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Logic for Equality

To make predicate logic useful, a generic relation
equality (=) is needed. Given two expressions a, b :
A we write a = b : Prop for the proposition that a
and b are equal, that is they describe the same object.

How can we prove an equality? That is what is the
introduction rule for equality? We can prove that every
expression is a : A is equal to itself a = a using the
tactic reflexivity. How can we use an assumption H : a
= b? That is how can we eliminate equality? If we want
to prove a goal P which contains the expression a we
can use rewrite H to rewrite all those as into bs.
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Logic for Equality (cont)

To demonstrate how to use these tactics we show that
equality is an equivalence relation (see the Topic on
Relations):

reflexive: forall a:A, a = a
symmetric: forall a b:A, a=b -> b=a
transitive: forall a b c:A, a=b -> b=c ->
a=c.
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Logic for Equality (cont)
1 (* Equality *)

2 Variable A : Set.

3
4 Lemma eq_refl : forall a:A, a = a.

5 Proof.

6 intro a.

7 reflexivity.

8 Qed.

9
10 Lemma eq_sym : forall a b:A, a=b -> b=a.

11 Proof.

12 intros a b H.

13 rewrite H.

14 reflexivity.

15 Qed.

16
17 Lemma eq_trans : forall a b c:A, a=b -> b=c -> a=c.

18 Proof.

19 intros a b c ab bc.

20 rewrite ab.

21 exact bc.

22 Qed.
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Elementary Number Theory
Number theory is a branch of pure mathematics
devoted primarily to the study of the integers and
integer-valued functions.

Elementary number theory is a subbranch of number
theory that studies integers without using “calculus”.

Integers
. . . , −2, −1, 0, 1, 2, . . .

are the “generalisation” of natural numbers:

0, 1, 2, . . .

How do we describe them using predicate logic?
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Elementary Number Theory (cont)
Modern algebra approach: (Z,+,×) is an integral
domain (a nonzero commutative ring in which
the product of any two nonzero elements is
nonzero) containing a Euclidean function, i.e. a
function f from Z \ {0} to the non-negative integers
(called the norm) satisfying the following
fundamental division-with-remainder property: If a
and b are in Z and b is nonzero, then there exist q
and r in Z such that a = bq + r and either r = 0 or
f(r) < f(b). Note that for Z, f(a) = |a |.
Peano Axiom + Equivalence Relation: The most
popular approach.
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Elementary Number Theory (cont)
Peano axioms define the arithmetical properties of
natural numbers ({0, 1, 2, . . . } =: N) using a constant
symbol 0 and a function S: Let n, m be any natural
number.

1 0 is a natural number.
2 S(n) is a natural number.
3 m = n if and only if S(m) = S(n).
4 S(n) = 0 is false. I.e. there is no number “before” 0.
5 If φ is a unary predicate such that:

I φ(0) is true, and
I for every natural number n, φ(n) being true implies that
φ(S(n)) is true,

then φ(n) is true for every natural number n.
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Elementary Number Theory (cont)
The first two Peano axioms are used in Coq:
Inductive nat : Set :=

| O : nat

| S : nat -> nat.

According to http://www.cs.nott.ac.uk/˜psztxa/
g52ifr/html/Arith.html, axioms 3 to 5 can be
“proved” in Coq.
Definition pred (n : nat) : nat :=

match n with

| 0 => 0

| S n => n

end.
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Elementary Number Theory (cont)
Lemma peano3 : forall m n:nat, S m = S n -> m = n.

intros m n H.

fold (pred (S m)). (* In Goal, m = pred (S m) *)

rewrite H. (* rewrite pred (S m) as pred (S n) *)

unfold pred.

reflexivity.

Qed.

Lemma peano4 : forall n:nat, S n <> 0.

intro n H.

discriminate H.

Qed.

Lemma peano9 : forall P : nat -> Prop,

P 0 -> (forall m : nat, P m -> P (S m))

-> forall n : nat, P n.

intros P H0 HS n.

induction n.

exact H0.

apply HS.

exact IHn.

Qed.
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Elementary Number Theory (cont)

The arithmetic operations are defined as
Fixpoint add n m :=

match n with

| 0 => m

| S p => S (p + m)

end

where "n + m" := (add n m) : nat_scope.

Fixpoint mul n m :=

match n with

| 0 => 0

| S p => m + p * m

end

where "n * m" := (mul n m) : nat_scope.
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Elementary Number Theory (cont)
Proving properties of addition and multiplication for
natural numbers can be complex.
An example of proof for the associativity of addition is
given below.
Lemma plus_assoc :

forall l m n:nat, l + (m + n) = (l + m) + n.

Proof.

intros l m n.

induction l.

simpl.

reflexivity.

simpl.

rewrite IHl.

reflexivity.

Qed.
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Elementary Number Theory (cont)

Coq already defined natural numbers and integers, we
can practise with Coq to feel how the theory of natural
numbers is applied:

Check S(S(S(0))).
Check Nat.add 123 456.

Note that Nat.add 123 123456 won’t work because
123456 ‘S’ would cause Coq system to crash.

So mathematical definition above is good for
mathematical proving but not computer calculation.
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Elementary Number Theory

After the definition of addition and multiplication in
natural numbers, the next thing is to generalised them
to integers. The mathematics is complicated, in
software, it is possible to introduce −n and define
−0 = 0.

Divisibility is the “inverse” operation for integer
“multiplication”. The interesting results associated with
divisibility is what made number theory attractive.
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Elementary Number Theory

Definition 3.2.1

If n and d , 0 are integers, then n is divisible by d if
there is an integer k such that n = dk . In this case, n is
called the multiple of d. d is called the factor or divisor
of n. We also say that d divides n and denote it by d|n.
If d does not divide n, we denote it as d - n.

Example: n = 5, d = 3, 5 is not divisible by 3 because
there is no integer k such that 5 = 3k .

Example: n = 6, d = 3, 6 is divisible by 3 because
there is an integer k = 2 such that 6 = 3k .
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Elementary Number Theory (cont)

Based on our definition, divisors are assumed to be
nonzero. If d is a divisor of n, then n is also divisible by
−d (indeed, n = dk implies that n = (−d)(−k )), so that
the divisors of an integer always occur in pairs. To find
all the divisors of a given integer, it is sufficient to obtain
the positive divisors and then adjoin to them the
corresponding negative integers. For this reason, we
shall usually limit ourselves to a consideration of
positive divisors.
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Elementary Number Theory (cont)

Example 3.2.3:
1 If a and b are integers, is 4a + 4b divisible by 2?
2 Does 4 divides 18?
3 Is 32 a multiple of −16?
4 Is −9 a factor of 54?
5 Suppose a and b are positive integers and a |b. Is

a ≤ b?
Class Discussion.
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Elementary Number Theory (cont)
The divisibility of integers is defined in Coq’s
Coq.ZArith.ZArith library.

1 Require Import Coq.ZArith.ZArith.

2 Require Import Coq.ZArith.Znumtheory.

3
4 Example exmp1: (3 | 6)%Z.

5 apply (Zdivide_intro 3 6 2).

6 reflexivity.

7 Qed.

8
9 Open Scope Z_scope.

10
11 Example eg_3_2_3a: forall a b : Z, (2 | 4*a + 4*b).

12 intros.

13 apply (Zdivide_intro _ _ (2*a+2*b)).

14 ring. (* solves equations *)

15 Qed.
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Elementary Number Theory (cont)

However, proving using computer is very difficult due to
the “constructive” nature, e.g. 3 - 5 cannot be “proved”
in Coq without using modulo.
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Elementary Number Theory (cont)
Theorem 3.2.4 (Properties of Divisibility): For integers
a, b, c, the following hold:

(a) a |0, 1|a, a |a.
(b) a |1 iff a = ±1.
(c) If a |b and c |d, then ac |bd.
(d) If a |b and b |c, then a |c. (Transitivity of Divisibility)
(e) a |b and b |a iff a = ±b.
(f) If a |b and b , 0, then |a | ≤ |b |.
(g) If a |b and a |c, then a |(bx + cy) for arbitrary

integers x and y.
Discuss some Proving Techniques in class.
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Elementary Number Theory (cont)
Definition of Prime and Composite
A prime (number) is a natural number greater than 1
that is not a product of two smaller natural numbers. A
natural number greater than 1 that is not prime is called
a composite number.

Example: 0 and 1 are not prime numbers.

Example: 5 is prime because the only ways of writing it
as a product of natural number is 1 × 5 or 5 × 1, involve
5 itself.

Example: 4 is composite because it is a product of two
smaller numbers: 2 × 2.
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Elementary Number Theory (cont)
Theorem 3.2.6 (Divisibility by a Prime): Any integer
n > 1 is divisible by a prime number.

Proof
n = 2 is divisible by the prime number 2.
Let n > 2, and suppose the result is true for all positive integers
1 < k < n. We want to show that n is divisible by a prime number.
If n is prime, then n is divisible by a prime number n.
If n is not prime, then it is composite. Therefore, n has a positive
divisor m such that m , 1 and m , n. Plainly, m can’t be larger
than n, so 1 < m < n. By induction, m is divisible by some prime
number p. Now, p|m and m|n, so p|n. This proves that n is divisible
by a prime number, and completes the induction step.
Hence, then result is true for all integers greater than 1 by strong
induction (Slide 167).
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Elementary Number Theory (cont)

Definition 3.2.8: Let a and b be given integers, with at
least one of them different from zero. The greatest
common divisor of a and b, denoted gcd(a, b), is that
integer d with the following properties:

1 d is a common divisor of both a and b, i.e. d|a and
d|b.

2 For all integers c, if c |a and c |b, then c ≤ d.
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Elementary Number Theory (cont)
Example 3.2.9: The positive divisors of −12 are 1, 2, 3,
4, 6, 12, whereas those of 30 are 1, 2, 3, 5, 6, 10, 15,
30; hence,

the positive common divisors of −12 and 30 are 1,
2, 3, 6.
Because 6 is the largest of these integers, it
follows that gcd(−12, 30) = 6.

Similarly, gcd(−5, 5) = 5, gcd(8, 17) = 1,
gcd(−8,−36) = 4.

Note that gcd(−12, 30) = 6 = (−12)2 + 30 · 1,
gcd(−8,−36) = 4 = (−8)4 + (−36)(−1).
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Elementary Number Theory (cont)
The following theorem indicates that gcd(a, b) can be
represented as a linear combination of a and b.

Theorem 3.2.10

Given integers a and b, not both of which are zero,
there exist integers x and y such that

gcd(a, b) = ax + by.

Corollary 3.2.12
If a and b are given integers, not both zero, then the set
T = {ax + by |x ∈ Z ∧ y ∈ Z} is precisely the set of all
multiples of d = gcd(a, b).
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Elementary Number Theory (cont)

Definition 3.2.13
Integers a and b, not both of which are zero, are called
relatively prime if gcd(a, b) = 1. Integers
a1, a2, a3, · · · , an are pairwise relatively prime if
gcd(ai, aj) = 1 for all integers i and j with 1 ≤ i, j ≤ n,
and i , j.

Theorem 3.2.14
Let a and b be integers, not both zero. Then a and b
are relatively prime iff there exist integers x and y such
that 1 = ax + by.
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Elementary Number Theory (cont)

Corollary 3.2.16: If a |c and b |c, with gcd(a, b) = 1, then
ab |c.

Proof (Direct Proof)
Inasmuch as a |c and b |c, integers r and s can be found such that c = ar = bs.
Now the relation gcd(a, b) = 1 allows us to write 1 = ax + by for some choice of
integers x and y. Multiplying the last equation by c, it appears that

c = c · 1 = c(ax + by) = acx + bcy.

If the appropriate substitutions are now made on the right-hand side, then

c = a(bs)x + b(ar)y = ab(sx + ry)

or, as a divisibility statement, ab |c.
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Elementary Number Theory (cont)

Theorem 3.2.17 (Euclid’s Lemma) If a |bc, with
gcd(a, b) = 1, then a |c.

Proof
Since gcd(a, b) = 1, there are some x and y such that 1 = ax + by.
Multiplication of this equation by c produces

c = 1 · c = (ax + by)c = acx + bcy.

Because a |ac and a |bc, it follows that a |(acx +bcy), which can be recast as a |c.

If a and b are not relatively prime, then the conclusion
of Euclid’s lemma may fail to hold. E.g. 12|9 · 8, but
12 - 9 and 12 - 8.
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Elementary Number Theory (cont)
Theorem 3.2.18: Let a, b be integers, not both zero.
For a positive integer d, d = gcd(a, b) iff

(a) d|a and d|b.
(b) Whenever c |a and c |b, then c |d.

Proof
⇒: Suppose that d = gcd(a, b). Certainly, d|a and d|b, so that (a) holds. In light
of Theorem 3.2.10 (Slide 27), d is expressible as d = ax + by for some integers
x, y. Thus, if c |a and c |b, then c |(ax + by), or rather c |d. In short, condition (b)
holds.

⇐: Let d be any positive integer satisfying the stated conditions. Given any
common divisor c of a and b, we have c |d from hypothesis (b). The implication
is that d ≥ c, and consequently d is the greatest common divisor of a and b.
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Elementary Number Theory (cont)
Theorem 3.2.1: If p is a prime and a, b ∈ Z such that
p|ab, then p|a or p|b.
Proof

Assume p - a. Then gcd(a, p) = 1. By Euclid’s Lemma, p|b.

Unique Factorisation Theorem for the Integers
Given any integer n > 1, there is a positive integer k , distinct prime
numbers p1, p2, · · · , pk , and there are positive integers e1, e2, · · · ,
ek such that

n = pe1
1 pe2

2 pe3
3 · · · p

ek
k ,

and any other expression of n as a product of prime numbers is
identical to this except, perhaps, for the order in which the factors
are written.
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Elementary Number Theory (cont)
Definition 3.2.21
Given any integer n > 1, the standard factored form of
n is an expression of the form

n = pe1
1 pe2

2 pe3
3 · · · p

ek
k , p1 < p2 < · · · < pk ,

where k is a positive integer; p1, p2, · · · , pk are prime
numbers; e1, e2, · · · , ek are positive integers.

Example 3.2.23: Write 3300 in standard factored form.

Solution
3300 = 100 · 33 = 4 · 25 · 3 · 11 = 2 · 2 · 5 · 5 · 3 · 11 =
22 · 31 · 52 · 111
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Elementary Number Theory (cont)
Quotient-Remainder (QR) Theorem
Given any integer n and positive integer d, there exist
unique integers q and r such that

n = qd + r , 0 ≤ r < d.

Definition 3.2.25: With the notation of in the QR
Theorem, r is called the modulo of the division of n by
d. If r = 0, we say that n is a multiple of d, or that n is
divisible by d, or d is a divisor of n, or that d divides n,
or that d is a factor of n. The number q is called the
quotient of n by d and is denoted n div d.
We can also define the operator mod: n mod d = r .
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Elementary Number Theory (cont)
In computer, it is convenient to transform the problems
of divisibility from the set of integers Z to the set of real
numbers R. The two operations, floor and ceiling, that
relates Z and R are defined below.
Definition 3.2.28
Given any real number x, the floor and ceiling of x,
denoted bxc and dxe, are defined respectively as
follows:

bxc := the unique integer n such that n ≤ x < n + 1;

dxe := the unique integer n such that n − 1 < x ≤ n.
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Elementary Number Theory (cont)

Example 3.2.30: Compute bxc and dxe for each of the
following values of x.

1 25/4
2 0.999
3 0.999· · ·
4 −2.01
5 b−1

2c+ b23c.
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Elementary Number Theory (cont)
Theorem 3.2.34
∀x ∈ R, ∀m ∈ Z, bx + mc = bxc+ m.

Exercise 3.2.32: If k is an integer, simplify bk c and
bk + 1

2c as an expression of k .

Exercise 3.2.33: Is the statement “for all real numbers x
and y, bx + yc = bxc+ byc” true or false?

Theorem 3.2.35
For any integer n,⌊n

2

⌋
=

n
2 , if n is even,
n−1

2 , if n is odd.
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Elementary Number Theory (cont)
Example 3.2.26: For each values of n and d, find
integers q and r such that n = dq + r and 0 ≤ r < d.

1 n = 54, d = 4→ r = 2
2 n = 54, d = −4→ r = 2
3 n = −54, d = −4→ r = 2
4 n = −54, d = 70→ r = 16

The r follows Raymond T. Boute’s definition:

r = n − |d|
⌊

n
|d|

⌋
.

Example 3.2.27:
1 Compute 32 div 9 and 32 mod 9?
2 What day of the week will it be 1 year from today?
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Elementary Number Theory (cont)

Example 3.2.26 in Racket
1 (modulo 54 4)→ 2; (remainder 54 4)→ 2
2 (modulo 54 -4)→ −2; (remainder 54 -4)→ 2
3 (modulo -54 -4)→ −2; (remainder -54 -4)→ −2
4 (modulo -54 70)→ 16; (remainder -54 70)→ −54
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Elementary Number Theory (cont)
You can find out what is going on by referring to https:
//en.wikipedia.org/wiki/Modulo_operation:

modulo follows Donald Knuth’s definition to be

r = n −
⌊n
d

⌋
d

E.g. r = −54 − b−54/70c × 70 = −54 − (−70) = 16
remainder is defined to be

r = n − truncate(
n
d

)d

E.g.
r = −54 − truncate(−54/70)70 = −54 − 0 = −54
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Elementary Number Theory (cont)
Consider the integer d = 2 in the Quotient-Remainder
Theorem, the modulo r will either be 0 or 1. This leads
to the notions of even and odd.
Definition of Even
An integer n is even if it is divisible by two, i.e. n
mod 2 = 0 or n = 2k for some integer k .
The sets of even numbers is usually denoted as
2Z := {2k : k ∈ Z}.

Definition of Odd
An integer n is odd if it is not divisible by two, i.e. n
mod 2 = 1 or n = 2k + 1 for some integer k .
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Elementary Number Theory
The definition of even and odd are defined in Coq’s
BinInt module.

1 Definition Even a := exists b, a = 2*b.

2 Definition Odd a := exists b, a = 2*b+1.

I only know how to prove the simplest example.
1 Require Import BinInt.

2 Open Scope Z_scope.

3 Example eg1: Z.Even 4.

4 exists 2; simpl; reflexivity.

5 Qed.

6 Example eg2: forall n : Z, Z.Even (4*n).

7 intro n.

8 exists (2*n).

9 simpl. (* Integer n can be =0, >0, <0 *)

10 destruct n.

11 reflexivity. reflexivity. reflexivity.

12 Qed.
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Modular Arithmetic (cont)
We now further the study of modular arithmetic using
the notion of congruence, which is an equivalence
relation over Z.
Definition 3.5.1
Let a, b ∈ Z and n ∈ Z+. We say a and b are congruent
modulo n provided that n|(a − b). We write a ≡ b
(mod n) or a ≡n b which means a − b = kn for some
integer k .
When n - (a − b), we say that a is incongruent to b
modulo n, and in this case we write a . b (mod n).

Remark: Note that ≡ for number theory is different from
the logical equivalence found in mathematical logic.
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Modular Arithmetic (cont)
Example 3.5.3
For n = 7,
3 ≡ 24 (mod 7), −31 ≡ 11 (mod 7), −15 ≡ −64
(mod 7) because 3 − 24 = (−3)7, −31 − 11 = (−6)7,
and −15 − (−64) = 7 · 7.
25 . 12 (mod 7), because 7 fails to divide
25 − 12 = 13.

Exercise 3.5.4:
1 Is 12 ≡ 7 (mod 5)?
2 Is −6 ≡ −8 (mod 4)?
3 Is 0 ≡ −6 (mod 3)?

Class Discussion.
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Modular Arithmetic (cont)

Theorem 3.5.5
Let a, b, and n > 1 be any integers. The following
statements are all equivalent:

1 n|(a − b)
2 a ≡ b (mod n)
3 a = b + kn for some integer k
4 a and b have the same (nonnegative) remainder

when divided by n
5 a mod n = b mod n
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Modular Arithmetic (cont)
Given an integer a, let q and r be its quotient and
remainder upon division by n, so that

a = qn + r , 0 ≤ r < n.

Then, by definition of congruence, a ≡ r (mod n).
Because there are n choices for r , we see that every
integer is congruent modulo n to exactly one of the
values 0, 1, 2, ..., n − 1; in particular, a ≡ 0 (mod n) iff
n|a. The set of n integers

0, 1, 2, ..., n − 1

is called the set of least nonnegative residues modulo
n.
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Modular Arithmetic (cont)
Basic Arithmetic Theorem of Congruences
Let n > 1 be fixed and a, b , c, d be arbitrary integers. Then the
following properties hold:

(a) a ≡ a (mod n).
(b) If a ≡ b (mod n), then b ≡ a (mod n).
(c) If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).
(d) If a ≡ b (mod n) and c ≡ d (mod n), then a + c ≡ b + d

(mod n) and ac ≡ bd (mod n).
(e) If a ≡ b (mod n), then a + c ≡ b + c (mod n) and ac ≡ bc

(mod n).
(f) If a ≡ b (mod n), then ak ≡ bk (mod n) for any positive

integer k .

Discuss Some Proofs.
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Modular Arithmetic (cont)

Corollary 3.5.12
The congruence relation ≡n is an equivalence relation
on Z and the map

{0, 1, · · · , n − 1} → Z/ ≡n, r 7→ r̄ = r + nZ

is a bijection.

A special case of this Corollary is the Example 3.3.29
which will be discussed in the next topic (Relation).
In mathematics, Z/ ≡n is denoted Z/nZ.
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Modular Arithmetic (cont)

Proof of the Corollary: From the Basic Arithmetic Theorem
(a), (b) and (c), we know that ≡n is reflexive, symmetric and
transitive. Therefore ≡n is an equivalence relation.
The map is well-defined since for every r = 0, 1, · · · , n − 1, there is
a set r + nZ corresponding to it.
To show that it is bijection, we show that it is an injection: assume
r̄ = s̄ with 0 ≤ r , s < n. Then, by definition, r ≡ s (mod n), so
n|r − s and |r − s| < n, therefore r = s.
To show that the map is a surjection: Let ā ∈ Z/ ≡n, by definition,
ā = {a + nk : k ∈ Z}, by Quotient-Remainder Theorem, there is an
r ∈ {0, 1, · · · , n − 1} such that a = r + nm, hence r ≡n a and by
definition, r̄ = ā.
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Modular Arithmetic (cont)
Example 3.5.14: Calculate 1444 mod 713
Solution: Instead of writing like the left, writing like the
right is much nicer.

1444 mod 713

= (1442)2 mod 713

= [1442 mod 713]2 mod 713

= [20736 mod 713]2 mod 713

= [59]2 mod 713
= 3481 mod 713 = 629

1444 = (20736)2

≡713 (59)2

= 3481
≡713 629
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Modular Arithmetic (cont)

Example 3.5.15: Calculate 1243 mod 713.

Example 3.5.16: Show that 41 divides 220 − 1.

Example 3.5.17: Find the remainder obtained upon
dividing the sum below by 12:

1! + 2! + 3! + 4! + · · ·+ 99! + 100!

Class Discussion.
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Modular Arithmetic (cont)

When we have a number to the power of the power of
some number, we need the following theorem to
simplify the calculation.

Fermat’s Little Theorem
If p is any prime number and a is any integer, then
ap ≡ a (mod p). If p - a, then ap−1 ≡ 1 (mod p).
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Modular Arithmetic (cont)
Example 3.5.20: Calculate 71113

mod 17

Solution
Since 17 is a prime number, we know that

716 ≡ 1 (mod 17)

What we need to calculate is

1113 = 118+4+1 = 118 · 114 · 11 ≡ 94 · 92 · 11 = 11 (mod 16)

where 112 ≡ 9 (mod 16) and 92 ≡ 1.
Therefore 1113 = 16k + 11 for some integer k and

71113
= 716k+11 = (716)k · 711 ≡ 1k · 711 = 1977326743 ≡ 14 (mod 17).

Using Racket (modulo (expt 7 (expt 11 13)) 17) will take
forever.
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Euclidean Algorithm

In mathematics, the Euclidean algorithm (also called
Euclid’s algorithm) is an efficient method for computing
the greatest common divisor of two integers. It is
named after the Greek mathematician Euclid, who
described it in Books VII and X of his Elements.
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Euclidean Algorithm (cont)
The algorithm has many theoretical and practical
applications:

A key element of a public-key encryption method called “RSA
algorithm”

Use to solve Diophantine equations, such as finding numbers
that satisfy multiple congruences (Chinese remainder
theorem) or multiplicative inverses of a finite field.

Use in the construction of continued fractions, in the Sturm
chain method for finding real roots of a polynomial, and in
several modern integer factorisation algorithms.

A basic tool for proving theorems in modern number theory,
such as Lagrange’s four-square theorem and the
fundamental theorem of arithmetic (unique factorisation).
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Euclidean Algorithm (cont)

The Euclidean algorithm is based on the following two
lemmas.
Lemma 3.5.21

If r is a positive integer, then gcd(r , 0) = r .

Lemma 3.5.22

If a and b are any integers with b , 0 and q and r are
nonnegative integers such that a = bq + r , then
gcd(a, b) = gcd(b , r).
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Euclidean Algorithm (cont)
Theorem 3.5.23: Euclidean Algorithm

1 Let A > B ≥ 0.
2 If B = 0 then gcd(A ,B) = A .

Else divide A by B to obtain a quotient q and a
remainder r as follows:

A = Bq + r , where 0 ≤ r < B

Thus, gcd(A ,B) = gcd(B , r).
3 Repeat step 2., but use B instead of A and r

instead of B. The repetitions are guaranteed to
terminate eventually with r = 0.
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Euclidean Algorithm (cont)
Example 3.5.24: Use the Euclidean algorithm to find
gcd(330, 156).

Solution

gcd(330, 156) = gcd(156, 18) [330 = 156(2) + 18]

= gcd(18, 12) [156 = 18(8) + 12]

= gcd(12, 6) [18 = 12(1) + 6]

= gcd(6, 0) [12 = 6(2) + 0]

= 6

Racket Check: (gcd 336 156)
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Euclidean Algorithm (cont)

Exercise: Use the Euclidean algorithm to find
gcd(155,−275)

Racket: (gcd 155, −275)→ 5
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Euclidean Algorithm (cont)

Definition 3.5.25

An integer d is said to be a linear combination of
integers a and b if there exist integers s and t such that
as + bt = d.

Theorem 3.5.26

For all integers a and b, not both zero, if d = gcd(a, b),
then there exist integers s and t such that as + bt = d.
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Euclidean Algorithm (cont)
Example 3.5.27: Express gcd(330, 156) as a linear
combination of 330 and 156.

Solution
From Example 3.5.24 (Slide 60),
6 = 18 − 12 = 18 − [156 − 8(18)]

= 18 + (−1)(156) + 8(18)

= 9(18) + (−1)(156)

= 9[330 − 2(156)] + (−1)(156)

= 9(330) + (−18)(156) + (−1)(156)

= 9(330) + (−19)(156)
Hence gcd(330, 156) = 9(330) + (−19)(156).
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Euclidean Algorithm (cont)
Example 3.5.28: Show that 660 and 43 are relatively
prime, and find a linear combination of 660 and 43 that
equals 1.

Solution
gcd(660, 43)

= gcd(43, 15) [660 = 43(15) + 15⇒ 15 = 660 − 43(15)]

= gcd(15, 13) [43 = 15(2) + 13⇒ 13 = 43 − 15(2)]

= gcd(13, 2) [15 = 13(1) + 2⇒ 2 = 15 − 13]

= gcd(2, 1) [13 = 2(6) + 1⇒ 1 = 13 − 2(6)]

= gcd(1, 0) [2 = 1(2) + 0]

= 1
hence 660 and 43 are relatively prime.
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Euclidean Algorithm (cont)

Solution of Example 3.5.28 (cont)
An expression of 1 as a linear combination of 660 and
43 is

1 = 13 − 2(6)

= 13 − [15 − 13](6)

= 7(13) − 6(15)

= 7[43 − 15(2)] − 6(15)

= 7(43) − 20(15)

= 7(43) − 20[660 − 43(15)]

= (−20)(660) + 307(43)
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Euclidean Algorithm (cont)
Theorem 3.5.29

If ca ≡ cb (mod n), then a ≡ b (mod n/d), where
d = gcd(c, n).

Proof

ca ≡ cb (mod n)⇒ ∃k (c(a − b) = ca − cb = kn)

Knowing that gcd(c, n) = d, there exist relatively prime integers r
and s satisfying c = dr , n = ds. When these values are
substituted in the displayed equation and the common factor d
cancels

r(a − b) = ks.
Hence, s|r(a − b) and gcd(r , s) = 1. Euclid’s lemma yields s|a − b,
which may be recast as a ≡ b (mod s) or a ≡ b (mod n/d).
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Euclidean Algorithm (cont)
Theorem 3.5.29 gets its maximum force when the
requirement that gcd(c, n) = 1 is added, for then the
cancellation may be accomplished without a change in
modulus.

Corollary 3.5.30
If ca ≡ cb (mod n) and gcd(c, n) = 1, then a ≡ b
(mod n).

Corollary 3.5.31
If ca ≡ cb (mod p) and p - c, where p is prime, then
a ≡ b (mod p).
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Euclidean Algorithm (cont)

Example 3.5.32:

33 ≡ 15 (mod 9)⇒ 3 · 11 ≡ 3 · 5 (mod 9)

⇒ 11 ≡ 5 (mod 3)

since gcd(3, 9) = 3 and Theorem 3.5.29 (Slide 66)

−35 ≡ 45 (mod 8)⇒ 5 · (−7) = 5 · 9 (mod 8)

⇒ −7 = 9 (mod 8)

since gcd(5, 8) = 1.
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Euclidean Algorithm (cont)
Corollary 3.5.33

For all integers a and n, if gcd(a, n) = 1, then there
exists an integers s such that as ≡ 1 (mod n). The
integer s is called the inverse of a modulo n.

Example 3.5.34: Find an inverse for 43 modulo 660.
That is, find an integer s such that 43s ≡ 1 (mod 660).

Solution
From Example 3.5.28,
307(43) + (−20)(660) = 1⇒ 307(43) = 1 + 20(660)

⇒ 307(43) ≡ 1 (mod 660)
So 307 is an inverse for 43 modulo 660.
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Euclidean Algorithm (cont)

Example: Find a positive inverse for 3 modulo 40. That
is, find a positive integer s such that 3s ≡ 1 (mod 40).

Answer: s = 27

Class Discussion.
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Linear Congruences

Can we solve equations associated with “modular
arithmetic”?
The simple equation is the linear congruence equation:

ax ≡ b (mod n).

By a solution of such an equation we mean an integer
x0 for which ax0 ≡ b (mod n).

Dr Liew How Hui Discrete Mathematics with Applications May 2021 72 / 179



Linear Congruences

By definition,

ax0 ≡ b (mod n)⇔ n|(ax0 − b)⇔ ∃y0(ax0 − b = ny0).

Thus, the problem of finding all integers that will satisfy
the linear congruence ax ≡ b (mod n) is identical with
that of obtaining all solutions of the linear Diophantine
equation

ax − ny = b .
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Linear Congruences (cont)
Note that any “two” solutions are regarded “equivalent”.
E.g. x = 3 and x = −9 both satisfy the congruence
3x ≡ 9 (mod 12); because 3 ≡ −9 (mod 12), they are
not counted as different solutions.

Hence, when we refer to the number of solutions of
ax ≡ b (mod n), we mean the number of incongruent
integers satisfying this congruence.

Theorem 3.5.35

The linear congruence ax ≡ b (mod n) has a solution
iff d|b, where d = gcd(a, n). If d|b, then it has d
“different” solutions modulo n (called incongruent).
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Linear Congruences (cont)

Proof
Note that the given congruence is equivalent to the
linear Diophantine equation ax − ny = b. It can be
solved iff d|b; moreover, if it is solvable and x0, y0 is a
specific solution, then any other solution has the form

x = x0 +
n
d

t , y = y0 +
a
d

t

for some choice of t .
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Linear Congruences (cont)
Proof (cont)
Among the various integers satisfying the first of these
formulae, consider those that occur when t takes on the
successive values t = 0, 1, 2, ..., d − 1:

x0, x0 +
n
d
, x0 +

2n
d
, · · · , x0 +

(d − 1)n
d

.

We claim that these integers are incongruent modulo n,
and all other such integers x are congruent to some
one of them. If it happened that

x0 +
n
d

t1 ≡ x0 +
n
d

t2 (mod n), 0 ≤ t1 < t2 ≤ d − 1.
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Linear Congruences (cont)
Proof (cont)
Then we would have

n
d

t1 ≡
n
d

t2 (mod n)

Now gcd(n/d, n) = n/d, by Theorem 3.5.29 (Slide 66)
the factor n/d could be cancelled leading to

t1 ≡ t2 (mod d)

which is to say that d|t2 − t1. But this is impossible in
view of the inequality 0 < t2 − t1 < d.
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Linear Congruences (cont)

Proof (cont)
It remains to argue that any other solution x0 + (n/d)t
is congruent modulo n to one of the d integers listed
above. The Division Algorithm permits us to write t as
t = qd + r , where 0 ≤ r ≤ d − 1. Hence

x0+
n
d

t = x0+
n
d

(qd+r) = x0+nq+
n
d

r ≡ x0+
n
d

r (mod n)

with x0 + (n/d)r being one of our d selected solutions.
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Linear Congruences (cont)

The proof of Theorem 3.5.35 points that: If x0 is any
solution of ax ≡ b (mod n), then the d = gcd(a, n)
incongruent solutions are given by

x0, x0 +
n
d
, x0 + 2

n
d
, · · · , x0 + (n − 1)

n
d
.
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Linear Congruences (cont)

Corollary 3.5.36
If gcd(a, n) = 1, then the linear congruence ax ≡ b
(mod n) has a unique solution modulo n.

Given relatively prime integers a and n, the congruence
ax ≡ 1 (mod n) has a unique solution. This solution is
called the (multiplicative) inverse of a modulo n.

Dr Liew How Hui Discrete Mathematics with Applications May 2021 80 / 179



Linear Congruences (cont)
Example 3.5.37: Solve the linear congruence 18x ≡ 30
(mod 42).

Solution
Because gcd(18, 42) = 6 and 6 surely divides 30, Theorem 3.5.35
(Slide 74) guarantees the existence of exactly six solutions, which
are incongruent modulo 42. By inspection, one solution is found to
be x = 4.
The six solutions are as follows:

x ≡ 4 + (42/6)t = 4 + 7t (mod 42), t = 0, 1, ..., 5

or, plainly enumerated,

x ≡ 4, 11, 18, 25, 32, 39 (mod 42).
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Linear Congruences (cont)

Example 3.5.38: Solve the linear congruence 9x ≡ 21
(mod 30).

Answer: x = 9, 19, 29 (mod 30)

Class Discussion.
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Chinese Remainder Theorem

Having considered a single linear congruence, it is
natural to turn to the problem of solving a system of
simultaneous linear congruences:

c1x ≡ b1 (mod m1),

c2x ≡ b2 (mod m2),

· · · ,

crx ≡ br (mod mr).
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Chinese Remainder Theorem (cont)
Assume that the moduli mk are relatively prime in pairs.
The system will has a solution if each individual
congruence is solvable, i.e. dk |bk for each k , where
dk = gcd(ck ,mk ). When these conditions are satisfied,
the factor dk can be cancelled in the k th congruence to
produce a new system having the same set of solutions
as the original one:

c′1x ≡ b ′1 (mod n1),

c′2x ≡ b ′2 (mod n2),

· · · ,

c′r x ≡ b ′r (mod nr)
where nk = mk/dk and gcd(ni, nj) = 1 for i , j; in
addition, gcd(c′i , ni) = 1.
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Chinese Remainder Theorem (cont)

The solutions of the individual congruences assume the
form

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)
...

x ≡ ar (mod nr)

(1)

Thus, the problem is reduced to one of finding a
simultaneous solution of a system of congruences of
this simpler type.
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3.5.39: Chinese Remainder Theorem
Suppose n1, n2, · · · , nr are pairwise relatively prime
positive integers and a1, a2, · · · , ar are any integers.
The system of congruences (1) have a simultaneous
solution that is unique modulo n, where n = n1n2 · · · nr .
When r = 3, let N1 = n2n3, N2 = n1n3, N3 = n1n2, then
gcd(Ni, ni) = 1 for i = 1, 2, 3. There exists an integer yi,
an inverse of Ni modulo ni such that Niyi ≡ 1 (mod ni).
The solution to (1) is

x ≡ a1N1y1 + a2N2y2 + a3N3y3 (mod n)

where n = n1n2n3.

Refer to UECM2383 for the proof.
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Chinese Remainder Theorem (cont)
Example 3.5.40: In the first century, the Chinese
mathematician Sūn Zi asked the following question in the book
“Sūn Zı̌ Suàn Jı̄n”: There are certain things whose number is
unknown. When divided by 3, the remainder is 2; when divided by
5, the remainder is 3; and when divided by 7, the remainder is 2.
What will be the number of things?

Solution
This puzzle can be translated into the following
question: What are the solutions of the systems of
congruences

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7)
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Chinese Remainder Theorem (cont)
Solution of Example 3.5.40 (cont)
Let n1 = 3, n2 = 5, n3 = 7, a1 = 2, a2 = 3, a3 = 2.
Then N1 = n2n3 = (5)(7) = 35,
N2 = n1n3 = (3)(7) = 21, N3 = n1n2 = (3)(5) = 15
and

gcd(35, 3) = 1⇒ 35 = 3(11) + 2⇒ 2 = 35 − 3(11)

3 = 2(1) + 1⇒ 1 = 3 − 2 = · · · = 12(3) + (−1)(35)

Hence (−1)(35) ≡ 1 (mod 3), −1 is an inverse for 35
modulo 3 and 2 is a positive integer that is an inverse
for 35 modulo 3.
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Chinese Remainder Theorem (cont)
Solution of Example 3.5.40 (cont)
Similarly, the inverse for 21 modulo 5 is found to be 1
and the inverse for 15 modulo 7 is found to be 1.
Thus y1 = 2, y2 = 1, y3 = 1. The solution to this
system are those x such that

x = a1N1y1 + a2N2y2 + a3N3y3

= (2)(35)(2) + (3)(21)(1) + (2)(15)(1) = 233 ≡ 23 (mod 105)

It follows that 23 is the smallest positive integer that is a
simultaneous solution. We conclude that 23 is the
smallest positive integer that leaves a remainder of 2
when divided by 3, a remainder of 3 when divided by 5,
and a remainder of 2 when divided by 7.
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Chinese Remainder Theorem (cont)
Example 3.5.41: Solve the linear congruence

17x ≡ 9 (mod 276).

Solution
Because 276 = 3 · 4 · 23, this is equivalent to finding a solution for
the system of congruences

17x ≡ 9 (mod 3)

17x ≡ 9 (mod 4)

17x ≡ 9 (mod 23)

⇔


2x ≡ 0 (mod 3)

x ≡ 1 (mod 4)

17x ≡ 9 (mod 23)

⇔


x ≡ 0 (mod 3)

x ≡ 1 (mod 4)

x ≡ 10 (mod 23)
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Chinese Remainder Theorem (cont)

Solution of Example 3.5.41 (cont)
Note that if x ≡ 0 (mod 3), then x = 3k for any integer k . We
substitute into the second congruence of the system and obtain

3k ≡ 1 (mod 4)

Multiplication of both sides of this congruence by 3 gives us

k ≡ 9k ≡ 3 (mod 4)

so that k = 3 + 4j, where j is an integer. Then

x = 3(3 + 4j) = 9 + 12j.
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Chinese Remainder Theorem (cont)

Solution of Example 3.5.41 (cont)
For x to satisfy the last congruence, we must have

17(9 + 12j) ≡ 9 (mod 23)

or 204j ≡ −144 (mod 23), which reduces to 3j ≡ 6 (mod 23); in
consequence, j ≡ 2 (mod 23). This yields j = 2 + 23t , with t an
integer, whence

x = 9 + 12(2 + 23t) = 33 + 276t .

All in all, x ≡ 33 (mod 276) provides a solution to the system of
congruences and, in turn, a solution to 17x ≡ 9 (mod 276).
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Applications
Modular arithmetic has applications in

UECM2383 Elementary Number Theory→
UECM3383 Cryptology→ Computer Security for
various business transactions.
Random Number Generation: SSIF→ Operations
Research→ Stochastic Process in Finance and
Engineering
UECM3373 Coding Theory (geometry of numbers)
→ check digit to identification numbers, in order to
recognize transmission errors or forgeries.
Computer Graphics: Computational Geometry
(solving systems of polynomials)→ computational
algebraic numbers.
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Applications (cont)

Cryptography is the study of methods for sending
secret messages. It involves encryption, in which a
message, called plaintext, is converted into a form,
called ciphertext, that may be sent over channels
possibly open to view by outside parties. The receiver
of the ciphertext uses decryption to convert the
ciphertext back into plaintext.
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Applications (cont)

Pictorially, we have

Alice encrypter decrypter

Secure Channel

Oscar

Key source

Bob
−→x

−→y −→x
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Applications (cont)
Definition 3.6.1: A cryptosystem is a tuple
(P ,C ,K ,E ,D) where

1 P is a finite set of possible plaintexts;
2 C is a finite set of possible ciphertexts;
3 K is a set of possible keys called the keyspace;
4 For each k ∈ K , there is an encryption rule and a

decryption rule respectively as follows:

eK : P → C , dK : C →P

such that dK (eK (x)) = x for every x ∈P . The set
of eK is denoted E and the set of dK is denoted D .

Remark: When P = C , then each encryption function
is in fact a permutation.
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Applications (cont)

We will investigate three classical (or private-key,
symmetric-key) cryptosystem and one public-key
cryptosystem, the RSA cryptosystem. For simplicity, we
will just investigate Latin characters A to Z ignoring the
difference between capital and small letters. We
assume each letter of the alphabet is coded by its
position relative to the others as follows:

A=0, B=1, C=2, D=3, · · · , X=23, Y=24, Z=25.
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Applications (cont)

Definition 3.6.3: Shift Cipher
Let P = C = K = Z26. For 0 ≤ k ≤ 25, define

ek (x) = (x + k ) mod 26, dk (y) = (y − k ) mod 26

for every x, y in Z26. Then (P ,C ,K ,E ,D) is called a
shift cipher.
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Applications (cont)
An encryption system once used by Julius Caesar, and
now called the Caesar cipher, encrypts messages by
changing each letter of the alphabet to the one three
places farther along, with X wrapping around to A, Y to
B, and Z to C.
If the numerical version of the plaintext for a letter is
denoted M and the numeric version of the ciphertext is
denoted C, then

C = (M + 3) mod 26

The receiver of such a message can easily decrypt it by
using the formula

M = (C − 3) mod 26
Dr Liew How Hui Discrete Mathematics with Applications May 2021 101 / 179



Applications (cont)
Example 3.6.5a: Use the Caesar cipher to encrypt the
message HOW ARE YOU.

Solution
First translate the letters of HOW ARE YOU into their numeric
equivalents:

7 14 22 0 17 4 24 14 20

Next encrypt the message by adding 3 to each number.

10 17 25 3 20 7 1 17 23

Finally, substitute the letters that correspond to these numbers.
The encrypted messages becomes KRZ DUH BRX
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Applications (cont)
Example 3.6.5b: Use the shift cipher with key 3 to
decrypt the message L DP ILQH.

Solution
First translate the letters of L DP ILQH into their numeric
equivalents:

11 3 15 8 11 16 7

Next decrypt the message by subtracting 3 from each number.

8 0 12 5 8 13 4

Then translate back into letters to obtain the original message: I
AM FINE
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Applications (cont)

When a private key cryptosystem is used, a pair of
people who wish to communicate in secret must have a
separate key. Since anyone knowing this key can both
encrypt and decrypt messages easily, these two people
need to securely exchange the key.
Shift ciphers can be broken by what we call a brute
force attack. It only takes 25 trials to guess the private
key, hence, this is a useless cryptosystem in an
information society.
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Applications (cont)

Definition 3.6.7: Affine Cipher
Let P = C = Z26 and
K = {(a, b) ∈ Z26 × Z26 : gcd(a, 26) = 1}. For each
permutation (a, b) ∈ K , define

ea,b(x) = (ax + b) mod 26,

da,b(y) = a−1(y − b) mod 26.

Since gcd(a, 26) = 1, a can only take values from
1,3,5,7,9,11,15, 17,19,21,23,25.
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Applications (cont)
Example 3.6.8: Encipher “ITS COOL” using an affine
cipher with a = 5 and b = 8.

Solution
Using e5,8(x) = (5x + 8) mod 26, we fill in the
following table

plaintext I T S C O O L
x 8 19 18 2 14 14 11

5x + 8 48 103 98 18 78 78 63
(5x + 8) mod 26 22 25 20 18 0 0 11

ciphertext W Z U S A A L
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Applications (cont)
Example 3.6.9: Decipher “HPCCXAQ” using an affine
cipher with a = 5 and b = 8.

Solution
Since 5x ≡ 1 (mod 26) is solved with x ≡ 21 (mod 26), hence
5−1 ≡ 21 (mod 26). Therefore, the decrypter

d5,8(y) = 21(y − 8) mod 26
and so filling in our table gives

ciphertext H P C C X A Q
y 7 15 2 2 23 0 16

y − 8 -1 7 -6 -6 15 -8 8
21(y − 8) -21 147 -126 -126 315 -168 168

21(y − 8) mod 26 5 17 4 4 3 14 12
plaintext F R E E D O M
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Applications (cont)
A substitution cipher is one in which letters are
represented by other letters; it can be decriphered by
someone knowing the order of the cipher alphabet
used. It is defined formally as follows.

Definition 3.6.10: Substitution Cipher
Let P = C = Z26 and K be the set of all possible
permutations of the 26 symbols in P . For each
substitution σ ∈ K , define

eσ(x) = σ(x), dσ(y) = σ−1(y).

Remark: There are 26! permutations. Hence, finding
the right private key may be difficult.
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Applications (cont)

Example 3.6.11: Consinder the following permutation
for substitution cipher:

(
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
R Z B U Q K F C P Y E V L S N G W O X D J I A H T M

)

Encode the word “HARDWORKING”.

Solution
The ciphertext is “CROUANOEPSF”.
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Applications (cont)
Substitution ciphers are fairly easy to “crack” — the problem is that
in English (or any language), certain letters are far more likely to
appear. In English, for example, the letter “E” is far more likely to
appear than the letter “Z”. In fact, we have the following English
letter frequency table

A 8.2% F 2.2% K 0.8% P 1.9% U 2.8% Z 0.1%
B 1.5% G 2.0% L 4.0% Q 0.1% V 1.0%
C 2.8% H 6.1% M 2.4% R 6.0% W 2.3%
D 4.3% I 7.0% N 6.7% S 6.3% X 0.1%
E 12.7% J 2.2% O 7.5% T 9.1% Y 2.0%

The approximate percentages for the first few letters in the list
below are:

E: 12.7%, T: 9.1%, A: 8.2%, O: 7.5%

and the percentages for the last few are:

J: 0.2%, Q: 0.1%, Z: 0.1%.
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Applications (cont)
RSA is a popular public-key encryption method used in
electronic commerce. In what follows, we will
investigate how to encrypt and decrypt a message
using RSA cryptography. First, we define RSA formally.

Definition 3.6.13: RSA Cryptosystem
Let n = pq, where p and q different prime numbers. Let
P = C = Zn, define

K = {(n, p, q, a, b) : ab ≡ 1 (mod φ(n))}.

For every k ∈ K , we define

ek (x) = xb mod n, dk (y) = ya mod n
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Applications (cont)
Definition 3.6.13: RSA Cryptosystem (cont)
Here x, y ∈ Zn and φ is the Euler phi function, which is
an arithmetic function that counts the number of
positive integers less than or equal to n that are
relatively prime to n. It is found mathematically to be

φ(n) = n
∏
p|n

p is prime

(
1 −

1
p

)
.

The values n and b comprise the public key and the
values p, q and a form the private key.
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Applications (cont)
Example 3.6.14: Find the number of integers relatively
prime to 36.

Solution

φ(36) = φ(2232) = 36
(
1 −

1
2

) (
1 −

1
3

)
= 36 ·

1
2
·
2
3

= 12.

In words, this says that the distinct prime factors of 36
are 2 and 3; half of the thirty-six integers from 1 to 36
are divisible by 2, leaving eighteen; a third of those are
divisible by 3, leaving twelve coprime to 36. And indeed
there are twelve: 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31,
and 35.
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Applications (cont)

Theorem 3.6.15
When p and q are prime numbers,
φ(pq) = (p − 1)(q − 1).

To encrypt a message using the RSA cipher, a person
needs to know the value of pq and of another number
b, both of which are made publicly available. But only a
person who knows the individual values of p, q and a
can decrypt an encrypted message.
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Applications (cont)
Example 3.6.16: Suppose Alice decides to set up an RSA
cipher. She chooses two prime numbers, say p = 5 and q = 11,
and computes n = pq = 55. She then chooses a positive integer b
that is relatively prime to (p − 1)(q − 1). In this case,
(p − 1)(q − 1) = 4(10) = 40, so she may take b = 3 is relatively
prime to 40. The two numbers n = 55 and b = 3 are the public
key, which she may distribute widely. To decrypt the message,
Alice needs to find the decryption key, a number a that is a positive
inverse to b modulo (p − 1)(q − 1). In this case, the key is

k = (55, 5, 11, a, 3).

1 Bobs wants to send Alice the message HA. Find the
ciphertext for his message.

2 Find the value of a and decrypt the ciphertext 17.
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Applications (cont)

Example 3.6.16 Solution
1 Bob will send his message in two blocks, one for

the H and another for the A. The letters H and A are
encoded as 7 and 0 respectively. The
corresponding ciphertext is computed as follows:

e(7) = 73 mod 55 = 343 mod 55 = 13,

e(0) = 03 mod 55 = 0.

Accordingly, Bob sends Alice the message: 13 0.

Dr Liew How Hui Discrete Mathematics with Applications May 2021 116 / 179



Applications (cont)
Example 3.6.16 Solution (cont)

2 The integer a needs to satisfy

ab = 3a ≡ 1 (mod φ(55))

Here, φ(55) = (p − 1)(q − 1) = 40. Using modular
arithmetic, we can find

a ≡ 3−1 ≡ 27 (mod 40).

and then compute

d(17) ≡ 1727 = 1716+8+2+1 ≡ 1716+8+2+1 (mod 55)

≡ (16 · 26 · 14 · 17) (mod 55)

≡ 99008 ≡ 8 (mod 55)
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Applications (cont)
Example 3.6.16 Solution (cont)

2 where


172 mod 55 = 172 mod 55 = 14

174 mod 55 = (14)2 mod 55 = 31

178 mod 55 = (31)2 mod 55 = 26

1716 mod 55 = (26)2 mod 55 = 16.

Thus the plaintext of Bob’s message is 8. The letter
corresponding to 8 is I.

In reality, RSA is used in setting up a secure
communication channel. These days, a key length of at
least 4096 bits is required.
openssl req -out CSR.csr -new -newkey rsa:4096 -nodes

-keyout privateKey.key
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Applications (cont)

Real-world crypto issues:
Block ciphers: encrypts blocks of a fixed length
instead of alphabets. It is a generalisation of the
substitution cipher. The number of permutations of
the set of blocks of a cipher with a 128 bit block
size is (2128)!.
The most popular block cipher is AES (Advanced
Encryption Standard). The older block cipher is
DES (deprecated due to poor security).
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Applications (cont)
Real-world crypto issues (cont):

Stream ciphers: The most common native stream
cipher in common use on desktop and mobile
devices is RC4. Salsa20 and ChaCha are the
newer state of art stream ciphers.
Key exchange protocols attempt to solve a
problem that Alice and Bob, have to agree on a
secret value over an insecure communication
channel. Using Diffie-Hellman (discrete logarithms
or elliptic curves), we can agree on shared secrets
across an insecure Internet.
https runs over TLS (Transport Layer Security).
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Outline
1 Logic for Equality
2 Theory of Numbers

Elementary Number Theory
Modular Arithmetic
Euclidean Algorithm
Linear Congruences
Chinese Remainder Theorem
Applications of Number Theory

3 Method of Proofs
Direct, Contrapositive, Contradiction
Two Classical Theorems
Mathematical Induction
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Methods of Proofs
To prove something, we need to start from somewhere.
For mathematics, the ‘somewhere’ is set theory. For
this topic, the ‘somewhere’ is the ‘axioms’ of natural
numbers and integers.

But how to we know the rules associated with sets are
‘true’???

Mathematicians have discovered that it is impossible to
prove a rich mathematical system (i.e. a system which
includes number theory as part of the theory) cannot be
proven to be ‘true’ if it is consistent (i.e. there is no
contradicting statements).

Note: Week 5 pre-recorded video tried to explore this.
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Methods of Proofs (cont)

Disproof by counterexample: In reality, if you suspect
that a mathematical statement is wrong, try to find a
counterexample (to axioms or derived theorems, etc.).

If we believe the mathematical statement to be true, we
can use a relevant proving techniques below:

Direct proof

Proof by contraposition

Proof by contradiction

Mathematical induction
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Disproof by Counterexample
To disprove a statement means to show that it is false.
Consider the disproving a universal statement of the
form

∀x(P(x)→ Q(x)) (2)

Since ∀x(P(x)→ Q(x)) ≡ F , that means

∼ ∀x(P(x)→ Q(x)) ≡∃x ∼ (P(x)→ Q(x))

≡∃xP(x)∧ ∼ Q(x)) ≡ T

Hence, to disprove (2) becomes finding a value of x for
which P(x) is true and Q(x) is false. Such an x is
called a counterexample.
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Disproof by Counterexample (cont)

Example 1.14.1: Disprove the statement “for real
numbers n, if n is even, then n+2

2 is even” by finding a
counterexample.

Solution
Formally, we have

∀n(even(n)→ even(
n + 2

2
)).

To disprove this statement, we find a counter-example
of n: Let n = 4. 4 is even but 4+2

2 = 3 is not even.
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Disproof by Counterexample (cont)
Example 1.14.2: Disprove the following statement by
finding a counterexample:

For all real numbers a and b, if a2 = b2 then
a = b.

Solution
Formally, the statement can be expressed as
∀a∀b(a2 = b2 → a = b)) To disprove it, we show that its negation
∼ ∀a∀b(a2 = b2 → a = b)) ≡ ∃a∃b ∼ (a2 = b2 → a = b)

≡ ∃a∃b(a2 = b2 ∧ a , b).

is true, i.e. we can find a and b such that a2 = b2 but a , b: Let
a = 1 and b = −1. Then a2 = 12 = 1 and b2 = (−1)2 = 1, so
a2 = b2. But a = 1 , b = −1.
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Disproof by Counterexample (cont)
Example 1.14.3: Disprove the following statement

For real numbers a and b, if a > b then a2 >
b2.

Solution
Let a = −1, b = −2. Then a > b but a2 = 1 < b2 = 4.

Example 1.14.4: Disprove the following statement
For integers m and n, if 2m + n is even, then m
and n are both even.

Solution
Let m = 1 and n = 2. Then 2m + n = 4 is even but
m = 1 is not even.
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Disproof by Counterexample (cont)

Disproving a universal statement is normally not too
difficult as demonstrated above. The key technique is to
find a counterexample. However, disproving an
existential statement would be more complicate
because we would have to prove that its negation,
which is a universal statement, is true. This leads to
direct proof, proof by contradiction, etc.
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Disproof by Counterexample (cont)
Show that there is no positive integer n such that
n2 + 3n + 2 is prime.

Proof (by Direct Proof)
The negation of the statement is “∀ positive integers n,
n2 + 3n + 2 is not prime.”
Suppose n is any positive integer.
n2 + 3n + 2 = (n + 1)(n + 2). Note that n + 1 > 1 and
n + 2 > 1 are integers because they are sums of
integers and n ≥ 1.
Thus n2 + 3n + 2 is a product of two integers each
greater than 1, and so n2 + 3n + 2 is not prime.
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Outline
1 Logic for Equality
2 Theory of Numbers

Elementary Number Theory
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3 Method of Proofs
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Direct / Contrapositive /
Contradiction Proofs
Let A1, · · · , An and T1, · · · , Tm be the axioms (and
definitions) and theorems of the mathematical objects
respectively that we are investigating. Let φ and ψ be
two formulae. Then the conditional proposition can be
represented as

A1, · · · , An, T1, · · · , Tm ` (φ→ ψ). (3)

When φ is “empty”, i.e. there is no constraint, (3) can
be written as

A1, · · · , An, T1, · · · , Tm ` ψ. (4)
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Direct proof

Formally, the direct proof of (3) can be expressed as

A1 ∧ · · · ∧ An ∧ T1 ∧ · · · ∧ Tm ∧ φ⇒ ψ.

However, the argument (3) can be further classified into
existential statement and universal statements. To
prove an existential statement, we either find a special
value s, which satisfies the formula (quantified
statement). This technique is called the constructive
direct proof of existence and is demonstrated in the
examples below.
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Direct proof (cont)
Example 1.13.1: Prove that “there is an even integer n
that can be written in 2 ways as a sum of 2 prime
numbers.”
Proof
Let n = 10. Then 10 = 5 + 5 = 3 + 7 and 3, 5 and 7 are all prime numbers.
Let P(n) be the predicate “n is prime”. Then take n = 10, p1 = p2 = 5, p3 = 3,
p4 = 7 and

10 = 2 · 5 ∧ 5 , 3 ∧ 5 , 7 ∧ 5 , 7
∧P(5) ∧ P(5) ∧ P(3) ∧ P(7) ∧ 10 = 5 + 5 ∧ 10 = 3 + 7)

∴ ∃n, (∃k(n = 2k) ∧ ∃p1∃p2∃p3∃p4(p1 , p3 ∧ p1 , p4 ∧ p2 , p4

∧P(p1) ∧ P(p2) ∧ P(p3) ∧ P(p4) ∧ n = p1 + p2 ∧ n = p3 + p4)

Due to the complexity of formal proofs, we do not use formal proofs in deriving
results in mathematics.
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Direct proof (cont)

Example 1.13.4: Suppose r and s are integers. Prove
that “there is an integer k such that 22r + 18s = 2k ”.

Proof
Let k = 11r + 9s. Then k is an integer because it is a
sum of products of integers and
2k = 2(11r + 9s) = 22r + 18s.
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Direct proof (cont)

It is possible to prove an existential statement indirectly
without finding the value that matches the predicate.
This is called the non-constructive proof and is
demonstrated below.
Example 1.13.6
Prove that “There exist irrational numbers x and y s.t.
xy is rational”.
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Direct proof (cont)

Proof of Example 1.13.6:
Consider the number

√
2
√

2, it can either be (i) rational
or (ii) irrational, but not both by definition.
Case (i)

Let x = y =
√

2, then xy is rational.
Case (ii)

Let x =
√

2
√

2 and y =
√

2, so both are irrational (the
proof of

√
2 being irrational is given in Theorem 160).

Then, xy = (
√

2
√

2)
√

2 = (
√

2)2 = 2. Thus, xy is
rational.
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Direct proof (cont)

To prove a universal statement, we have to verify that
the predicate is true for all possible values. When the
number of possible values are finite and not large, we
can verify all of them as demonstrated in the following
example.

However, when there are infinitely many values, we
need to rely on the axioms and theorems characterising
the mathematical object we studied or apply the
principle of mathematical induction when the problem is
related to N.
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Direct proof (cont)
Example 1.13.7: Use the method of exhaustion to prove the
following statements:

1 If n is even and 4 ≤ n ≤ 20, then n can be written as a sum of
2 prime numbers.

Proof
4=2+2 8=3+5 12=5+7 16=5+11 20=7+13
6=3+3 10=5+5 14=11+3 18=7+11

2 Every even positive integer n which are less than 26 can be
written as a sum of less than or equal to 3 perfect squares.

Solution
2 = 12 + 12 8 = 22 + 22 14 = 32 + 22 + 12 20 = 42 + 22

4 = 22 10 = 32 + 12 16 = 42 22 = 32 + 32 + 22

6 = 12 + 12 + 22 12 = 22 + 22 + 22 18 = 32 + 32 24 = 42 + 22 + 22
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Direct proof (cont)
The following are examples where the values are
infinite. The statement is shown to be true based on the
axioms governing the values.
Example 1.13.9: Show that: Given any number, add 5,
multiply by 4, subtract 6, divide by 2 and subtract twice
the original number, then the final result is 7.

Proof
Let x be the given number (x is particular because it represents a single
quantity but it is also arbitrarily chosen or generic because it can represent any
number whatsoever). Then

[(((x + 5) × 4) − 6) ÷ 2] − 2x = [((4x + 20) − 6) ÷ 2] − 2x

=[(4x + 14) ÷ 2] − 2x = [2x + 7] − 2x = 7

Thus no matter what number is given, the result will always be 7.
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Direct proof (cont)
Example 1.13.10: Prove that the sum of any two even
integers is even.

Proof
Suppose m and n are any even integers.a

By definition of even, m = 2r and n = 2s for some
integers r and s.
Then m + n = 2r + 2s = 2(r + s).
Let k = r + s. k is an integer because it is a sum of
integers.
Hence m + n = 2k where k is an integer.
It follows by definition of even that m + n is even.

aNote that m and n are arbitrarily chosen.
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Direct proof (cont)
Example 1.13.11: Prove that the sum of any two odd
integers is even.

Proof
Suppose m and n are any odd integers.
By definition of odd, m = 2r + 1 and n = 2s + 1 for
some integers r and s.
Then
m +n = (2r +1)+(2s +1) = 2r +2s +2 = 2(r +s +1).
Let k = r + s + 1. Note that k is an integer because it
is a sum of integers.
Hence m + n = 2k where k is an integer.
It follows by definition of even that m + n is even.
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Direct proof (cont)
Example 1.13.12: Prove that the products of any two
even integers is even.

Proof
Suppose m and n are any even integers.
By definition of even, m = 2r and n = 2s for some
integers r and s.
Then mn = (2r) · (2s) = 2(2rs).
Let k = 2rs. Note that k is an integer because it is a
product of integers.
Hence mn = 2k where k is an integer.
It follows by definition of even that mn is even.
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Direct proof (cont)

Example 1.13.13: Prove that for all integers n, if n is
odd, then n2 is odd.

Proof
Suppose n is any odd integer. By definition of odd,
n = 2s + 1 for some integer s.
Then n2 = (2s + 1)2 = 4s2 + 4s + 1 = 2(2s2 + 2s) + 1
Let k = 2s2 + 2s. Note that k is an integer because it is
a sum of integers.
Hence n2 = 2k + 1 where k is an integer.
It follows by definition of odd that n2 is odd.
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Direct proof (cont)

Theorem 1.13.15: Prove that the sum of any two
rational numbers is rational.
Proof
Suppose r and s are rational numbers. By definition of rational
number, r = a/b and s = c/d for some integers a, b , 0, c and
d , 0. Thus

r + s =
a
b

+
c
d

=
ad + bc

bd
Since the products and sums of integers are integers, ad + bc and
bd are integers. Since b , 0 and d , 0, bd , 0.
Therefore, r + s is a ratio of integers and it is rational by definition.
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Proof by Contraposition

Proof by contraposition or contrapositive proof is based
on the logical equivalences of conditional statements
introduced in Topic 1: φ→ ψ ≡∼ ψ→∼ φ. Formally,
contrapositive proof of (3) can be expressed as

A1 ∧ · · · ∧ An ∧ T1 ∧ · · · ∧ Tm∧ ∼ ψ⇒∼ φ.

The outline of the proof is given below:
1 Rewrite the statement to be proved in the

contrapositive form
2 Prove the contrapositive form using direct proof.
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Proof by Contraposition (cont)

Example 1.13.29: Prove that for all integers n, if n2 is
even then n is even.
Proof
In contrapositive form: For all integers n, if n is odd then
n2 is odd.
Suppose n is any odd integer. Then n = 2k + 1 for
some integer k .
n2 = (2k + 1)2 = 4k 2 + 4k + 1 = 2(2k 2 + 2k ) + 1 So
n2 is odd.
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Proof by Contraposition (cont)

Example 1.13.31: Prove that for all integers n, if 3n + 2
is odd then n is odd.
Proof
In contrapositive form: For all integers n, if n is even
then 3n + 2 is even.
Suppose n is any even integer. Then n = 2k for some
integer k . 3n + 2 = 6k + 2 = 2(3k + 1). Here 3k + 1 is
an integer. So 3n + 2 is odd.
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Proof by Contraposition (cont)

Example 1.13.32: Prove that for any natural numbers n,
a and b, if n = ab, then a ≤

√
n or b ≤

√
n.

Proof
Suppose a >

√
n and b >

√
n, then

a · b >
√

n ·
√

n = n which means a · b , n.
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Proof by Contradiction
Proof by contradiction is based on the logical
equivalences of conditional statements introduced in
Topic 1: φ→ ψ ≡∼ φ ∨ ψ ≡∼ (φ∧ ∼ ψ). Formally, proof
by contradiction for (3) can be expressed as

A1 ∧ · · · ∧ An ∧ T1 ∧ · · · ∧ Tm ∧ φ∧ ∼ ψ⇒ F .

Hence, to prove a statement by contradiction, we first
need to suppose the negation of the conclusion of the
statement is true. Then together with the premises and
some axioms or theorem, we arrive at a logically
contradicting statement. This means that the negation
of the conclusion cannot be true, hence the
conclusion must be true.
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Proof by Contradiction (cont)
Example 1.13.17: For all integers m and n, if mn = 1
then m = n = 1 or m = n = −1.

Hypotheses: “m and n are integers and mn = 1”.
Conclusion: “m = n = 1 or m = n = −1”.

Proof by contradiction
Suppose “m and n are integers and mn = 1” is true but
“(m = 1 ∧ n = 1) ∨ (m = −1 ∧ n = −1)” is false.
So ((m , 1)∨ (n , 1))∧ ((m , −1)∨ (n , −1)). This is
logically equivalent to
(m , 1 ∧m , −1) ∨ (n , 1 ∧m , −1)∨
(m , 1 ∧ n , −1) ∨ (n , 1 ∧ n , −1).
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Proof by Contradiction (cont)
Example 1.13.17: Proof by contradiction (cont)
We can classify into the following cases:

1 m , 1 ∧m , −1:
1 m < −1:

1 n = 0: mn = 0. Contradicting with mn = 1.
2 n ≤ −1: mn > 1. Contradicting with mn = 1.
3 n ≥ 1: mn < −1. Contradicting with mn = 1.

2 m = 0: mn = 0. Contradicting with mn = 1.
3 m > 1:

1 n = 0: mn = 0. Contradicting with mn = 1.
2 n ≤ −1: mn < −1. Contradicting with mn = 1.
3 n ≥ 1: mn > 1. Contradicting with mn = 1.

2 n , 1 ∧ n , −1: This is similar to case 1., the only
difference is m and n are exchanged.
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Proof by Contradiction (cont)
Example 1.13.17: Proof by contradiction (cont)

3 n , 1 ∧m , −1:
1 n > 1 ∧m > −1: mn = 0 ∨mn > 1. Contradicting with

mn = 1.
2 n > 1 ∧m < −1: mn < −1. Contradicting with mn = 1.
3 n < 1 ∧m > −1: mn = 0 ∨mn < 0. Contradicting with

mn = 1.
4 n < 1 ∧m < −1: mn = 0 ∨mn > 1. Contradicting with

mn = 1.
4 m , 1 ∧ n , −1: This is similar to case 3., the only

difference is m and n are exchanged.
All situation leads to contradiction. Hence, the
conclusion cannot be false and hence the statement is
proved.
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Proof by Contradiction (cont)

Example 1.13.18: Show that the rational number 1
4 is

not an integer.

Proof
Suppose 1

4 is an integer. Then

4 ×
1
4

= 1

and 1 can be factorised into two integers different from
1 and −1. This is contradicting with Example 1.13.17
(Slide 150).
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Proof by Contradiction (cont)

Example 1.13.19: Use proof by contradiction to prove
that for all integers n, if n2 is even then n is even.

Proof
Suppose there is an integer such that n2 is even and n
is not even. Hence, n = 2k + 1 for some integer k and

n2 = (2k + 1)2 = 4k 2 + 4k + 1 = 2(2k 2 + 2k ) + 1

So n2 is odd, which contradicts the supposition that n2

is even.
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Proof by Contradiction (cont)
Theorem 1.13.20: Using the method of proof by
contradiction to show that “There is no integer that is
both even and odd.”
Proof
Suppose there is an integer n that is both even and odd.
By definition of even, n = 2a for some integer a. By
definition of odd, n = 2b + 1 for some integer b.
Hence

2a = 2b + 1⇒ 2(a − b) = 1, a − b ∈ Z.

This is a contradiction since 1 cannot be factorised as
demonstrated in Example 1.13.17 (Slide 150).
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Proof by Contradiction (cont)
Theorem 1.13.21: There is no greatest integer.

Proof
Suppose there is a greatest integer N. Then n ≤ N for
every integer n.
Let M = N + 1. Now M is an integer since it is a sum of
integers. Also N < N + 1 = M.
Thus M is an integer that is greater than N.
However, N is the greatest integer, so M < N. Hence
M < N ∧ N < M which is a contradiction.
Thus the supposition is false and “there is no greatest
integer” is true.
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Proof by Contradiction (cont)
Example 1.13.26: Use proof by contradiction to show
that the sum of any rational number and any irrational
number is irrational.
Proof
Suppose there is a rational number r and an irrational number s
such that r + s is rational.
By definition of rational, r = a/b and r + s = c/d for some
integers a, b , c and d with b , 0 and d , 0. Then
r + s = a

b + s = c
d ⇒ s = c

d −
a
b = bc−ad

bd
Both bc − ad and bd are integers and bd , 0. Thus s is rational.
This contradicts the supposition that s is irrational (by definition,
irrational cannot be written as a ratio of integers).
Hence the sum of any rational number and any irrational number is
irrational.
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Proof by Contradiction (cont)
Example 1.13.27: Prove that 1 + 3

√
2 is irrational.

Proof
Suppose 1 + 3

√
2 is rational. Then

1 + 3
√

2 =
a
b

(∗)

for some integers a and b , 0. Rearranging (*), we have

3
√

2 =
a
b
− 1 =

a − b
b
⇒
√

2 =
a − b

3b

Both a − b and 3b , 0 are integers. Hence
√

2 is rational, this
contradicts with the fact that

√
2 is irrational as demonstrated in

Theorem 1.13.24 (Slide 160).
Hence 1 + 3

√
2 is irrational.
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Proof by Contradiction (cont)
Theorem 1.13.24:

√
2 is irrational.

Proof
Suppose

√
2 is rational. Then there are integers m and n with no

common factors and n , 0 such that√
2 = m

n .

This implies 2 = m2

n2 ⇒ 2n2 = m2

So m2 is even and m must be even (otherwise it must be odd, but
the square of odd number must be odd) and there is an integer k
such that m = 2k . Hence

2n2 = m2 = 4k 2 ⇒ n2 = 2k 2.
Now, n2 is even and so n is even. This implies that both m and n
have a common factor of 2, which contradicts the supposition that
m and n have no common factors.
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Proof by Contradiction (cont)
Theorem 1.13.25: For a positive integer k , if

√
k is not

integer, then
√

k is irrational.

Proof of Theorem 1.13.25

Let
√

k be a non-integer and rational. Then
E = {b ∈ N∗ : ∃a(a ∈ N ∧

√
k = a/b)} , ∅ and by the

Well-ordering principle, E contains the smallest value
b1.
Let
√

k = a1/b1, a1 > 0, q be the largest positive
integer no greater than

√
k , i.e.

√
k − 1 < q <

√
k .

Then
√

k =
a1

b1
=

a1(
√

k − q)

b1(
√

k − q)
=

a1
√

k − a1q
b1((

a1
b1
) − q)

=
b1
√

k ×
√

k − a1q
a1 − b1q

=
b1k − a1q
a1 − b1q
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Proof by Contradiction (cont)

Proof of Theorem 1.13.25 (cont)

Let a2 = b1k − a1q and b2 = a1 − b1q. Since q <
√

k ,

a2 = b1k − a1q = a1(
b1

a1
k − q) = a1(

k
√

k
− q) = a1(

√
k − q) > 0

b2 = a1 − b1q = b1(
a1

b1
− q) = b1(

√
k − q)

This implies b2 − b1 = b1(
√

k − q) − b1 = b1(
√

k − q − 1) > 0⇒ b2 > b1.

The positive integer b2 is smaller than b1. This
contradicts with the definition of b1.
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Theorem 2: Infinitude of Primes
Theorem 3.2.19: The set of prime numbers is infinite.

Proof
Suppose the set of prime numbers is finite. Then all the prime numbers can be
listed, say, in ascending order:

p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, · · · , pn.
Consider the integer

N = p1p2p3 · · · pn + 1 > 1

By Theorem in Slide 24, N is divisible by some prime number p. Since p is
prime, p must equal one of the prime numbers p1, p2, p3, · · · , pn. Let p = pk for
some 1 ≤ k ≤ n and
p = pk |(N = p1p2p3 · · · pk · · · pn + 1)⇒ pk m = p1p2p3 · · · pk · · · pn + 1⇒
pk (m − p1p2p3 · · · pk−1pk+1 · · · pn) = 1
for some integer m. This implies 1 can be factorised into two integers which are
larger than 1, a contradiction.
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Mathematical Induction
Mathematical induction is a method of proof developed
to check conjectures about the outcomes of processes
that occur repeatedly and according to definite patterns
which are related to the linear order of natural numbers.
It is a two-step process:

1 Basis Step: Show that the P(a) is true for a
particular integer a.

2 Inductive Step: Show that for all integers k ≥ a, if
P(k ) is true then P(k + 1) is true.
To perform this step, assume that the property is
true for n = k for some integer k ≥ a. This
supposition is called the inductive hypothesis.
Then show that the property is true for n = k + 1.
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Mathematical Induction (cont)
It is based on the following principle of ordinary
mathematical induction.
Principle of Ordinary Mathematical Induction
Let P(n) be a predicate that is defined for integers n,
and let a be a fixed integer. Suppose the following two
statements are true:

1 P(a) is true.
2 For all integers k ≥ a, if P(k ) is true then P(k + 1)

is true.
Then the statement “for all integers n ≥ a, P(n)” is true.
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Mathematical Induction (cont)
Strong Form of Mathematical Induction
Let P(n) be a predicate that is defined for integers
n ≥ n0.

1 Verify that P(n0) is true.
2 Assume that P(n0),P(n0 + 1), · · · ,P(k ) are true.
3 Show that P(k + 1) is true.

Then the statement “for all integers n ≥ n0, P(n)” is
true.

The idea behind the inductive step is to show that

[P(n0) ∧ P(n0 + 1) ∧ · · · ∧ P(k )]⇒ P(k + 1).

This form is used in the proof of Theorem 3.2.6
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Mathematical Induction (cont)

Euler first noticed (in 1772) that the quadratic
polynomial

P(n) = n2 + n + 41

is prime for the 40 integers n = 0, 1, 2, ..., 39. However,
it does not give a prime number for n = 40.
There are many functions which takes natural numbers
with various properties. To show that the properties
persist for all natural numbers, we need to prove it
using the principle of mathematical induction.
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Some Categories of Problems

The predicate P(n) can be categorised to
Properties of numbers (e.g. divisible by some
number)
Equalities
Inequalities
Combinatorics???
???
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Induction with property of integers

Example 3.1.6: Use mathematical induction to prove
that for all integers n ≥ 1, 22n − 1 is divisible by 3.

Proof
Let P(n): “3|22n − 1”.
Basis Step: Show that P(1) is true.
22(1) − 1 = 3 is divisible by 3.
So P(1) is true.
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Induction with property of integers
Proof of Example 3.1.6 (cont)
Inductive Step:
Suppose P(k ) is true for an integer k ≥ 1, that is
3|22k −1. We must show that 22(k+1)−1 is divisible by 3.
3|22k − 1⇒ 22k − 1 = 3a for some integer a.

22(k+1) − 1 = 22k+2 − 1 = 4(22k ) − 1 = 3(22k ) + (22k − 1)

= 3(22k ) + 3a = 3(22k + a)⇒ 3|22(k+1) − 1.

Thus P(k + 1) is true.
Hence, by mathematical induction, P(n) is true for all
integers n ≥ 1.
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Equalites

Example 3.1.3: Use mathematical induction to prove
that

n∑
i=1

= 1 + 2 + · · ·+ n =
n(n + 1)

2
.

Proof

Let P(n): “1 + 2 + · · ·+ n =
n(n+1)

2 ”.
Basis Step: Show that P(1) is true.
LHS = 1, RHS = 1(1+1)

2 = 1.
So LHS of P(1) = RHS of P(1) and P(1) is true.
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Equalites (cont)
Proof of Example 3.1.3 (cont)
Inductive Step: Suppose P(k ) is true for an integer k ≥ 1 that is

k∑
i=1

i = 1 + 2 + · · ·+ k =
k (k + 1)

2
.

Show that P(k + 1) is true:

LHS of P(k + 1) = 1 + 2 + · · ·+ k︸              ︷︷              ︸
using assumption

+k + 1

=
k (k + 1)

2
+ k + 1 =

k (k + 1) + 2(k + 1)

2

=
(k + 1)(k + 1 + 1)

2
= RHS of P(k + 1).

So P(k + 1) is true. By mathematical induction, P(n) is true for
all n ≥ 1.
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Equalites (cont)

Example 3.1.2: Use mathematical induction to prove
that the sum of the first n odd positive integers is n2 for
n ≥ 1.

Hint: P(n): “1 + 3 + · · ·+ (2n − 1) = n2”.

Class Exercise.

Generalisation to arithmetic progression series:

a + (a + d) + · · ·+ (a + (n − 1)d) =
n(2a + (n − 1)d)

2
.
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Equalites (cont)

Example: Use mathematical induction to prove that

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6
.

Class Exercise.
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Equalites (cont)
Example 3.1.4: Use mathematical induction to prove
that

n∑
i=1

i3 =

[
n(n + 1)

2

]2

.

Class Exercise.

Jacob Bernoulli (1713) and Johann Faulhaber have
noticed that

n∑
i=1

ip = polynomial of n to degree p + 1
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Equalites (cont)
They derive the following formula:

n∑
i=1

ip =
np+1

p + 1
+

1
2

np +

p∑
i=2

Bi

i!
p!

(p − i + 1)!
np−i+1

where Bi are the Bernoulli numbers:

B0 = 1, B1 = 1/2, B2 = 1/6, B3 = 0, B4 = −1/30, . . . .

We find that the formulas in discrete mathematics is not
as nice as in Calculus where∫ n

0
xpdx =

np+1

p + 1
.
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Inequalites

Example 3.1.6: Use mathematical induction to prove
that

2n + 1 < 2n, for all integers n ≥ 3.

Proof
Let P(n): “2n + 1 < 2n”.
Basis Step: Show that P(3) is true.
LHS of P(3) = 2(3) + 1 = 7, RHS of P(3) = 23 = 8.
Hence LHS of P(3) < RHS of P(3) and so P(3) is true.
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Inequalites
Proof of Example 3.1.6 (cont)
Inductive Step: Suppose P(k ) := 2k + 1 < 2k is true
for some integer k ≥ 3. Show that P(k + 1) is true:

LHS of P(k + 1) = 2(k + 1) + 1 = (2k + 1)︸    ︷︷    ︸
using assumption

+2

< 2k + 2 < 2k + 2k︸︷︷︸
k≥3⇒2<2k

= 2(2k )

= 2k+1 = RHS of P(k + 1).

So P(k + 1) is true.
Hence, by mathematical induction, P(n) is true for all
integers n ≥ 3.
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