(z) denote the predicate “z is a human” and T'(z,y) denote
the predicate “x trusts y”. Rewrite the following formula into English sentence without quantifiers and
variables.

1. VoIy(H(z) = (H(y) A T(z,y))) | |

2. SaVy(H(z) A (H(y) =~ T(z,y))). | |

3. VaVy(H (z) = (H(y) =~ T(z,y)). | |

Example 1.9.9 (Tutorial 2, Q15). Let M (s) denote “s is a math major”, C(s) denote “s is a computer
science student” and F(s) denote “s is an engineering student”. Rewrite the following statements by
using quantifiers, variables and predicates M (s), C(s) and E(s).

1. There is an engineering student who is a math major.

2. Every computer science student is an engineering student.

3. No computer science students are engineering students.

4. Some computer science students are engineering students and some are not.

Many mathematical quantified statements can be written in one of the form in Definition 1.9.1.
However, mathematical writings normally have many implicitly quantified statements, i.e. statements
that do not contain the “keywords” all or every or any or each or exist, which often tell us what class of
quantified statements they belong. Hence, we have to look at the sentence and understand the context.

Example 1.9.10. Translate the sentence “Every integer is rational.” into a quantified statement.

Example 1.9.11. Consider the statement “There is an integer that is both prime and even.” Let P(n)
be “n is prime” and E(n) be “n is even.” Use the notation P(n) and E(n) to rewrite this statement
formally.

Example 1.9.12. In calculus courses, the letter x is mostly always used to indicate a real number, hence
the sentence below

“If £ > 2 then 22 > 4.”

92

is interpreted to mean the same as the statement
“For all real numbers z, if x > 2 then 2% > 4.”

or formally Ve((x eRAz >2) — (22 > 4)). or
Vz(z € R) — (x > 2) — (22 > 4).

Example 1.9.13. Translate the following statement formally.

If a number is an integer, then it is a real number.

article “a”. Hence, this statement is a universal statement: Vz(z € Z — = € R).

Solution: The clue that indicates its universal quantification comes from the presence of the indefinite

Example 1.9.14. Let E(z) be the predicate “z is even”. Translate the following statement
The number 24 can be written as a sum of two even integers.

into a formal logic formula.

Example 1.9.15 (Tutorial 2, Q14). Consider the predicates

LT(z,y):z <y EQ(z,y):z=y EV (z): x is even
I(x): z is an integer Plx):o>0 R(z): x € R.

1. Write the statement using ONLY these predicates and any needed quantifiers.

(a) Every integer is even. ‘

(b) Some real numbers are negative integers.

(¢) If x < y, then x is not equal to y.

(d) There is no largest number. ‘
() f y>zand 0> z,thenz-2>y- 2. ‘

2. Write the statement 3z ~ P(z) in English without using variables and symbols.

Example 1.9.16 (Tutorial 2, Q17). Consider the following statement:
Jr(z e RA2%=2).

Which of the following are equivalent ways of expressing this statement?

1. The square of each real number IS 2.o e I:l

2. Some real numbers have SQUATe 2.t e I:l

3. If z is a real number, then @2 = 2. i i

Example 1.9.17. Rewrite the following statements formally using quantifiers and variables.

1. Somebody trusts everybody.

93

2. Given any positive number, there is another positive number that is smaller than the given number.

3. Any even integer equal twice some other integer.

4. For every real number x and every real number y, if x is positive and y is negative, then the product
of x and y is negative.

Example 1.9.18. Let S be the set of students in UTAR, M be the set of movies that have ever been
released, and let V (s, m) denote “student s has seen movie m”. Translate each of the following statements
into English.

1. Vsam((s € S) = ((m € M)AV (s,m))).

2. dsFtIMm((s€ S)N({teS)N(me M)A (s#t) ANV (s,m) AV (t,m)).
| |
3. IsT((s e S)YN(te)N (s#t)AVm((m € M) — (V(s,m) = V(t,m)))).

Often the real difficulty in translating English into logic is in figuring out what the
English says, or what the speaker meant to say. For example, many people make statements like
‘All people are not rich’. What this statement actually says is

Vx ~ R(x),

where the universe is the set of people and R(z) means ‘x is rich’. What is usually meant, however, by
such a statement is
~ YzR(z),

that is, it is not true that all people are rich (alternatively, not all people are rich). The intended meaning
is equivalent to
dz ~ R(x).

Such problems of ambiguity or incorrect grammar in English cannot be solved mathematically and they
will not be considered in this subject. However, they do illustrate one of the benefits of mathematics:
simply translating a problem from English into formal logic may expose confusion or misunderstanding.

54

§1.10 Semantics of Quantified Statements

Semantics of logic is a theory to determine if a formula is true or false as an extension to propositional
logic.

In the semantics of propositional logic, we assigned a truth value to each atom.

In the semantics of predicate logic, the truth values of the predicate P(ty,--- ,t,) depends on the
terms t;. We need a model to interpret the terms.

Definition 1.10.1. A model (or structure) M consists of a nonempty set D that forms the domain
of discourse (or universe of discourse) and an interpretation ()M, which is a mapping such that

e Each function symbol f of degree n is assigned a function f™ from D™ to D. In particular, each
constant symbol is assigned an individual in the domain of discourse.

e Each predicate symbol P of degree n is assigned a relation PM over D", i.e. PM c D™,

The evaluation/interpretation of predicate logic formulas on models is formalised below.

Definition 1.10.2. Let M be a model and ¢ be a term without variables. Then ¢ the interpretation
of t in M, is given as follows:

e if t is a constant ¢, then t” = M, M ¢ D;
e if ¢ is a variable z, then t™ = o(x), where o is a variable assignment;
e if ¢ is an n-ary function f(t1,--- ,tn), then tM = MM ... M),
For predicates and logical connectives, the interpretation goes through the process T-schema:

e Atomic formulae.
1. A formula P(t,--- ,t,) is associated the value T or F depending on whether (¢t} ... tM) ¢
P e DR,
2. A formula t; = to is assigned T if]/ = ¢}/ i.e. they evaluate to the same object of the domain
of discourse.

e Logical connectives. A formula in the form ~ ¢, ¢ — ¥, etc. is evaluated according to the truth
table for the connective in question, as in propositional logic.

e Existential quantifiers. A formula Jz¢(x) is true according to M and o if there exists an evaluation
o’ of the variables that only differs from o regarding the evaluation of z and such that ¢ is true
according to the interpretation M and the variable assignment o’. This formal definition captures
the idea that Jx¢(z) is true if and only if there is a way to choose a value for z such that ¢(z) is
satisfied.

e Universal quantifiers. A formula Vz¢(z) is true according to M and o if ¢(z) is true for every pair
composed by the interpretation M and some variable assignment o’ that differs from o only on the
value of z. This captures the idea that Vz¢(x) is true if every possible choice of a value for z causes
¢(x) to be true.

If a formula does not contain free variables, and so is a sentence, then the initial variable assignment does
not affect its truth value. In other words, a sentence is true according to M and o if and only if is true
according to M and every other variable assignment o”.

Example 1.10.3. [Huth and Ryan, 2004, Example 2.19] Consider the sentence “None of Alma’s lovers’
lovers love her.” Let “Alma” can be a constant a, and the concept “z loves y” can be a binary predicate
L(z,y).

95

1. Formalise this sentence.
2. Consider the model M defined by D = {p,q,7}, a™ = p, L™ = {(p, p), (¢, p), (r,p)}. Determine the
truth value of the sentence under this model M.

Solution:

1. We can formalise the sentence as
VaVy(L(z,a) A Ly, z) =~ L(y,a)).

Intuitively, L(z,a) says that x is Alma’s lover, and L(y,z) says that “y loves ", so L(x,a) A
L(y,x) says that y is one of Alma’s lovers’ lovers. The formula ~ L(y,a) says that y does not
love Alma, and the quantifiers make sure this is true for any z, y.
2. In order to interpret the formula, we need a variable assignment o. Consider o = {(z,p), (y,q)}.
Then
(VaVy(L(z,a) A L(y, x) =~ L(y,a)))" (o)
= LM(o(x),a™) A LM (0(y), 0(2)) =~ LY (o(y),a™)
=IMp,p) ALM(q,p) =~ LM (¢,p)=TAT -~T=T - F=F.

The formula is false under this model.

To show that a universal formula is true, we need to make sure that it is true for all possible variable

assignments.

Example 1.10.4 (Tutorial 2, Q10). Suppose the model M of the predicate P(x,y) has a universe of
discourse D = {1,2,3} and corresponding Boolean function (an equivalent way to describe a relation)
PM_ Write the propositions 3y ~ P(1,%) and VaP(z,2) using disjunctions and conjunctions.

Remark 1.10.5. The inspirations of the above examples are

e universal quantifier is like the generalisation of conjunction: Vzé(z) = ¢(z9) A (1) A -+

e existential quantifier is like the generalisation of disjunction: Jz¢(z) = P(xg) V P(x1) V- - .

Example 1.10.6 (Tutorial 2, Q13). Determine whether each of the following statements is true or false
over the model of integer sets.

1. Vz3y3z(x = Ty + 52) ‘ ‘

2. VaTyIz(z = 31y + 412) | |

3. VaIy3z(z = 4y + 62) ‘ ‘

Example 1.10.7 (Tutorial 2, Q6). Determine the truth value of the following statements assuming we
are interpreting these formulae over the real number domain.

1. Vz(z > 1).

2. Jx(z € ZA 2 ¢ 7).

| |
| |
3. ImIn(meZAneZAm>0An>0Amn>m+n). ‘ ‘

4. VaVy(VT T 9 = VT + 1)-

56

Logical Equivalence

The logical equivalence in propositional logic is simple, we only need to verify it to be true for all
assignments (using truth table or comparison table).

The logical equivalence in predicate logic needs to be verified to be true for all models!

The laws of logical equivalences (Theorem 1.3.11) and “substitution principle” (Theorem 1.3.15) are
also valid for predicate calculus [Aho and Ullman, 1992]. However, we need to replace the term “atomic
statement” with “formula” and introduce the extended notion of logical equivalence.

Definition 1.10.8. [Chiswell and Hodges, 2007] Let ¢ and 9 be two formulae with free variables
X1, , Ty, they are logically equivalent, i.e. ¢ = if =V -V, (¢ < ¥).

In addition to laws of logical equivalences from propositional logic, the following laws for quantified
statements.

Theorem 1.10.9. [Chiswell and Hodges, 2007, Chapter 7| Let ¢ and 1) be any formulas with free variable
x (andy). Let & be any formula without free variable . Then

() »a VP = Tgro Py sssimimsassnimimsassnsnssiasaniniaiassnisnimidssnings (Generalised de Morgan law)
(b)) ~3xG=VE ~ D) oot (Generalised de Morgan law)
(c) YE(OAY) = (VT O) A (VT) oo (Quantified conjunctive law)
(d) Bx(dVY) =Tz @)V (TL); oo (Quantified disjunctive law)
(e) YIVYD = VYYD, oo (Universal quantifiers swapping law)
(f) JxTyd = Fy3xd; oo (Existential quantifiers swapping law)
(9) ESVEE = TTE; oo (Independent quantifier law)
(h) Suppose the variable x has no free occurrences in & and is substitutable for x in £. Then

Vot = Yoytly /oy Jut = yllyiels siosaninimsosanininsasanininmsasaninsnses (Variable renaming laws)

(1) Ve Ay) = EA (Yay); Fu(EAP) =N Fa); Va(EVy) =&V (Vay); Fu(§ V) = &V (Fp).

.. (Free variable laws)
Proof. Refer to Chiswell and Hodges [2007, Chapter 7] and Gallier [2015, Chapter 5]. O

Example 1.10.10 (Tutorial 2, Q5). Determine whether 3x(P(z)V Q(x)) and JzP(x)V 3zQ(x) have the
same truth value. Explain.

Corollary 1.10.11. Let ¢ and v be any predicates with free variable x. Let & be any formula without
free variable x.Then

o7

~ (Va(p = ¢)) = Fz(on ~ ¢);
2. dx(p — Y) = (Vo ¢) — (Fav).
3. Vr(E =) =€ — (Vo)

Proof.

Example 1.10.12 (Tutorial 2, Q3). Show that the statements JxP(x) A FzQ(z) and Jz(P(z) A Q(x))
are not logically equivalent in general.

Example 1.10.13 (Tutorial 2, Q4). Determine whether the statements VP (z)AJzQ(z) and Y23y (P(z)A
Q(y)) are logically equivalent.

A variation of Definition 1.1.8 is stated below.

Definition 1.10.14. Let ¢ and 1 be formulae with free variable x. Consider a statement of the form

Vo (¢ —). (1.3)
1. Its negation is Fz (PN ~).
2. Its contrapositive form is Va(~ 1) =~ ¢).
3. Tts converse form is VIE(¢ — ¢).
4. Tts inverse form is Va(~ ¢ =~ 1h).

Remark 1.10.15. A universal conditional statement (1.3) is logically equivalent to its contrapositive
form but not logically equivalent to its converse form and inverse form.

Example 1.10.16. Write formal negations for the statement “Every prime number is odd.” using the
predicate prime(n) for “n is prime” and odd(n) for “n is odd”.

Solution: ~ Vn(prime(n) — odd(n)) = In(prime(n)A ~ odd(n))

We need to exercise special care to avoid mistakes when writing negations of statements that are given
informally. One way to avoid error is to rewrite the statement formally and take the negation using the
formal rule as demonstrated in the example below.

Example 1.10.17. Write an informal negation for the statement

If a computer program has more than 100,000 lines, then it contains a bug.

98

Example 1.10.18. Write the contrapositive, converse and inverse for the following statement:

If a real number is greater than 2, then its square is greater than 4.

Remark 1.10.19. If we want to specify the domain D of z, then (1.3) will be of the form Vz(x € D —
(¢ — 1)) and the contrapositive, converse form and inverse form will be of the forms Vax(x € D — (~
Y —r~ @), Ve(zx € D — (¢ — ¢)) and Va(x € D — (~ ¢ —~ 1)) respectively.

Example 1.10.20 (Tutorial 2, Q30). Write a negation for the following statement:

For all real numbers y > 0, there exists a real number z > 0 such that ifa —z2 < x < a+ 2
then L —y < f(z) < L+y.

99

The CNF (Definition 1.4.5) plays an important role in SAT solver for propositional logic.
The predicate logic CNF for SMT solver requires one to transform a formula to prenex normal
form (PNF) and then to CNF.

Definition 1.10.21. A formula of the predicate calculus is in prenex' normal form if it is written

as a string of quantifiers (referred to as the prefir) followed by a quantifier-free part (referred to as the
matriz).

Theorem 1.10.22. [Rautenberg, 2010, Theorem 4.2] Every formula in predicate logic is logically equiv-
alent to a formula in prenex normal form.

Example 1.10.23. Given quantifier-free formulae ¢(y), ¥(z), and p(x) then
VzIyVz(o(y) V (¥(2) = p()))

is in prenex normal form with matrix ¢(y) V (¥(z) — p(x)), while

Vaz((Jye(y)) v (Bz¢(2)) = p()))
is logically equivalent but not in prenex normal form.

Example 1.10.24. Write logical equivalent form of ~ Va3y3zP(x,y, z) in prenex normal form.

Solution: ~ Vzx3y3zP(z,y,2) = Iz ~ Jy3zP(z,y, 2) [Generalised de Morgan law (GDM)]
= JzVy ~ JzP(z,y, 2) [GDM]
= JaVyVz ~ P(z,y, 2) [GDM]

Example 1.10.25 (Tutorial 2, Q28). Derive the following rule using laws of equivalence:

~ Vz(zr € D — (Vy(y € E — P(x,y))))) =3JxTy(x € DA (y € EAN ~ P(x,y))

Example 1.10.26 (Tutorial 2, Q29). Show that Vz[(C(x) AJy(T(y) A L(x,y))) — Jy(D(y) A B(z,y))] =
VaVy3z[(C(x) AT (y) A L(z,y)) — (D(z) A B(x, 2))]. [Barwise and Etchemendy, 1999, p324]

!The term ‘prenex’ comes from the Latin praenexus “tied or bound up in front”, past participle of praenectere

60

The following are some semantic examples of two-quantifier statements.

Example 1.10.27. Let P(z,y) denote “x+y = 0”. What are the truth values of the quantified statements
yVeP(z,y) and VeIyP(z,y)?

O YT P () Y] oottt et e |:|

O VY P (T,) oottt :l

Example 1.10.27 demonstrates that JyVeP(z,y) # VxIyP(z,y) and this shows that the order of
quantifiers is IMPORTANT!

Example 1.10.28. Let Q(z,y) be the statement “z+y = x —y”. If model M of this formula consist the
universe of discourse D = Z and the operations are the normal operations associated with Z. Determine
the truth values of the following formula.

L. VyQ(1,y)

2. JzFyQ(z,y
3. YaIyQ (=,
4. FyvVxQ(x,
5. Vy3zQ(z,y)

Example 1.10.29 (Tutorial 2, Q7). Determine the truth value of each of these statements if they are
modelled over the set of integers.

Y
Y

|
)
)
)
|

1. Vnam(n? < m) ‘

2. InYm(nm = m) ‘

3. InIm(n?® + m? = 6) ‘

Example 1.10.30 (Tutorial 2, Q8). Let P(x,y) be a predicate and the domain of discourse be a nonempty
set. Given that Va3yP(x,y) is true, which of the following are not necessarily true?

1. JxIyP(x,y)
2. YevyP (&, y)

L

3. JxVyP(z,y)

Example 1.10.31 (Tutorial 2, Q9). What are the truth values of JyVz(y > z) and Vz3y(y > x) if they
are interpreted over the model with the domain of nonnegative integers?

61

Example 1.10.32 (Tutorial 2, Q11). Let odd(z) be the predicate “x is an odd positive integer.” Deter-
mine the truth value of each of the following statements for the model M with domain of positive integers.
If the statement is false, provide an explanation or suggest a counterexample.

1. VaVy(odd(z + y)). ‘ ‘

2. dzVy(odd(z + y)). ‘ ‘

3. VzIy(odd(z + y)). | |

4. JxJy(zy+1=0). ‘ ‘

§1.11 Logical Implication and Arguments for Quantified Statements
(Topic 2b)

To extend the notion of argument from propositional logic to predicate logic, we need very complicated
mathematics as Open Logic Project [2019] illustrates. In addition to the laws of logical equivalences
(Theorem 1.3.11), “substitution principle” (Theorem 1.3.15), we have the following theorems which imply
the laws of logical implications (Theorem 1.5.17).

Theorem 1.11.1. [Open Logic Project, 2019, Chapter 12] Let T' = {¢1, -+ ,¢n}. IfT C TV and T = 9,
then T |= 1.

It basically says that if ¢ is true for “preconditions” T', it is also true in a larger system I containing T".
Theorem 1.11.2 (Semantic Deduction Theorem). Let I' = {¢1,--- ,on}. TU{o} E¥ iff T |= ¢ — 9.

Theorem 1.11.3. [Open Logic Project, 2019, Chapter 12| If P(z) is a formula with one free variable
and s and a are closed terms. Then

P(s) = JzP(x); VxP(z) = P(a).
For statements related to quantifiers, we have the following laws.

Proposition 1.11.4. Let ¢ be a formula with free variable x and a and s are terms free with respect to
x i ¢. Then we have the following laws.

1. Universal instantiation (or specialisation): Yx¢ = ¢la/z], here [a/x] means “a replaces x”. In
particular, when ¢ is P(z), we have VxP(x) = P(a).

2. Universal generalisation: If the term a in ¢la/x] is arbitrary, then ¢la/x] = Vxo.

3. Euxistential instantiation (or specialisation): Jx¢ = ¢[s/x], here [s/x] means “s replaces x”. In
particular, when ¢ is P(x), we have 3z P(x) = P(s).

4. Ezistential generalisation: For a particular term s, ¢[s/x] = Jxo.

The following theorem is a few logical implication involving quantified statements with single variable
which can be shown using the laws mentioned above.

Theorem 1.11.5. Let p and q be two formula without free variable x, P(x) and Q(x) be formula with
free variable x. Then

1. z(P(x) AN Q(x)) = (Fz P(x)) A (Fx Q(x))

62

2. VzP(z))V (Vz Q(z)) = Vx (P(z) V Q(x))

3. (FzP(x)) = (Vx Q(x)) = Vz(P(z) — Q(x))
4. Va(P(z) = Q(z)) = (Vo P(x)) = (V2Q(z))
Proof:
¢1: Fx(P(z)ANQ(z)) premise
1 P(s)ANQ(s) ¢1, existential specialisation
o P(s) Y1, specialisation
1. ¢3: Q(s) 11, specialisation
g JzP(x) 19, existential generalisation
JzQ(x) 13, existential generalisation

s -

Remark: < is not true because we have (Jz(z < 0))

dzP(x) A JzQ(x) 4, ¥s, conjunction

dz((z < 0) A (x >0)) = F.

b1 :

(VxP(x)) V (Vx Q(z)) premise

(A
P
2. Y3
Py
s
(e
¢1

(VxP(x)) vV (Vy Q(y)) ¢1, variable renaming law
Vy(VzP(z) V Q(y)) Y1, free variable equivalence

(A
P
(2%
3. Yy
(o
e :
Yr

VxP(x) V Q(t) 9, universal instantiation

Va(P(x) V Q(t)) s, free variable law

P(t) vV Q(t) 4, universal instantiation

Va(P(z) V Q(x)) 5, universal generalisation

(JxP(x)) — (Vo Q(x)) premise

~ dzP(z) V (Vz Q(z)) ¢1, implication law

(Vz ~ P(x))V (Vx Q(z)) 1, generalised de Morgan

(Vx ~ P(x))V (Vy Q(y)) 12, change of variable

Vy((Ve ~ P(x)) V Q(y)) 13, free variable equivalence

(V:B ~ P(z)) VvV Q(t) b4, universal instantiation

P(t) vV Q(t) 15, universal instantiation

() — Q(t) 1, implication law

Va(P(z) = Q(z)) 7, universal generalisation

A (3z(z > 0))

=TAT = T but

4. Inspire by the syntactic proof in https://en.wikipedia.org/wiki/Universal_generalization
the deduction should be something like:

¢1: Va(P(zr) —» Q(x)) premise
¢2: YzP(x) premise
Y1: P(t) = Q) ¢1 Ul
ba: P(1) 3 UI
Y3 Q) Y1, Y2 MP
Yy VzQ(z) 3 UG
{
¢1: Vz(P(zx) — Q(x)) premise
Y51 VaP(x) = VzQ(z) ¢2, 14 Semantic Deduction Theorem

63

Example 1.11.6 (Tutorial 2, Q22). Show that ~ (Vz(P(z) — Q(z))) = Jx(P(x)A ~ Q(x)).

Example 1.11.7 (Tutorial 2, Q26). Show that the following argument is valid.

Jz(F(z) A S(x)) = (Vy(M(y) — W(y)))
Fy(M(y)A ~ W(y))
Va(F(x) =~ S(x))

Example 1.11.8 (Tutorial 2, Q20). For the following arguments, state which are valid and which are
invalid. Justify your answers.

1. All healthy people eat an apple a day. John is not a healthy person. Therefore John does not eat
an apple a day.

2. Every student who studies discrete mathematics is good at logic. John studies discrete mathematics.
Therefore John is good at logic.

64

3. No heavy object is cheap. XYZ is not a heavy object. Therefore XYZ is cheap.

Example 1.11.9. Rewrite the following argument using quantifiers, variables, and predicate symbols:

If a number is even, then its square is even.
k is a particular number that is even.
- k? is even.

Is the argument valid? Why?

65

§1.12 Satisfiability Modulo Theories (SMT)

Satisfiability (Definition 1.4.3), a problem of determining whether a formula expressing a constraint has
a solution, is a fundamental problem in theoretical computer science [Bjgrner and de Moura, 2009].

Many-sorted first-order logic is a commonly used formalism and framework for formulating SMT
problems. A (many-sorted) signature is composed of a set of sorts (data types), a set of function
symbols, and a set of predicate symbols. Each function symbol f has associated with it an arity of the
form oy X - -+ X 0,, = 0, where o1, -+ -, o,, 0 are sorts. If n =0, we say f is a constant symbol. Similarly,
each predicate symbol p has associated with it an arity of the form o1 x -+ X 0. If n =0, we say p is a
propositional symbol. [?]

We assume a set of variables X, where each variable is associated with a sort. A term t with sort o
has the form x or f(ty,...,t,), where x is a variable with sort o, and f is a function symbol with arity
o1 X -++ X 0, — 0, where for each i € {1,...,n}, t; has sort 0;. An atom is of the form p(t1,...,t,) where
p is a predicate symbol with arity oy, -+, o,, and for each i € {1,...,n}, ¢; is a term with sort o;. A
formula

¢ = atom| ~ ¢o|po A d1]Po V d1]|dpo = d1]|Po < ¢1|(Vx : 0.¢0)|(Fz 2 0.¢0)

where ¢g, ¢1 are smaller formulas. Note that it is similar to Definition 1.8.1 where the variable z has no
type while here the variable = has a type 0. A Y-formula ¢ is a formula where each symbol in ¢ is in 3.
We say a variable x is free in formula ¢ if it is not bound by any quantifier 3, V. A sentence is a formula
without free variables. We use vars(¢) to denote the set of free variables in ¢. A quantifier-free
formula is a formula not containing 3 or V. [?]

A structure M for a signature ¥ and variables X consists of non-empty domains | M|, for each sort
in 3, for each z € X with sort o, M (x) € |M|,, for each function symbol f with arity o1 x -+ X 0, = 0,
M(f) is a total map from |M|,, X --- x |M|,, — |M]|,, and for each predicate symbol p with arity
o1 X -+ X on, M(p) is a subset of |M|, X --- X |M|s,. The interpretation of a term t is given by
M][z]] = M(z) and MJ[f(t1,...,tn)]] = M(f)(M][[t1]],..., M[[tn]]). We assume that, for each sort o, the
equality =, is a builtin predicate symbol with arity ¢ x o that does not occur in any signature and for
every structure M, M (=) is the identity relation over |M|, x |M|,. As a notational convention, we will
always omit the subscript. We use M{z — v} to denote a structure where the variable symbol z with
sort o is interpreted as v € |M|,, and all other variables, function and predicate symbols have the same
interpretation as in M. Given a formula ¢ and a structure M, satisfaction M F ¢ is defined as:

M | p(ta, ..., tn) it (M[[t1]], ..., M[[ta]] € M (p)

M~ ¢ iff M ¢

M= ¢oV ¢1iff M |=¢o or M |= ¢n

M= oAy iff M |=¢g and M = ¢

M= 3z :0.¢) iff M{z — v} = ¢ for some v € |M|,

M= (Vz:0.¢) iff M{z — v} = ¢ for all v € |M|sigma

A formula ¢ is satisfiable if there is a structure M s.t. M = ¢, and is valid if for all structures M,
M = ¢. A structure M satisfies a set of formulas S (M| = 95) if M |= ¢ for every ¢ € S. [?]

Related: https://ocw.mit.edu/courses/6-001-structure-and-interpretation-of-computer—
programs-spring-2005/pages/readings/

A theory is a set of sentences. More formally, a Y.-theory is a collection of sentences over a signature
Y. Given a theory T, we say ¢ is satisfiable modulo T if T'U{¢} is satisfiable. We use M =1 ¢ to denote
M {¢}UT.

Example 1.12.1. Let X be the signature containing the symbols 0, 1, +, — and <, and Z be the structure
that interprets these symbols in the usual way over the integers, then the theory of linear arithmetic is
the set of first-order sentences that are true in Z.

66

Let Q be a class of structures over a signature X, then we use Th(2) to denote the set of all sentences
¢ over X such that M |= ¢ for every M in). We say the satisfiability problem for theory T is decidable
if there is a procedure & that checks whether any quantifier-free formula is satisfiable or not. In this case,
we say © is a decision procedure for T'. [?]

Theorem 1.12.2. The satisfiability problem for predicate logic is undecidable.
Theorem 1.12.3. For any predicate logic formula ¢, = ¢ iff = ¢.

Satisfiability Modulo Theories (SMT) is an area of automated deduction that studies methods for
checking the satisfiability of first-order formulas with respect to some logical theory T of interest.

SMT-LIB (https://smt-1ib.org/index.shtml) is an international initiative aimed at facilitating
research and development in SMT by promoting common specification for SMT solvers such as Z3 (Sec-
tion 1.4) as well as benchmarks (https://zenodo.org/communities/smt-1ib). It specifies for the fol-
lowing logical theories:

Core: Core theory, defining the basic Boolean operators (which we used in Section 1.4)
Ints: Integer numbers (to use in next topic?)

Reals: Real numbers

FloatingPoint: Floating point numbers

FixedSizeBitVectors: Bit vectors with arbitrary size

ArraysEx: Functional arrays with extensionality

Strings: Unicode character strings and regular expressions

SMT-LIB supports the following sub-logics based on the stated theories.

Overview of the sub-logics, ordered by inclusion (L; — L2 means every formula of L; is also a formula of Lo
Source: https://smt-1ib.org/logics.shtml
The conventions of the abbreviations are shown below:

QF for the restriction to quantifier free formulas
A or AX for the theory ArraysEx

BV for the theory FixedSizeBitVectors

FP (forthcoming) for the theory FloatingPoint

67

IA for the theory Ints (Integer Arithmetic)

RA for the theory Reals (Real Arithmetic)

IRA for the theory Reals_Ints (mixed Integer Real Arithmetic)

IDL for Integer Difference Logic

RDL for Rational Difference Logic

L before TA, RA, or IRA for the linear fragment of those arithmetics

N before TA, RA, or IRA for the non-linear fragment of those arithmetics
UF for the extension allowing free sort and function symbols

SMT solvers are used in many formal method based applications such as the mCRL2 is a formal
specification language (https://mcrl2.org/web/index.html).

Example 1.12.4. The SMT-LIB script to check the formulas in Example 1.10.28 in Ints theory is shown
below.

(set-logic LIA)

;55 Qlx,y) @+ x vy =x -y

; 1. forall y Q(1, y)

(push)

(assert (forall ((y Imnt)) (= (+ 1 y) (- 1 y))))
(check-sat)

(pop)

; 2. Ex Ey Qx, yv)

(push)

(assert (exists ((x Int) (y Int)) (= (+ x y) (- x y))))
(check-sat) ; Not returning any model

(pop)

(push)

(declare-fun x () Int)

(declare-fun y () Int)

(assert (= (+ x y) (- x y)))

(check-sat)

(get-model)

(pop)

; 3. A x Ey Q(x, y)

(push)

(assert (forall ((x Int)) (exists ((y Int)) (= (+ x y) (- x y)))))
(check-sat)

(pop)

; 4. Ey A x Q(x, y)

(push)

(assert (exists ((y Int)) (forall ((x Int)) (= (+ x y) (- x y)))))
(check-sat)

(pop)

; 5. Ay E x Q(x, y)

(push)

(assert (forall ((y Imnt)) (exists ((x Int)) (= (+ x y) (- x y)))))
(check-sat)

(pop)

68

§1.13 Rules of Inference for Quantified Statements

The “syntactic implication” or “natural deduction” of quantified statements and the Curry-Howard
correspondence is the foundation to modern formal proving software such as Lean 4 prover, Rocq
prover, etc.

The Curry-Howard correspondence for quantifiers is

Logic | Proposition | Conjunction | Disjunction | Universal Existential
Quantifica- Quantifica-
tion tion

FP Type Product Type | Sum Type | Dependent Dependent
Product Sum Type
Type
Logic | Hilbert-style | natural hypotheses implication implication
deduction deduction elimination introduction
system (modus
ponens)
FP | type system | type system | free application abstraction
for for lambda variables
combinatory | calculus
logic

In predicate logic, we have the following rules of inference related to quantifiers and equality in addition
to the rules of inference from Section 1.7:

10. V-introduction: tp(t) - Voo (x)

11. V-elimination: Vao(x) F o(t)

12. J-introduction: o(s) F Jzp(z)

13. 3-elimination: Jzo(x), &(s)---E|FE

14. =-introduction: Ft=t

15. =-elimination: t1 =ta, O(t1) F &(t2)
Here,

e sis a fresh variable which does not occur in the premise Jx¢(x), conclusion £ or any assumptions
in the syntactic derivation;

e t, 11, ty are arbitrary terms.

Note: I indicates logical entailment based on the rules of inference instead of the laws of logical equiva-
lences and implications based on the semantic theory.

Example 1.13.1. Consider the formula “ Vn(prime(n) A (n > 2) — odd(n)). ” By applying universal
instantiation with n “instantiate” to the term “m + 4” we obtain

prime(m +4) A (m +4 > 2) — odd(m + 4).

Here m 4 4 is a term and m is an arbitrary constant.

Example 1.13.2 (https://github.com/OpenLogicProject/fitch). Show that Vo ~ P(x) b~ JzP(x).

69

1 Vo ~ P(z) premise

2] JzP(x) assumption

3 5| P(s) fresh variable
Proof: 4 ~ P(s) 1, VI

5 1 3,4, ~E

6 1 2,3-5, IE

7 ~ JzP(x) 2-6, ~I

Example 1.13.3. Show Jz(P(z) A Q(x)) F (3 P(x)) A (3z Q(z)) (Theorem 1.11.5(a)).

1 Jz(P(z) A Q(x)) premise

2 1 P(s)AQ(s) 1, 3E

3 P(s) 2, AE;
Proof: 4 Q(s) 2, NEy

5 JzP(x) 1,2-3, 31

6 FzQ(x) 1,24, 31

7 JzP(z) A J2Q(x) 5,6, Al

Formal proving using Lean 4 Prover

theorem eg_1_13_3 (a : Type) (p q : a -> Prop)
(exists x : a, p x /\ q x) -> (exists x : a, p x) /\ (exists x : a, q x)
fun premise : (exists x : a, p x /\ q x) =>
Exists.elim premise
(fun s =>
fun hs : p s /\ q s =>
And.intro (s, And.left hs) (s, And.right hs))

Note: the { and) are in Unicode and needs to be typeset using Unicode editor. E.g. in Emacs, C-x
8 RET 27e8 C-x 8 RET 27e9.

Example 1.13.4. Show that ~ R(c), Vt(P(t) — Q(t)), Vt(Q(t) — R(t)) F ~ P(c).

1 ~ R(c) premise
2 Vi(P(t) — Q(t)) premise
3 Vi(Q(t) — R(t)) premise
4 | Ple)= 0@ 2, VE
Proof: 5 Q(c) = R(c) 3, VE
6 P(c) assumption
4 Q(c) 6,4 —F
8 R(c) 7,5 —E
9 1 1,8 ~E
10 ~ P(c) 6,9 ~1I

70

Example 1.13.5 (Tutorial 2, Q21). Use ONLY the rules of inference to show that

Vz(P(x) = (Q(x) A R(x))), Vx(P(x) A S(x)) F Jz(R(z) A S(z))

Example 1.13.6 (Tutorial 2, Q23). Use rules of inference to show that

dxP(z) — Vz(P(x) V Q(x) — R(x)), Jz(P(z) A Q(z)) F JyR(y)

71

Example 1.13.7 (Tutorial 2, Q27). What is wrong with the following proof?

1 VaIy(x > y) premise

2 _Ely(c > y) V-elimination, ¢ arbitrary
3 (c>s) J-elimination, s specific
4 Va(x > s) V-introduction

5 yVz(x > y) F-introduction

Example 1.13.8 (Tutorial 2, Q24). Show that Vz(Q(z) — R(z)) A (Fz(Q(x) A I(x)) F Jx(R(z) A I(x)).

Now we look at examples of arguments written in English sentences and validate the argument using
the laws and rules mentioned above.

Example 1.13.9. Show that the following arguments is valid with a formal proof using the laws of
inference.

No junior or senior is enrolled in calculus class.

Ali is enrolled in calculus class. Therefore Ali is not a senior.

Let J(x): “x is a junior”; S(z): “x is a senior”; and C(z): “z is enrolled in calculus class.”

1 Va((J(z) V S(z)) =~ C(z)) premise
2 C(Ali) premise
3 | (J(AL)V S(Ali)) —~ C(Al) 1, VesTendntation

Proof: 4 S(Ali) assumption
5 J(AlL) v S(Ali) V-intro2
6 ~ C(Ali) 3,4 —-elim
7 oL 2,5 —-elim
8 ~ S(Al) 6, —-intro

72

Example 1.13.10. Show that the premises “A student in this class has not read the book,” and “Everyone

in this class passed the first exam” imply the conclusion “someone who passed the first exam has not read
the book.”

Example 1.13.11 (Tutorial 2, Q25). Prove that the following argument is valid: “Every undergraduate
is either an arts student or a science student. Some undergraduates are top students. James is not a
science student, but he is a top student. Therefore if James is an undergraduate, he is an arts student.”

73

Applications of Predicate Logic

The formal logic system can be applied in
e logic programming
e hardware and software specification: Bjgrner [2006], Lamport [2003]
e hardware verification: Kropf [1999]
e compiler verification: Appel et al. [2014]

In this section, we will only explore logic programming, the relatively less complex subject.

According to https://en.wikipedia.org/wiki/Logic_programming, logic programming is a type
of programming paradigm which is largely based on predicate logic. Any program written in a logic
programming language is a set of sentences, expressing facts and rules about some problem domain.

Major logic programming language families include Prolog (which stands for Programming in Logic),
ECLiPSe, Datalog (a subset of Prolog for database and serves as an alternative query system to SQL,
refer to Abiteboul et al. [1995]) and answer set programming (ASP).

Prolog [Sterling and Shapiro, 1999], which dates back to 1972, was once believed to be the artificial
intelligence (AI) language. However, the limitations of the first order logic and the difficulty to get experts
to encode domain knowledge have prevented Prolog from getting popular. Despite these, Prolog is still
useful in knowledge-based (or ontology) systems [Merritt, 2000].

Definition 1.13.12. [van Le, 1993] In Prolog, a term is either a constant, a variable (starts with a

capital letter or underscore) or a compound term of the form f(¢1,--- ,t,) where f is a function symbol
of arity n and ¢; (i =1,--- ,n and n > 0) are terms.
An atomic formula or actomic term is an expression of the form p(¢y, - - - , t,) where p is a predicate

symbol and ¢; are terms. If n = 0, there is no argument and the parentheses are omitted.
A constant can either be a number or an atomic term (start from small letter, a string in single
quotes or symbols such as 4+, =/=, etc.).

The rules in Prolog are written in the form of Horn clauses, which can be regarded as “arguments”
in Definition 1.5.7.

H :—B,---,B,. (1.4)
~~ ~——————
head body
rule
where is the same as A, : — is the same as —, H and B; are usually atomic formulas. So we read (1.4) as
a logical implication “H if By and --- and B,.” Facts are rules that have no body, and are written in

the simplified form (which is comparable to a “tautology”):
H. (1.5)
Remarks on Prolog syntax:

e A string starts and ends with double quote "
e Don’t use single quotes, they are for ‘atom’ (or symbol)
e Anything that starts with small letter is used as “predicate” or atom.

e Anything that starts with capital letter is used as “variables”.

Running commands sequentially in Prolog:

74

% swipl -q hellolines.pl

:— format ("This is first line\n").

:— format ("This is second line: ~d ~d ~d\a", [1, 2, 3]).
:— halt.

Note that rules without head are called directives and are immediately executed by Prolog.
Prolog goes through all predicates and we sometimes need to tell Prolog to stop trying out all possi-
bilities by cutting using the “exclaimation mark”:

thegrade (Marks, Grade) :- Marks < 0, Grade="7777", I,
thegrade (Marks, Grade) :- Marks > 100, Grade="7777", I,
thegrade (Marks, Grade) :- Marks >= 90, Grade="A+", !.
thegrade (Marks, Grade) :- Marks >= 80, Grade="A", !.
thegrade (Marks, Grade) :- Marks >= 75, Grade="A-", !.
thegrade (Marks, Grade) :- Marks >= 70, Grade="B+", !.
thegrade (Marks, Grade) :- Marks >= 65, Grade="B", !.
thegrade (Marks, Grade) :- Marks >= 60, Grade="B-", !.
thegrade (Marks, Grade) :- Marks >= 55, Grade="C+", !.
thegrade (Marks, Grade) :- Marks >= 50, Grade="C", !.
thegrade (Marks, Grade) :- Grade="F".

Prolog uses recursion on predicates to perform looping. Suppose we want to find the sum of the
squares of a list numbers of any size:
:E%—}—x%—l—...jtxi

this is how it is done in Standard ML:

fun sum_sq [] = 0
| sum_sq (x::xs) = x*x + sum_sq XsS;
print (Int.toString (sum_sq [1,3,5,7]) = "\n")

The implementation in Prolog is similar:

% gprolog --consult-file sum_sq.pl

sum_sq([1, 0).

% Be careful with X and Xs must be capitalised.

% Otherwise, they are treated as atoms.

sum_sq ([X|Xs], Sum) :- sum_sq(Xs, Sum_rest), Sum is X*X + Sum_rest.

%sum_sq([1,3,5,7],X).

Expression (1.4) is not sufficient for efficient computing. Prolog allows the body of a clause to be
negations of atomic formulas to allow non-monotonic logic. In Datalog and ASP, logic programs have
only a declarative reading, and their execution is performed by means of a proof procedure or model
generator whose behaviour is not meant to be under the control of the programmer.

Prolog could be used to solve some of the logic problems discussed in propositional logic which is
illustrated below.

Example 1.13.13. Use Prolog to determine all truth values assignments in Example 1.2.7.

Solution:

% Tutorial 1, Q3 (Example 1.2.7)

proposition(P,Q,R,S,Val) :- not(P,NotP), or(NotP,R,Exprl),
not (S,NotS), and(Exprl,NotS,Expr2), imply(Q,Expr2,Expr3),
not (R,NotR), and(NotR,Q,Expr4), imply(NotS,Expr4, Exprb5),
and (Expr3 ,Exprb5,Val).

75

Ywrite_list ([]).

Ywrite_list ([HIT]) :- write(H), write(’, ’), write_1list(T).

solv:- format ("Determine all truth values assignment [P,R,S]:"n",[]),
findall ([P,R,S], proposition(P,true,R,S,true), Results),
write (Results), nl. % Raw output: write_canonical

Remark: More examples are given in Clocksin [1997, Chapter 7].

To illustrate the use of Prolog in real-world problem, I will use illustrate it with the following “to be
developed education query system”:

utar_dmas.pl

course (’UECM1024°, ’Calculus I’, core, 4, [1).

course (’UECM1034°’, ’Calculus II’, core, 4, [’UECM1024°]).

course (’UECM1204°, ’Probability and Statistics I’,core,4,[]).

course (’UECM1224°, ’Probability and Statistics II’,core,4,[’UECM1204°]).

course (?’UECM1314°’, ’Fundamentals of Linear Algebra’,core,4,[]).

course (’UECM1304°, ’Discrete Mathematics with Applications’,core,4,[]).

course (?’UECM1703’, ’Introduction to Scientific Computing’,core,3,[]).

course (’UECM2353°, ’Linear Algebra’,core,3,[’UECM1314°]).

course (’UECS1004°, ’Programming and Problem Solving’,core,4,[]).

course (’UECS1044°, ’Object-Oriented Application Development’,core,4,[’UECS1004°]).
course (’UECS2083°, ’Problem Solving with Data Structures and Algorithms’,core,3,[’UECS104
course (’UECS2094°, ’Web Application Development’,core,4,[’UECS1044°]).

course (’UECM2023°’, ’0Ordinary Differential Equations’,core,3,[’UECM1034°]).

course (’UECM3034°’, ’Numerical Methods’,core,4,[]).
courses_without_prerequisites(X,Y) :- course(X,Y,_,_,[1).
courses_with_prerequisites(X,Y) :- course(X,Y,_,_,Z), length(Z, N), N =\= 0.

1. To load the Prolog database, one can use either the commands below:

?- [utar_dmas].
?7- consult (’utar_dmas.pl’).

2. To query the courses with only the code without prerequisite, we can type the following query.
Note that underscore is used to indicate a value we are not interested in.

?7- courses_without_prerequisites(X,_).

3. To query the courses (showing both code and name) with prerequisite, we can type the following
query.

?- courses_with_prerequisites(X,Y).

4. To exit Prolog, type halt.
One interesting use of Prolog is probably in puzzle solving.

Real-world business software consist a lot of SQL statements. A dictionary of SQL relational algebra
and Datalog is given below [Ullman and Widom, 2008, Chapter 5].

76

SQL Concept | Relational Algebra Datalog
Intersection | R(z,y) NT(x,y) I(z,y)-R(z,y), T (x,y)
Union R(z,y) UT(z,y) U(x,y):-R(x,y)
U(Iv y)Z—T(:L‘, y)
Difference R(z,y)\ T(z,y) D(z,y)-R(z,y),not T'(x,y)
Projection 7z (R) P(z):-R(z,y)
Selection oz>10(R) S(z,y):-R(z,y),x > 10
Product RxT P(z,y,z,w)-R(z,y), T(z,w)
Natural Join | RX T J(z,y,2)-R(x,y),T(y, 2)
Theta Join RXg 1. T 0(x,y,z,w):-R(z,y), T(z,w),x > 2

The website http://perugini.cps.udayton.edu/teaching/courses/Spring2017/cps499/Languages/
notes/PROLOG.html did not provide any solution for this, but did provide an example to detect loops in
the path as follows (using “not” operator \+ as breaking point to infinite loop?):

cycle(Start, Visited)

cycle(Orig, Start,

Path, Visited)

edge (Start ,0Orig),

reverse ([Orig|Path],

cycle(Orig, Start,

Path, Visited)

edge (Start, Next),

\+ member (Next,
cycle(Orig, Next,

Path),

:- cycle(Start,

Visited).

[Next |Path],

Start,

Visited).

[Start], Visited).

7

Exercise with Past Year Questions

Only 2019 Q1-Q3 and 2021 questions are set by me. The rest are by other lecturers.

Example 1.13.14 (Final May 2019 Sem, Q1). (a) Let p, ¢, r be atomic statements. State the truth
table for the following compound statement

~(p—((pVg Ar)).

Use the truth table to recognise whether the compound statement is a tautology, contingency or

contradiction. (10 marks)
Selution: The trith table is stated below:, .. sisisrsrarsrminimsmsmsmimenininsninia [8 marks]
p g 1| @VOATr po>((pVvgAr) | ~(p—((pVgAT))
T T T T T F
T T F F F T
T F T T T F
T F F F F T
F T T T T F
F T F F T F
F F T F T F
F F F F T F
It is sometimes true, sometimes false, depending on the truth assignment, by definition, the
compound statement is & CONLINGENCY.ot [2 marks]

(b) Show that the statement (p — ¢V r) and the statement (p A ¢ — r) are not logically equivalent.
(4 marks)

Solution: One can either construct a truth table or just give a counterexample below to show
that they are not equivalent:

.. [2 marks]

When v(p) =T, v(q) =T and v(r) =F, the two statements has different truth values and they are
not logically equivalent. [2 marks]

(c¢) Simplify the following statement

(pVa) = (pAq)V(~pAQ).

to a logically equivalent statement with no more than TWO(2) logical connectives from the set
{~, A, V} by stating the law used in each step of the simplification. (5 marks)

Solution: The steps are shown below:

(pva) = (PAg)V(~pAg)
=(~(pPVqaVpPArq))V(~pAq) [Implication law, 1 mark]
=(~pA~q)V(pAqQV(~pAQq) [de Morgan law, 1 mark]

78

=(~pA~q)VPAQYV(~pAQV(~DAQ) [Idempotent law, 1 mark]
=~pA(gV~q)V((pV~p) Aq) [Distributive law, 1 mark]
=~pVyg [Negation and identity, 1 mark]

(d) Let F(u,z,y), G(y,v) and H(x) be predicates. List down the steps and the logical equivalent rules
to transform the following quantified statement

~ [Vz3yF(u,z,y) — Iz (~ VyG(y,v) — H(x))]

to prenex normal form. (6 marks)

Solution: The steps and rules are listed below:

~ [V:L“ElyF(u,m,y) — Elaz(~YyG(y,v) — H(:r))]
=~ [~VzIyF(u,z,y) vV 3z(~ VyG(y,v) = H(z))] [Implication law, 0.5 mark]
= VaIyF(u,z,y) \ ~ Jz(~ VyG(y,v) — H(zx))

[de Morgan law, double negative, 1 mark]
= Va3yF (u, z,y) \ —Vx ~ (~ YyG(y,v) — H(as))}
[Generalised de Morgan law, 0.5 mark]
= VadyF (u, z,y) \ Ve ~ (VyG(y, v)V H(x))}
[Implication law, double negative, 1 mark]
= VoIyF(u,z,y) \ —V:E(Vy ~ G(y,v)A ~ H(ac))}
) [Generalised de Morgan law, 0.5 mark
= VoIyF (u,z,y) \ [VoVy(~ G(y, v)/\ ~ H(x))} [Free variable law, 0.5 mark

]
]
[Quantified conjunctive law, 0.5 mark]
]
]

= V| 3yF (u, z,y) AVy(~ Gly, H(z))
= Vz|3yF(u,z,y) AVz(~ G(z,v)A\ ~ H(z)) [Quantifier renaming law, 0.5 mark
= Vxﬂyv,z{ (u,z,y)A ~ G(z,v)A ~ H(x)} [Free variable law, 1 mark

Example 1.13.15 (Final May 2019 Sem, Q2). (a) Let p, ¢, 7 be atomic statements. Use a truth table
or a comparison table to show that

p—=r)AN(g—r)=(Vq) —r (9 marks)

Solution: The comparison table is given below.

p g v |(or)A(g—=r) | (pVe o

T T T T T

T T F F F

T F T T T

T F F F F

F T T T T

F T F F F

F F T T T

F F F T T
.. [8 marks]

79

Since the last two columns are the same for all different assignments, therefore, the two statements
(p—=>7r)A(g—r)and (pVq) — r are logically equivalent. [1 mark]

(b) Simplify the following statement to a logically equivalent statement with no more than TWO(2)
logical connectives from the set {~, A, V} by stating the law used in each step of the simplification:

(~pAQV(~pAT)V (DA~ qgAT)V (QAT). (7 marks)

Solution: The simplification is shown below:
PAQV(~pAT)V (A~ gAT)V (gAT).
= (~pA(qV r)) V(pA~qgAT)V(gNAT) [Distributive law, 1 mark]

= @A)V ((aVrA~p) V (A~ gAT)
[Associative and commutative laws, 1 mark

=(gAT)V(pPA~qAT) [Absorption law, 1 mark}
=(qV (pA ~ q)> AT [Distributive law, 1 mark]
=((qVp)A(qV ~ q))) AT [Distributive law, 1 mark|
=((pVqV T) nr [Negation law, 1 mark]
=(pVv q) AP [Identity law, 1 mark]

(c) Given the following quantified statement:

Vavy[((z > 0) A (y > 0)) = (Vz +y=vVz+/)]. (%)

(a) Translate the quantified statement into an informal English sentence. (2 marks)

Solution: The square root of the sum of two numbers is equal to the sum of the square
roots of the two numbers

(b) Determine whether the quantified statement is true or false in the domain of real numbers. You

need to defend your answer. (2 marks)
Solution: The quantified statement is false.ccoviiiviiiiiiiiiiiiin. [1 mark]
To defend, we write a counterexample: Let t =y =1, o +y = V2 # VI+V1 =2
[1 mark]
(c) Write down the negation of the quantified statement (*) in prenex normal form. (5 marks)

Solution: By applying the generalised de Morgan law, the negation of (k) is logically
equivalent to

2y ~ [((z>0)A(y>0)) = (VZ+y=vz+9)]
In prenex normal form, it can be written as

Fey[(z > 0) A (y > 0)A (VZ+y#VT+y). [5 marks]

Example 1.13.16 (Final May 2019 Sem, Q3). 1. Use truth table to explain whether the following
argument is valid or invalid:

(pVa)— (PAq)
~(pVq)
~ (pAQq) (9 marks)

80

Solution: The truth table is

p q| (Ve —=>@Arg |~(Vy | ~(Aq)
T T T F F
T F F F T
F T F F T
F F T T T

[4 x 2 = 8 marks]

We observe that when the premises are true (row 4), the conclusion is true, therefore, the
argument is valid. [1 mark]

2. Infer the argument

pVqg p—=>1, ~8—=>~qkrVs

syntatically by stating the rules of inference in each step. (6 marks)
Solution:
1 pVq premise
2 p—r premise
3 ~ 8§ =~ q premise
4 i P assumption
5 —r 2.4 —-E
6 TV s 5 VI
7 q assumption
8 i ~ S assumption
9 ~q 3,8 -E
10 1 7.9 -E
11 S 8-10 -1
12 rVs 11 VI
13 rVs 1,4-6,6-12 VE
THE - EROIRTREOIEL s i 0 [2 marks]
The g-asSUMPEIONottt et et et et e e e [3 marks]
ITHE 120 4 5o 5n 5m 00 500 08 08 08 o ok ok ok 0% 50K 800 800 850 558 998 97 90 9% 9% B8 98 75 00 #00 $0% 308 87K 800 804 858 558 998 978 93 [1 mark]
3. Show that the following argument
Va(F(x) =~ G(x))
Jz(H(x) A G(x))
Jz(H(x)A ~ F(z)
is valid using the rules of logical equivalence and implication. (5 marks)

81

Solution: The semantic deduction is shown below

¢1 Vz(F(z) >~ G(x)) premise

¢ Jx(H(x) ANG(x)) premise
1 H(s) ANG(s) ¢2, existential instantiation [1 mark]
e F(s) =~ G(s) ¢1, universal instantiation
Vs G(s) 11, specialisation [1 mark]
Yy ~ F(s) Yo, tpg, MT oo [1 mark]
Vs H(s))15 specialisaion «.visisswiwiwsiwivis [1 mark]
e H(s)A ~ F(s) 3,14 conjunction

. Jz(H(x)A ~ F(x) 1, existential generalisation [1 mark]

4. Let R(z,y) be a predicate with two variables. Infer the argument involving quantified statements

VaVy(R(x,y) =~ R(y,xz)) - Vz(~ R(x,z))

syntatically by stating the rules of inference in each step. (5 marks)
Solution: Let ¢ be an arbitrary term independent of variables x and y.

1 V:rVy(R(y) =~ R(y,x)) premise

2 Vy(R(t,y) =~ R(y,t)) L Y-elimination « s .ssnovsnsnvsss [1 mark]

3 R(t,t) —~ R(t,t) 2 V-elimination

4 R(t,t) BESTTAPLION «ussoinincninsnssinss [1 mark]

5 ~ R(t,t) 34 =1 oo [1 mark]

6 4 45 -E

7 ~ R(t,t) 4-6 -1 oo [1 mark]

8 Va(~ R(z,x)) 7 V-introduction [1 mark]

Example 1.13.17 (Final May 2021 Sem, Q1 (during MCO)). (a) Let p, ¢, r, s be atomic statements.
State the truth table for the following compound statement

(~peod)ATr—=8)A (= (~(~p—q))

and determine if the compound statement is tautology, contradiction or contingency. (4 marks)

Solution: Let P; be the compound statement. The truth table for the compound statement is
stated DEloOW [3.5 marks]

82

pla|r|s|~peog|ros|so(~(~p2q) | P

T|T|T|T F T F F

T|T|T|F F F T F

T|T|F|T F T F F

T| T F|F F T T F

T|F | T|T T T F F

T|F|T|F T F T F

T|F|F|T T T F F

T|F|F|F T T T T

F|T|T|T T T F F

F|T|T|F T F T F

F|T|F|T T T F F

F|T|F|F T T T T

F|F | T|T F T T F

F|F|T|F F F T F

F|F|F |T F T T F

F|F|F|F F T T F
Since the compound statement is sometimes true and sometimes false depending on the truth
assignment, the compound statement is a contingency.ccooiiiiiiann... [0.5 mark]

(b) Let p, q, r and s be atomic statements. Simplify the following statement
(~pAGA(~sV(~TAs))V (gAY I(~pATAS))

to a logically equivalent statement with NO logical connectives by stating the law used in each step
of the simplification. Write the important laws used clearly. (4 marks)

Solution:

(~pAGA(~sV~rAS)V(gA(PV ~pATAS))
=gA((~pA(~sV~TAS)V(pV(~pATAsS)) [Distributive law, 0.5 mark]
=gA((~pA(~SA~TV ~SATV ~TAS))V(PV(~PATAS))

[Identity, negation, distributive, 0.5 mark]
=gA((~pA(~sA(~rVr)VeerA(~sVs))V(pV(~pATAS))
[Idempotent and distributive, 0.5 mark]

Il

gA((~PA(~ sV ~r)V (pV (~pATAS))
[Negation and identity, 0.5 mark

]
=gA((~pA(~sV~r))V((pV~p)A(pVTrASs))) [Distributive, 0.5 mark]
=gAN((~pA(~sV~T))V((TAMPVTrAS))) [Negation, 0.5 mark]
=gAN(~(@V(rAs)VpV(rAs))) [Identity, De Morgan x 2, 0.5 mark]
=gq [Negation, identity, 0.5 mark]

(c¢) Predicate logic can be used to perform computations using the notion of recursion. Suppose that the
predicate that returns the result of the following summation

1 1 "1
S=1+—Fnend — = _
2+ +n ;z

ismysum(n, S). Write down the recursive expression for the predicate mysum(n, S) in an appropriate
formal predicate logic formulation (alternatively, using Prolog formulation). (2 marks)

83

Solution: The predicates to express mysum(n, S) in Prolog formulation are stated below [2 marks]

mysum (1, 8) :- S is 1.
mysum(N, S) :- N > 1, N1 is N-1, mysum(N1,S1), S is (1/N)+S1.

[Total: 10 marks]

Example 1.13.18 (Final May 2021 Sem, Q2 (during MCO)). (a) Use comparison table or truth ta-
ble to show that the following argument is invalid:

p—>qVr
(gAT) <> s
~ (~qANs)
%
pVig=r) (4 marks)
Solution: A comparison table is listed below.
plalr | s|p=2gVr|(gAn)es | ~(~qgAs) | pVig—rT)
T, T|T| T T T T T
T, T|T|F T F T T
T T|F | T T F T T
T T|F | F T T T T
T F|T| T T F F T
T F|T|F T T T T
T F|F | T F F F T
T F|F | F F T T T
F|T|T|T T T T T
F|T|T|F T F T T
F|T|F | T T F T F
F|T|F | F T T T F
F|F | T|T T F F T
F|F|T|F T T T T
F|F|F | T T F F T
F|F|F | F T T T T
.. [3.5 marks]
Since the row 12 has a false conclusion with all true premises, the argument is invalid. [0.5 mark]

(b) Let p, q, r, s, t, u, v be atomic propositions. Show that the argument below
(pA~q) =1, (sVu)—p, g—t, s—=~t, sAv/ -.r

is valid using the laws of logical implication and laws of logical equivalence only. (3 marks)

84

Solution:
o1 : (pA~q) =T premise
oo : (sVu)—p premise
O3 : q—t premise
P4 : §—~t premise
o5 : sAv premise
1 s ¢5, Specialisation
g : ~t Y1, ¢4, Modus Ponens
Y3 : ~q Yo, @1, Modus Tollens
Pyt sVu 11, Generalisation
Py P 4, ¢2, Modus Ponens
g - PA ~ q 13, 15, Conjunction
g r vg, ¢1, Modus Ponens
.. [3 marks]
(c) Use the rules of inference ONLY to show that
(A—-B)—»(C—-D))FC — (B— D).
Write the steps using Fitch style proof. In each step, state the rules of inference.
(3 marks)
Solution: The syntatic inference is shown below. [2x 0.5+ 5 x 0.4 = 3 marks]
1 (A— B) = (C = D) premise...........coovieninnn [0.5 mark]
> || C assumption................. [0.5 mark]
3 | B assumption
4 H A assumption
5 }75’ 3
6 A— B 85 =31 omsrmusamspmusswsse [0.4 mark]
7 C—D B.L 3B cniiaeismisnsisng o [0.4 mark]
8 D 27 —=Eo [0.4 mark]
9 B—>D - T (0.4 mark]
10 C — (B— D) 29T [0.4 mark]

[Total: 10 marks]

Example 1.13.19 (Final May 2024 Sem, Q1). (a) Write formally the converse, inverse, negation and
contrapositive of the following compound statement.

“If 6 is even or 11 is odd, then 11 = 6(mod 5).”

Hence, determine their truth values. Give reason(s) to support your answer.

85

Recall Definition 1.1.8: For p — ¢, converse is ¢ — p, inverse is ~ p —~ ¢, negation is pA ~ ¢
and contrapositive is ~ ¢ =~ p.

Solution: Let p denote “6 is even” (v(p) = T) ¢ denote “11 is odd” (v(q) = T) and r denote
11 =6 (mod 5) (since 11 =5x 146, v(r) =T).

The compound statement can be expressed formally as

(pVg) —r

and
v((pVq) —-1r)=(TVvT)—>T=T.

The converse is

r—(pVyq) If11=6 (mod 5), then 6 is even or 11 is odd.

and
vir—=(pVq))=T—(TVvT)=T.

The inverse is

~(pVgqg) —~r If 6 is not even and 11 is not odd, then 11 # 6 (mod 5).

and
v(~(pVgq) o~r)=~ (TVT) >~ T=F—>F=T.

The negative is
(pVOA~T 6 is even or 11 is odd, but 11 Z6 (mod 5).

and
v((pVoOA~r)=(TVT)A~T=TAF=F.

The contrapositive is
~r—~(pVaq) If 11#6 (mod 5), then 6 is not even and 11 is not odd.

and
v(~r—=~(pVq)=~T—o>~(TVT)=F—->F=T.

(b) Suppose p — q is false and 7 A s is true. Find the truth value of

(= (r=8)A((p—r1)— (~9)). (3 marks)

Given v(p — q) = F and v(r A s) = T. This means

86

%/A\—)
D NN
7’/ \S p/ \7‘

Since v(q) = F, left subtree is T; Since v(p — r) = T and v(~ s) = F, right subtree is F and

v((g= (r=s)A(p—=r)=(~s) =F.

(c) Determine whether the compound statement

p=@—=>N[(~pV~q) = (pPAgAT)]

is a tautology or contradiction by using a truth table and also law of logic. Show all steps clearly and

provide explanations for each step. (12 marks)
Solution: The lecturer probably missed out the word “contingency” from the question.
pla|r|p=>q|(~pV~q) |pAgAT | &
T|T| T T F T T
T|T|F T F F T
T|F | T F T F F
T|F|F F T F F
F|T|T T T F F
F|T|F T T F F
F|F|T T T F F
F|F|F T T F F
From the truth table, ¢ is a contingency.
Using laws of logical equivalences, we can simplify the contingency
p=(p—=aN[~{@ANg) = (PAgAT)] [De Morgan]
=(~pVOA[pAQV(pAg) AT)] [Implication & Double Negation]
=(~pVag A[pAd] [Absorption]
=({(~pADP)V(PAQ))Ngq [Associative & Distributive]
=(pAg)Ngq [Negative & Identity]
=pAg [Associative & Idempotent]
Example 1.13.20 (Final May 2024 Sem, Q2). (a) State and prove the Modus Tollens. (7 marks)
Solution: MT: p — ¢, ~qlE~p
Semantic proof: Use truth table.
Syntactic proof: Refer to Example 1.7.2.

(b) Determine the validity of the following argument:

87

(isPrime(2) — isEven(2)) A (isComposite(6) — canFly(dog)
(canFly(dog) V isEven(2)) — ~ in(Ipoh, Malaysia)
in(Ipoh, Malaysia)

.. isComposite(2) or isPrime(6)

Semantic Proof: Proving the argument using natural deduction would be too tedious, we will
prove using laws of equivalences and laws of implication.

¢1: (isPrime(2) — isEven(2)) A (isComposite(6) — canFly(dog)) premise

¢2: (canFly(dog) V isEven(2)) —~ in(Ipoh, Malaysia) premise

¢3 : in(Ipoh, Malaysia) premise

1 ~ (canFly(dog) V isEven(2)) Modus Tollens on ¢2, ¢3
o 1 ~ (canFly(dog)A ~ isEven(2) De Morgans on 1

3 ~ isEven(2) Specialisation on)9

1y ¢ isPrime(2) — isEven(2) Specialisation on ¢

5 1 ~ isPrime(2) Modus Tollens on 13, 94
: ~ isPrime(2) V isPrime(6) Generalisation on 15

Note that the lecture implicitly assume that ~isPrime(x) is equivalent to isComposite(x) for
x> 2.

(c) Give a negation for the following statement:
“All even integers can be divided by 2”.
Determine the truth value for the following statement
¢p:=“recZt,IycZ",z+yis even.”

and justify your answer. (6 marks)

Solution: Formally,
Vx(even(x) — 2|x)

The negation is
~Vz(even(z) — 2|z) = Jz ~ (even(z) — 2|z) = Jz(even(z)A ~ (2|z))
which informally reads (compare to Example 1.9.5)

Some even integers cannot be divided by 2.

¢ is false because the negative of ¢ below is true:

Va3y(x 4 yis not even).

We only need to take y = x + 1 and = 4+ y = 2z + 1 is not even.

References

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Database. Addison-Wesley, 1995. http://webdam.
inria.fr/Alice/.

88

A. V. Aho and J. D. Ullman. Foundations of Computer Science. Computer Science Press, Inc., New York,
NY, USA, 1992. ISBN 0-7167-8233-2.

A. W. Appel, R. Dockins, A. Hobor, L. Beringer, J. Dodds, G. Stewart, S. Blazy, and X. Leroy. Program
Logics For Certified Compilers. Cambridge University Press, 2014.

D. W. Barnes and J. M. Mack. An Algebraic Introduction to Mathematical Logic, volume 22 of Graduate
Texts in Mathematics. Springer-Verlag New York Inc., 1975.

J. Barwise and J. Etchemendy. Language, Proof and Logic. CSLI Publications, 1999. (a introduction to
logic).

D. Bjgrner. Software Engineering 1: Abstraction and Modelling. Springer-Verlag Berlin Heidelberg, 2006.

N. Bjgrner and L. de Moura. z3'%: Applications, enablers, challenges and directions. In Sizth International
Workshop on Constraints in Formal Verification Grenoble, France, 2009.

G. S. Boolos, J. P. Burgess, and R. C. Jeffrey. Computability and Logic. Cambridge University Press, 5th
edition, 2007.

R. Bornat. Proof and Disproof in Formal Logic: An introduction for programmers. Oxford University
Press, 2005.

I. Chiswell and W. Hodges. Mathematical Logic. Oxford University Press, 2007. (a really nice and rigorous
introduction to logic).

W. F. Clocksin. Clause and Effect: Prolog Programming for the Working Programmer. Springer-Verlag
Berlin Heidelberg, 1997.

K. Devlin. The Joy of Sets: Fundamentals of Comtemporary Set Theory. Springer-Verlag New York, Inc.,
2nd edition, 1993.

S. S. Epp. Discrete Mathematics with Applications. Cengage Learning Inc., 5th edition, 2020.

T. Forster. Logic, Induction and Sets. London Mathematical Society Student Texts. Cambridge University
Press, 2003. doi: 10.1017/CB0O9780511810282. URL https://www.dpmms . cam.ac.uk/~tf/baby.html.

J. H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem Proving. Dover Publica-
tions, 2015.

P. R. Halmos. Naive Set Theory. Van Nostrand Reinhold, 1960.

J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University Press, 2009.
R. A. Herrmann. Logic for everyone. arXiv:0601709, 29 Jan 2006.

P. G. Hinman. Fundamentals of Mathematical Logic. A. K. Peters, Ltd., 2005. (abstract mathematics).

M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge
University Press, 2nd edition, 2004.

P. T. Johnstone. Notes on Logic and Set Theory. Cambridge University Press, 1987.

M. Kac, G.-C. Rota, and J. T. Schwartz. Discrete Thoughts: Essays on Mathematics, Science, and
Philosophy. Birkhauser Boston, 2nd edition, 2008.

T. Kropf. Introduction to Formal Hardware Verification. Springer-Verlag Berlin Heidelberg, 1999.

89

L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers.
Addison-Wesley, 2003.

Y. I. Manin. A Course in Mathematical Logic, volume 53 of Graduate Texts in Mathematics. Springer-
Verlag New York Inc., 1977.

E. Mendelson. Introduction to Mathematical Logic. Chapman & Hall, 4th edition, 1997.
D. Merritt. Building Expert Systems in Prolog. Amzi! inc., 2000.

N. Nisan and S. Schocken. The Elements of Computing Systems: Building a Modern Computer from First
Principles. MIT Press, 2005.

Open Logic Project. The open logic text. http://openlogicproject.org/, 2019.

W. Rautenberg. A Concise Introduction to Mathematical Logic. Universitext. Springer Science+Business
Media, LLC, 3rd edition, 2010. (abstract mathematics).

U. Schoning and J. Tordn. The Satisfiability Problem: Algorithms and Analysis. Lehmanns Media: Berlin,
2013.

L. Sterling and E. Shapiro. The Art of Prolog: Advanced Programming Techniques. The MIT Press, 2nd
edition, 1999.

J. D. Ullman and J. Widom. A First Course in Database Systems. Pearson Education, Inc., 3th edition,
2008.

T. van Le. Techniques of PROLOG PROGRAMMING: With Implementation of Logical Negation and
Quantified Goals. John Wiley & Sons, Inc., 1993.

R. Woods, J. McAllister, G. Lightbody, and Y. Yi. FPGA-based Implementation of Signal Processing
Systems. John Wiley & Sons, Ltd, 2008.

90

