UECM1304 DiscreTe MATHEMATICS WITH
APPLICATIONS
Toric 1: Loaic oF COMPOUND STATEMENTS
AND QUANTIFIED STATEMENTS

Dr Liew How Hui

May 2021

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 1/203

Three Major Topics:

@ First Order Logic (Week 1-5):

» Logic of Compound Statements and Quantified
Statements — Model Theory
» Valid and Invalid Arguments — Proof Theory

@ Mathematical Proofs (Week 6-9):

» Elementary Number Theory and Methods of Proof
@ Set Theory (Week 10—-14):

» Relations

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 2/203

Relation To Comp Sci

Discrete Maths Computer Science

Propositional Logic Circuit Level

Predicate Logic Register-Transfer Level
? Specification Level

Proof Theory Programming Level

Data Structure and Algo- | Library Level
rithms (Number Theory,
Combinatorics)

Model Theory? Verification Level
Computer Simulation ?
Statistical Learning? Knowledge Level

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 3/203

UECM1304 References

Main reference:

@ Epp, S.S., 2020. Discrete Mathematics with
Applications. 5th ed. Boston, MA: Brooks/Cole
Cengage Learning.

Additional references:

@ Rosen, K.H., 2019. Discrete Mathematics and its
Applications. 8th ed. New York: McGraw-Hill.

@ Scheinerman, E.R., 2013. Mathematics: A
Discrete Introduction. 3rd ed. Boston, Mass.:
Brooks/Cole.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 4/203

Coursework Assessment

Courseworks

@ Quiz (20%, Week 5?, Covering Topic 1)
@ Test (20%, Week 107, Covering Topic 2 & Topic 3)

@ Assignment (20%, End of Submission: Week 13,
Covering Topic 4)

Final Assessment (40%)

@ 4 Questions: Each 10%

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 5/203

Software & Prerecorded Videos

We are going to use the following software which are
“specialised” for mathematics:

@ Racket language (https://racket-lang.org/):
Programming using functions

@ Coq (https://coq.inria. fr/): For formal
prooving

@ Prolog (https://www.swi-prolog.org/):
Programming in Logic

Additional Software: LibreOffice Calc / Excel, Python?

Prerecorded videos (complement to the lecture) will be
available in MS Teams from time to time.
May 2021 6/203

https://racket-lang.org/
https://coq.inria.fr/
https://www.swi-prolog.org/

Outline

0 Propositional Logic
@ Formal Propositions & Truth Table
@ Logical Equivalence & Logical Implication
@ Rules of Inference

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 7/203

Purpose of “Formal” Logic

@ Nothing to do with philosophy.
@ Structuring human knowledge.

» Why? Formal logic is what computer can handle.

» Easier to make logical queries: SQL & Datalog

» More rigorous engineering design — security and
safety.

@ Application in electronic Chip / IC design.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 8/203

Informal propositions

We will begin “informally” with statements or
propositions, which are sentences which are either true
or false, but not both. Normally they will be denoted as
p, g, r, etc. or the indexed letters py, po, etc. These
letters are called statement variables, that is,
variables that can be replaced by statements.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 9/203

Informal propositions (cont)

Example 1.1.1: Determine if the following are informal
propositions:

(a) The year 1973 was a leap year.
(b) 28234423783 is a prime number.

(c) The equation x? + 3x + 2 = 0 has two different
roots in R.

(d) x>+ x+1=0, x is a real number.
(e) She is a computer science major.
(F) Maths is fun.

(g) Is 2" — 1 an even integer?

(h) Read a maths book.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 10/203

Outline

Q Propositional Logic
@ Formal Propositions & Truth Table

© Predicate Logic

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 11/203

Syntax of Compound Statements

Most sentences or mathematical statements are the
combinations of simpler statements formed through
some choice of the words not, and, or, if ... then ..., and
if and only if. These are called logical connectives (or
simply connectives) and are denoted by the following
symbols:

~, =, 1 | Not

A, -, & | And

V,+, ||| Or

—,D | If..., then ...
N If and only if

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 12/203

Formal Propositions

Definition (Well-Formed Formula): Statements (or
propositions) are either atomic or compound.

1. Constants T, T, L, F and single statement
variables p, q, r, s, t, p;, i = 1,2,8,--- are atomic
(or simple or primitive) statements or formulas.

2. If ¢ and ¢ are statements (abbreviated notations),
then the expressions

(~ @), (eny). (V). (=) (¢)

are also statements or formulas. They are
normally called compound statements.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 13/203

Formal Propositions (cont)

Note that we have introduced parentheses in all the
expressions in Definition of Well-Formed Formula.
Sometimes too many parentheses can be annoying.
Therefore, sometimes parentheses are “simplified”
based on the precedence:

Evaluate parentheses first;
Then evaluate negations;
Then evaluate A;

Then evaluate Vv;

Then evaluate —;

Then evaluate <.

S

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 14/203

Formal Propositions (cont)

Examples:

@ pAQV ~r — sisan abbreviation of
(pAg)V(~r))—s;
@p—oqg—->r—-smeansp— (q— (r—s))

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 15/203

Formal Propositions (cont)

How to “read”:

Q@ ~ ¢or—¢isreadas “not ¢”. This statement is
called the “negation of ¢”.

@ ¢ Ay isread as the conjunction of ¢ and v or just
“¢ and y”.

@ ¢ vy isread as the disjunction of ¢ and y, or just
‘o ory’.

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 16/203

Formal Propositions (cont)

How to “read”:

@ ¢ — yisread as “¢ implies y” or “if ¢ then y”. This
form of statement is called a conditional statement
or implication. In ¢ — ¢, the statement ¢ is called
the hypothesis and the statement is called the
conclusion or consequent. The statement ¢ is
called the sufficient condition for and is called
the necessary condition for ¢.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 17/203

Formal Propositions (cont)

How to “read”:

@ p o qgisreadas “¢ if and only if " and is normally
written as “p iff g” (popularised by the
mathematician Paul Halmos). This form of
statement is called the biconditional of ¢ and y and
¢ is called the necessary and sufficient condition
for .

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 18/203

Formal Propositions (cont)

Example 1.1.4: Study the following statements and
decide whether they are atomic or compound.

1. A dog is not an animal.
2. 5<38.
3. Ifthe earth is flat, then 3 + 4 = 7.

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 19/203

Formal Propositions (cont)

Example 1.1.5: Given the informal statements:

1. p: The integer 10 is even.

2. q:2+3>1

3. n3+7=10

4. pq: Itis snowing. go: | am cold.

5. p1: 2 is a positive integer. g.: 2 is a rational
number.

Read the compound statements (informally): ~ p, ~ q,
~ I, Pt AQ, P2V Q.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 20/203

Formal Propositions (cont)

Remark:

1. An English sentence “¢ but ” usually means “¢
and y”.
2. An English sentence “neither ¢ nor y” usually
means “~ ¢ and ~ .
3. The notation for inequalities involves “and” and “or”
statements. Let a, b and ¢ be real numbers. Then
» a<bmeans“a<b’or“a=>b"
» a<b<cmeans“a<b”and“b < c”.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 21/203

Formal Propositions (cont)

A variety of terminology is used to express p — g as

given below:
If p then g g is necessary for p
p implies q g when p
q follows from p qgifp
p is sufficient for q p only if g

Note that to say “p only if g” means that p can take
place only if g takes place also. That is, if g does not
take place, then p cannot take place (symbolically

“~ q —~ p”). Another way to say this is that if p occurs,
then g must also occur.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 22/203

Formal Propositions (cont)

Definition: Let p and q be statement variables:

1. The negation of p — qis pA ~ q.
2. The contrapositive of p — qis ~ g —»~ p.
3. The converseof p — qis g — p.
4. The inverseof p —» qis ~ p —»~ Q.
Note: the truth tables of p — g and its contrapositive

are the same, and the truth tables of the converse and
the inverse are the same.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 23/203

Formal Propositions (cont)

Write the negation, contrapositive, converse and
inverse of the following conditional statement:

If 3 is positive then 3 is nonnegative.

@ Negation: 3 is positive and 3 is not nonnegative.

@ Contrapositive: If 3 is not nonnegative then 3 is not
positive.

@ Converse: If 3 is nonnegative then 3 is positive.

@ Inverse: If 3 is not positive then 3 is not
non-negative.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 24/203

Formal Propositions (cont)

By using algebra, it is possible for us to construct many
statements which fulfils the syntax requirement. To give
“‘meaning” or “semantics” to a statement, we need to
interpret it with a truth value.

Definition: The truth value of a statement/proposition is
true (T or 1), if it is a true statement/proposition and
false (F or 0), if it is a false statement/proposition.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 25/203

Formal Propositions (cont)

Definition:

1. An atomic truth assignment is a function v that maps an

actomic symbol to a value in {T, F} (or {T, L}).

2. A truth assignment (or a model or a valuation) is a function v

such that for any sentences ¢ and v,
v(~¢)=Tif v(¢) =Felse F

~—

NY

00000
S X
s

Dr Liew How Hui UECM1304 DiscRETE MATHEMATICS WITH APPLICATIONS

v(¢ V) =Tif any one of v(¢), v(¢) is T else F
= Fif any one of v(¢), v(y) is F else T
) =Tif v(¢) = F else v(y)

=Tif v(¢) = v(y) else F

May 2021

26/203

Formal Propositions (cont)

Example 1.1.23: Given that p and g aretrueand r, s
and t are false, find v(qg — (~r — (r - (p Vv s)))).

Solution

Given v(p) =v(q) =T, v(r) = v(s) =F.

o= Gr--@pve))

=Tifv(q):FeIsev(~r—> (r—>(pvs))):v(~r—>(r—>(pvs)))
=Tifv(~r) =Felse v(r - (pVv s))

= Tif (Tif v(r) = F else F)=F else v(r S(pv s))

=Tif T=F else v(r - (pVv s))) = v(r - (pVv s))) =Tifv(r)=Felsev(pvs)=T.

Note: The definition of truth assignment is defined
recursively and it is useful in computer
implementation. (For Racket, see next slide).

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 27/203

Formal Propositions (cont)

Using Racket language, Example 1.1.23 can be
expressed as

(let ([p #t] [q #t] [r #£f]1 [s #f] [t #£f])
(->q (> (not r) (->r (\/ p s)))))

How to represent ‘maths’ in Racket language?

@ Functions f(x,y, z) are expressed as (f x y z).

@ p V sisregarded as a function v(p, s). So it is
written as (V p s) in Racket.

@ Exercise: Use a pen to write down the ‘functional
form’ for the proposition.

@ Comparetoeg_1_1_23.rkt.
May 2021 28/203

eg_1_1_23.rkt

Formal Propositions (cont)

The mathematical definition is how we teach computer
to determine the truth values.

For hand calculation, we usually just perform
substitution.

For all combinations of truth assignments into a
proposition, we obtain the truth table.

http://en.wikipedia.org/wiki/Truth_table
The truth table for a given statement displays the truth
values that correspond to all possible combinations of
truth values for its atomic statement variables.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 29/203

http://en.wikipedia.org/wiki/Truth_table

Formal Propositions (cont)

If a statement s has n atomic statements, there will
need to be 2" rows in the truth table for s.

Truth Table for ‘Not’. n =1, 2" = 2 rows
Let p be an atomic statement, the truth table for ~ p is

pl~p
T| F
FI T

This is an abbreviation for
@ Ifv(ip) =T, v(~p)=F;
@ lfv(p)=F,v(~p)=T.

Dr Liew How Hui UECM1304 DiscRETE MATHEMATICS WITH APPLICATIONS May 2021 30/203

Formal Propositions (cont)

Truth Table for Binary Operations. n =2,2" =4
rows

Let p and g be atomic statements, the truth table for A,
V, = and & is

plalprglpvalp—qglpeg
T(T| T | T | T T
TIF| F | T F F
FIT| F [T | T F
FIF| F | F T T

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 31/203

Formal Propositions (cont)

Example 1.1.23: Determine the truth value of the
following statements:

3<5and5+6 # 11.

The integer 2 is even but it is a prime number.
3 or -5 is negative.

V2 or r is an integer.

5<5

2 is prime if and only if it is multiple of 2.

2 is negative if and only if 4 is negative.
O0<1e2<1

©O N R LMD

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 32/203

Formal Propositions (cont)

Determine the hypothesis and conclusion for each of
the following conditional statements. Then determine
the truth value.

1. The moon is square only if the sun rises in the
East.

2. 1 and 3 are prime if 1 multiply 3 is prime.
3. (sinm)(cosm) = 0 when sint = 0 or cost = 0.
4. If 1 + 1 = 3, then cats can fly.

Recall: Slide 17.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 33/203

Formal Propositions (cont)
Example 1.1.26: Construct a truth table for the
statement (p A Q)V ~r.

Solution

There are three atoms “p, g, r’. The truth table:
plalr|~ripArq|(pPAQ)V~r
T|T|[T| F T T
T|TIF[T T T
T|F|[T| F F F
TI[F|F[T F T
FIT|[T| F F F
FIT|F| T F T
FIF|[T]| F F F
FIF|F| T F T

y
Dr Liew How Hui UECM1304 DiscRETE MATHEMATICS WITH APPLICATIONS May 2021 34/203

Formal Propositions (cont)

Example 1.1.27: Construct the truth table for ¢:
(P1 A p2) V (Ps A pa).

Practice with Excel?

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 35/203

Formal Propositions (cont)

Example 1.1.29: Construct a truth table for each
statementin (a) gA ~ (~ p — r); (b)
(~peo~r)V(req).

Practice with Excel?

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 36/203

Tautology
Definition 1.2.1:

1. A statement ¢ is said to be a tautology or a tautologous
statement if for all truth assignments for the atomic statement
variables in ¢, v(¢) = T, i.e. its truth values in the truth table
are all true. If ¢ is a tautology, it is denoted as = ¢.

2. A statement ¢ is said to be a contradiction or a contraditory
statement if its truth values in all rows in the truth table are all
false.

3. A statement ¢ is said to be a contingency if it is neither a
tautology nor a contradiction.

4. We will use the constant T or T to denote a tautology and F
or L to denote a contradiction.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 37/203

Tautology (cont)

Example 1.2.2. Let p, g and r be statement variables.
Show that the statement form

1. ~ p Vv pis a tautology.
2. ~ p A pis a contradiction.
3. (p A Q)V ~ ris acontingency.

Remark: By using ‘truth table’.

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 38/203

Formal Propositions (cont)

Final Exam May 2019, Q1(a): Let p, g, r be atomic
statements. State the truth table for the following
compound statement

~(P—=((pVva)Ar)).

Use the truth table to recognise whether the
compound statement is a tautology, contingency or
contradiction. (10 marks)

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 39/203

Formal Propositions (cont)

Lecturer’s Marking Guide
The truth table is stated below., [8 marks]
p g ri(evaarip-(pvaarrn | ~p—-((pVvagAr)
T T T T T F
T T F F F T
T F T T T F
T F F F F T
F T T T T F
F T F F T F
F F T F T F
F F F F T F
It is sometimes true, sometimes false, depending on the truth assignment, by
definition, the compound statement is a contingency. [2 marks]

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 40/203

Logical Equivalence (cont)

Final Exam May 2013, Q1(a)

Use truth table to show that

E(P—->g) A(r—s)—=((pAr)— (gASs)). The truth
table must contain columns for both (p — q) A (r —)
and (pAr) = (QAS). (10 marks)

v

Class Discussion.

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 41/203

Outline
Q Propositional Logic

@ Logical Equivalence & Logical Implication

© Predicate Logic

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 42/203

Logical Equivalence

Definition 1.2.5

Two statements ¢ and y are called logically equivalent
or tautologically equivalent if ¢ < is a tautology. We
use the notations ¢ = ¥ and ¢ & ¢ to denote that ¢ and
Y are logically equivalent.

Example 1.2.6
Let p and g be two statement variables. Determine
whether the following statements are logically
equivalent or not.

1. ~pv~qgand~ (pVq)

2. p—>qgand~qg-—-~p

Dr Liew How Hui May 2021 43/203

Logical Equivalence (cont)

Final Exam May 2019 Q1(b): Show that the statement
(p — gV r) and the statement (p A q — r) are not
logically equivalent. (4 marks)

Lecturer’s Marking Guide

One can either construct a truth table or just give a counterexample below to
show that they are not equivalent:

p g r|p—oqVvr|pAg—r

T T T T T

T T F T F
... [2 marks]
When v(p) =T, v(q) =T and v(r) =F, the two statements has different truth
values and they are not logically equivalent. [2 marks]l

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 44/203

Logical Equivalence (cont)

Final Exam May 2019 Q2(a): Let p, g, r be atomic
statements. Use a truth table or a comparison table to
show that

(p—=>r)r(@—-r)=(pva) —r. (9 marks)

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 45/203

Logical Equivalence (cont)

Lecturer’s Marking Guide
The comparison table is given below.

(p—r)

(pvag)—r

MMM A AT
Sl IR I B R Y
MAT AT AT A~

e e B i

[8 marks]
Since the last two columns are the same for all different assignments, therefore,
the two statements (p — r) A (g — r) and (p Vv q) — r are logically equivalent.

[1 mark]

Dr Liew How Hui UECM1304 DiscRETE MATHEMATICS WITH APPLICATIONS

May 2021

46/203

Logical Equivalence (cont)
Mathematicians have identified the useful laws for
simplifying statements based on the concept of logical
equivalence (LE). They are summarised in the following
theorem.

Theorem 1.3.1 (LE Rules)

Given any atomic statements p, g and r, the following
logical equivalences hold.
1. Commutative laws:
pPAQ=qAp;
pvqg=qVp.
2. Associative laws:
(pAg)Ar=pA(gAr);
(pva Vvr=pv(gvr). J

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 47/203

Logical Equivalence (cont)

Theorem 1.3.1 (cont)

3. Distributive laws:
pA(avr)=(pAg)V(pAr);
pv(gar)=(pva A(pVvr).

4. ldentity laws:

pAT=p;
pVvF=np.

5. Negation laws:
pv~p=T;
pA ~p=F.

6. Double negative law:
~(~p)=p.

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 48/203

Logical Equivalence (cont)

Theorem 1.3.1 (cont)

7. ldempotent laws:
pAPp=p;
pVvp=p.

8. Universal bound laws:
pvT=T,;
pAF=F.

9. De Morgan’s laws:
~(pArg)=~pV~aq;
~(pVvQg) =~pr~q.

10. Absorption laws:
pVv(pAQq)=p;
pA(pva)=p.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 49/203

Logical Equivalence (cont)

Theorem 1.3.1 (cont)

11. Implication law:
p—>qg=~pVq

12. Biconditional law:
peqg=(p—q)A(g—p).

Proof
Since any statements can only be T or F, truth table can

be used to prove 1. to 12.

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 50/203

Logical Equivalence (cont)

Example 1.3.2 (Logical Equivalence of Negative
Statements): Write the negation of the given
statements and expand them as well as writing the
informal negation sentence.

1. John is smart but lazy.
2.2< 2

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 51/203

Logical Equivalence (cont)

To make the laws of logical equivalences useful,
mathematicians have shown that the logical
equivalence “=” is an equivalence relation (last topic).
We also require logically equivalent statements to be
logically equivalent under substitution.

Uniform Substitution

If ¢, ¥, ¥ are statements/formulas, and p; are (atomic)
propositional variables, then ¢[y//p;] denotes the result
of replacing each occurrence of p; by an occurrence of
¥ in ¢; similarly, the simultaneous substitution S of py,
-+, pn by formulas y/4, - - -, ¥, is denoted by

Ui/p1s- - s ¥n/Pn-

Loaical Eauivalence (cont)
Substitution Theorem

Let S be a simultaneous substitution (Definition 52) and
¢ = . Then ¢[S] = ¢[S]. More generally, let ¢; and ¢;
be statements such that ¢; = ¢, 1 <i < n. Then

Pld1/P1, -+ . Pn/Pn] = W[W1/P1.- - s W¥n/Pn).

Example 1.3.5

Show that
1.(pvaA(lpvagVvrr~(~(pvag)=pVvgq
2. (pvgr~(~pnrqg)=p

3. ~[~((pvag)Ar)v~qgl=qnAr

Class Discussion.

Dr Liew How Hui UECM1304 Discrete MATHEMATICS WITH APPLICATIONS May 2021 53/203

Logical Equivalence (cont)

Final Exam May 2019 Q1(c): Simplify the following
statement

(pva)=(pPAQ))V(~pAaq)

to a logically equivalent statement with no more than
TWO(2) logical connectives from the set {~, A, V} by
stating the law used in each step of the simplification.

(5 marks)

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 54/203

Logical Equivalence (cont)

Lecturer’s Marking Guide
The steps are shown below:

(Pva)—=(pArq)V(~pAraq)

=(~(pvqV(pArQg)V(~pAQ) [Implication law, 1 mark]
=(~pA~q)V(PAQ)V(~pAQ) [de Morgan law, 1 mark]
=(~pA~q)V(pAQ)V(~pAQ)V(~pAQ) [ldempotent law, 1 mark]
=~pA(qv~q)V((pv~p)AQ) [Distributive law, 1 mark]
=~pVvq [Negation and identity, 1 mark]

Dr Liew How Hui UECM1304 DiscRETE MATHEMATICS WITH APPLICATIONS

May 2021

55/203

Logical Equivalence (cont)

Final Exam May 2019 Q2(b): Simplify the following
statement to a logically equivalent statement with no
more than TWO(2) logical connectives from the set
{~, A, V} by stating the law used in each step of the
simplification:

(~pAQ)V(~pAr)V(pA~qgAr)V(gAr). (7 marks)

Note: Lecturer can set the wrong question. It is
impossible to have less than 3 connectives from
{A,V,~}

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 56/203

Logical Equivalence (cont)

Lecturer’s Marking Guide
The simplification is shown below:

(~p/\q)v(~p/\r)v(p/\~q/\r)v(q/\r)
(~pAQ)V((~pvq)Ar)V(p/\~qAr)
[Associative, Commutative & Distributive laws, 2 marks]

(~pr@)V(~pVva)anv(~(~pvaar
[De Morgan law & Double Negation law, 2 marks]
vr

=(~pAQ)V

(pV q ~pV q)) A r) [Distributive law, 1 mark]
T

AT) [Negation law, 1 mark]

[Identity law, 1 mark]

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 57/203

Logical Equivalence (cont)

The laws of logical equivalence can be used to simplify
some long statements to logically equivalent shorter
statements as demonstrated below.

Example 1.3.7

Simplify the following statement to a statement with no
more than 3 logical connectives by stating the law used
in each step of the simplification:

(V@) ApA(rva)A(py ~pVr)A(rA~aq).

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 58/203

Logical Equivalence (cont)

The things we discussed so far has applications in logic
circuit design under a different name called Boolean
algebra. More complicated Boolean algebra could be
found in digital signal processing systems. The
following examples demonstrations of propositional
logic (which is theoretically the same thing as the
Boolean algebra) with the representation of electronic
circuits and a simple logic puzzle problem.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 59/203

Logical Equivalence (cont)

Example 1.3.12
Simplify the logic diagram below.

p
q

>

T
1 ——= -
D

Out

Electronics engineers use Karnaugh map (based on
logical equivalence) to perform simplication.

Dr Liew How Hui

UECM1304 DiscRETE MATHEMATICS WITH APPLICATIONS

May 2021

60/203

Logical Equivalence (cont)

Four candidates A, B, C and D are to be selected to
participate in a chess competition. However, only two
candidates will be chosen in the final list and the
following constraints must be obeyed:

@ Only one from A and B will participate.

@ If C participates, then D will also need to
participate.

@ At most one of B and D will participate.

@ If D is not participating, then A is also not
participating.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 61/203

Logical Implication

Definition 1.4.1

We say that a statement ¢ logically implies a statement
Y or ¢ is a tautological consequence of ¢, denoted by
¢ = ¥, when the statement ¢ — is a tautology, i.e.

= ¢ — ¥. When this happens, we sometimes say that
the statement ¢ is stronger then .

The link between logical equivalence and logical
implication is as follows.

Theorem 1.4.2

Let ¢ and ¢ be two statements. Then ¢ = Y iff ¢ = ¢
and ¥ = ¢.

Dr Liew How Hui May 2021 62/203

Logical Implication (cont)

By definition, to show that “¢ = ”, i.e. a statement ¢
logically implies another statement , we can create the
truth table for the statement ¢ — ¢ and examine its last
column.

For statements related to logical implication, the final
step of the truth table is always to evaluate the
implication. The comparison table, which is a striped
version of a truth table, lacks the last column since for
implication, can be used. We know that as long as there
isno T — F, we know that the implication will be true.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 63/203

Logical Implication (cont)
ShowthatpAg=pVaq.

Proof
The corresponding truth table is

P glpAg pVg|pAg—opVg
TT T T T
TF|l F T T
FT| F T T
FF| F F T

Since the last column consists entirely of T’s, the
implication p A g — p Vv qis a tautology, i.e.
EpAgq—pVvgsothatpaAg=pVaq.

v
Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 64/203

Logical Implication (cont)
Definition 1.4.7
For any statements ¢, ¢4, ¢, -+, ¢, and ¢,

b1
$2
o}/ -, or A1, ¢2, --+, @0}/ OF :
én
¥

are called arguments (or deductive argument). We call {¢}, {¢1, @2,
-+, ¢n} the set of hypotheses, premises or assumptions and ¢ the
conclusion of the argument. When there is no hypothesis, an
argument is written as / .. .

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 65/203

Logical Implication (cont)

Definition 1.4.8

When the premises ¢, ¢1, ¢», --- and ¢, are true, ¢ is true, then
we say the argument is valid. ¢ is said to be deduced or inferred
from the premises, and that y follows logically from or is a logical
consequence of the premises or that . An argument that is not
valid is said to be invalid or fallacious.

By definition, to determine the validity of an argument,
we need to construct a “comparison table”. For a
comparison table, whenever ¢, ¢4, ¢o, --- and ¢, are
true, y is always true, we have a valid argument; if
there is one case where ¢, ¢, ¢, --- and ¢, are true,
Y is false, the argument is invalid.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 66/203

Logical Implication (cont)

Example 1.4.9. Determine the validity of the argument
pv(gVvr), ~r/..pVvaq.

Solution (using comparison table)

pVv(qvr)

e
=

P

Q

Bl e e e e L [e
|t e Rt B e T [KO
B e e | e [
| e | e e [e
b |t T R B [
M) <

In each assignment where the premises are both true, the conclusion is also
true, so the argument is valid.

vy

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 67/203

Logical Implication (cont)
Example 1.4.10

Determine the validity of the argument
p—-qVv~r,g—opAr/..p— rbyusingthe
comparison table.

Practise with Excel?

Example 1.4.12

Is the following argument valid?
If interest rates are going up, stock market
prices will go down.
Interest rates are not going up.
Therefore stock market prices will not go down.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 68/203

Logical Implication (cont)

The validity of an argument using a ‘truth table’ is
founded on
Deduction Theorem

Let I be any finite (possible empty) set of formulas, ¢,
o1, -+, ¢n and ¢ be formulas.

1.T, ¢ yiff T = ¢ — y.
2. 1, I EYIf G A Ay, oo, P U Where

1<i<n.

Based on this theorem, an argument ¢4, --- , ¢,/ .. ¥

is valid iff = ¢1 A --- A ¢ — ; Otherwise, the argument
is invalid.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 69/203

Logical Implication (cont)
Example 1.4.15: Determineif p v q/ .. p A q is valid.

Solution
The truth table for the argument is listed below.

plalpvalpag|(pVvg) = (PAQ)
TIT| T T T
TIF| T F E
FIT| T F F
FIF| F F T

According to the last column the statement
(pV q) — (p A Qq)is not a tautology. By Deduction
Theorem, the argument is invalid.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 70/203

Logical Implication (cont)

Final Exam May 2019 Q3(a): Use truth table to explain
whether the following argument is valid or invalid:

(pva)—(pAQ)
~(pVvaQ)
~(pAQ)

(9 marks)

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 71/203

Logical Implication (cont)
Lecturer’s Marking Guide
The truth table is

p ql(pvag) —(PArqg)|~(pVvag | ~(PAQg)
T T T F F
T F F F T
F T F F T
F F T T T

...................................... [4 X 2 = 8 marks]
We observe that when the premises are true (row 4),
the conclusion is true, therefore, the argument is valid.
... [1 mark])

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 72/203

Logical Implication (cont)

Example 1.4.16: Show that the argument
~ p — F/ .. pis valid using truth table.

Class discussion.

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 73/203

Logical Implication (cont)

Similar to the LE (Logical Equivalence) Rules in
Slide 47, we can summarise a list “LI (Logical
Implication Rules” for valid arguments which can be
used in semantic logical reasoning.

Theorem 1.4.17 (Logical Implication Rules)

Let F be contradiction. Given any atomic statements p,
g and r, the following arguments are valid.

1. Modus Ponens (MP in short):

p—a. pPkEQq
2. Modus Tollens (MT in short):

pP—q ~qE~p

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 74/203

Logical Implication (cont)
Logical Implication Rules (cont)

3. Generalisation:

4. Specialisation:

5. Conjunction:

6. Elimination:

7. Transitivity:

pPEPVQ
gkpvg

PAQED

PAQEQ
p.qEPAQ

pVa ~qkEp

pVa ~pkq
pP—q qorEp-r

v

Dr Liew How Hui UECM1304 DiscRETE MATHEMATICS WITH APPLICATION

May 2021

75/203

Loaical Implication (cont)
Logical Implication Rules (cont) J

7. Contradiction Rule: ~p—>FEDp

The following theorems lay down the foundation for the application
of the LI rules.

Substitution of Equivalence
|f§5¢n and ¢1’ T, ¢n—1, ¢n Izwi then ¢1, T, ¢n—1, érl:w

“Partial Ordering” Theorem
Let ¢, y;, &€ be formulas.

1. ¢4, ,¢n=oiforeachi=1,---,n.

2. Ifpy,- - ¢ =y, where j=1,--- ,p,and Y1, ,¢p E &,
then ¢4,--- ,¢p E €.

y
Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 76/203

Logical Implication (cont)
Example 1.4.20: Show that the hypotheses

@ ¢: “If John takes the computer course, then John stays in
the hostel”

@ ¢,: “John does not stay in the hostel”

@ ¢5: “If John does not take the computer course, then John
takes the language course or stay at home”

@ ¢,: “If John takes language course then John buys a
motorcycle”

@ ¢5: “If John buys a car, then John does not buy motorcycle”
@ ¢¢: “John buys a car’

lead to the conclusion &: “John stays at home”.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 77/203

Logical Implication (cont)
Example 1.4.20 (cont)

Solution: Let

ri: John takes the computer course
r.: John stays in the hostel

r3: John takes the language course
ry: John stays at home

rs: John buys a motorcycle

rs: John buys a car

The above argument can be formally written as
ry = ra, ~ry, ~f — I3V, I3 =I5, lf >~ I5, I] .. Is.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 78/203

I_Eo ical Imopslgﬁatl n

xample 1.4.2

tion (con

b

cont)

Instead of using a comparison table, we use the logical
equivalence and logical implication rules together with the “Partial
Ordering” Theorem to show that the above argument is valid.

1 : rn—rnn premise

¢ : ~ I premise

@3 : ~I >RV premise

4 : r3—rs premise

@5 : rg >~ Is premise

o6 : I premise

V2N ~ Iy ¢1, ¢2, Modus Tollens
Yo r3Viry ¢3, W1, Modus Ponens
Y3 ~ Iy ¢s, ¢e, Modus Ponens
V7 ~ I3 @4, Y3, Modus Tollens
I Iy V2, Ya, Elimination

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021

79/203

Outline
Q Propositional Logic

@ Rules of Inference

@ Predicate Logic

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 80/203

Rules of Inference

Another way to “infer” a statement is to use natural deduction (or
syntactic implication, see
https://en.wikipedia.org/wiki/Natural_deduction). In
natural deduction, we have such a collection of rules of inference.
They allow us to infer a conclusion (a formula) from a set of
premises called premises by applying inference rules in
succession (called a proof).

Using rules to ‘proof’ is developed into a mathematical subject
called ‘proof theory’.

Popular notation for natural deduction are

@ Gentzen syntax (Coq)

@ box-and-line syntax (used in Jape,
http://japeforall.org.uk)

@ https://en.wikipedia.org/wiki/Fitch_notation (to
be used in this course)

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 81/203

https://en.wikipedia.org/wiki/Natural_deduction
http://japeforall.org.uk
https://en.wikipedia.org/wiki/Fitch_notation

Rules of Inference (cont)

Let ¢, ¥, & be any statements. Mathematicians have
identified the following essential rules of inference for

natural deduction:

—-introduction: | ¢, - --

¥

hoOoDbpA

pAYrP or dAYHY

F(¢—y)

—-elimination: ¢ - ¢, ¢+ ¥
A-introduction or Conjunction: ¢, Yy + ¢ Ay
A-elimination or Conjunctive Simplification:

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 82/203

Rules of Inference (cont)

© N oo

9.
10.

v-introduction: ¢ F¢ Vi or Y PV Y
v-elimination: ¢ V¢, (@, -+, &L (Y, -+, E|FE
—-introduction or ~-introduction: |¢, ---, L|F~ ¢
—-elimination or ~-elimination: ~~ ¢ + ¢
1-introduction: ¢, ~ ¢ + L

1-elimination: L + ¢

Note that 1. and 2. are called the rules of conjunction,
3. and 4. are called the rules of implication, 5. and 6.
are called the rules of disjunction, 7. and 8. are called
the rules of negation.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 83/203

Rules of Inference (cont)
Example 1.5.1: Show thatp - g+ p — (p A Q).

Proof
1 p—q premise
2 p assumption
3 q 1,2 —-elimination
4 pPAQ 2,3 A-introduction
5 p—pAQ 2,4 —-introduction

Lines 2—4 serve to justify line 5, but they cannot be
used in any subsequent line of the proof, they are
closed off from the rest of the proof, but you are free to
use line 5 as you need it.

Dr Liew How Hui May 2021 84/203

Rules of Inference (cont)
Representing “arguments” (refer to Slide 65)

{¢1, ¢27 R ¢n}/w
in Coq:
$1 > o> > P Y.

There is ‘no’ implication introduction in Coq, only
subgoals.

Theorem impl_elim: forall P Q : Prop,
(P -> Q) ->P -> Q.
Proof.
intros P Q H1 H2.
apply H1 in H2 as HQ.
exact HQ.
Qed.

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 85/203

Rules of Inference (cont)

Theorem conj_intro : forall P Q : Prop,
P ->Q -> (P /\ Q.
Proof.
intros P Q HP HQ.
split.
exact HP.
exact HQ.
Qed.
Theorem conj_elim_left : forall P Q : Prop,
P /\ Q -> P.
Proof.
intros P Q H1.
inversion H1 as [HP HQ]. (* Alternative: destruct ¥)
exact HP.
Qed.

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 86/203

Rules of Inference (cont)

Theorem disj_intro: forall P Q : Prop,
P -> P \/ Q.
Proof.
intros P Q HI1.
(* Since it is an
left.
apply HI1.
Qed.

or’, we only need to show 1 goal *)

Theorem disj_elim: forall P Q R: Prop,
P\/Q-> (P ->R) -> (Q ->R) ->R.
Proof.
intros P Q R H1 H2 H3.
destruct H1 as [HP | HQ].
apply H2 in HP. assumption.
apply H3 in HQ. assumption.
Qed.

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 87/203

Rules of Inference (cont)
—-introduction is just the definition of ~ ¢ in Coq and
—-elimination is defined as NNPP in the Coq library
Classical.

Theorem bot_intro: forall P Q: Prop,
False -> Q.

Proof.
intros P Q.
contradiction.

Qed.

Theorem bot_elim: forall P: Prop,
P -> "P -> False.
Proof.
intros P HP HNP.
unfold not in HNP.
apply HNP in HP.
contradiction.
Qed.

88/203

Rules of Inference (cont)

Example 1.5.1 (variation): Show p - g+ p — (p A Q)
using Cog.

Computer Proof using Coq
Example eg_1_5_1 : forall P Q : Prop,

(P ->Q -> (P > (P /\ Q).
Proof.

intros P Q H1.

intro H2.

apply Hl1 in H2 as HQ.

split.

exact H2.

exact HQ.
Qed.

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 89/203

Rules of Inference (cont)
Example 1.5.2 (Modus Tollens): Show that
p—q, ~qr~p.

Note that when we see the symbol +, we can only use the rules of
inference (8 of them only).

Proof

1

D 0 A~ W DN

p—q premise
~q premise
p assumption
q 1, 3 —-introduction
1 2, 4 L-introduction
~p —-introduction

v

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021

90/203

Rules of Inference (cont)

Final Exam May 2019 Q3(b): Infer the argument
pvqg, p—or,~S—>~qrrvs

syntatically by stating the rules of inference in each

step. (6 marks)
Lecturer’s Marking Guide

The p-assumption [2 marks]
The g-assumption [3 marks]
Line 12 ... [1 mark]

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 91/203

Rules of Inference (cont)
Lecturer’s Marking Guide (cont)

1
2

3

pvag
p—or
~8—o~(q
p
r
rvs
q
~ S
~q
1
s
rvs
rvs

premise

premise
premise

assumption
2,4 -E
5vl

assumption
assumption
3,8 -»E

7,9 —E

8-10 LE & —E
11 v
1,4-6,6-12 VE

W

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021

92/203

Rules of Inference (cont)

Require Import Classical.

Lemma contrapositive:
forall P Q : Prop,
(P ->"0Q ->(Q ->P).
Proof.
intros.
apply NNPP.
intro.
apply H in HI.
contradiction.
Qed.
Example FinalExamMay2019Q3b:
forall P Q R S: Prop,
P\/Q-> (P ->R) > (C S ->"Q) ->R\/S.
Proof.
intros.
destruct H as [HP | HQ].
- apply H® in HP. left. exact HP.
- apply (contrapositive S Q) in HI.
right. exact Hl1l. exact HQ.
Qed.

(* https://stackoverflow.com/questions/14644086/proving-p-q-q-p-using-q¢oq

Dr Liew How Hui UECM1304 DiscRETE MATHEMATICS WITH APPLICATIONS

May 2021

93/203

Rules of Inference (cont)

Example 1.5.3 (Disjunctive Syllogism): Show that
pvag,~pr-q, pVvaqg ~qgkrp.

Exercise.

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 94/203

Rules of Inference (cont)

Example 1.5.4 (Hypothetical Syllogism or Transitivity)
Showthatp - q, g—>rrp—>r.

Exercise.

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 95/203

Rules of Inference (cont)

Example 1.5.5: By using the rules of inference, show
that~pvg, g—r,g—s, p FrAs.

Exercise.

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 96/203

Outline

0 Predicate Logic
@ Predicates & Quantified Statements
@ Logical Equivalence & Logical Implication
@ Rules of Inference
@ Applications

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 97/203

Outline
Q Propositional Logic

© Predicate Logic
@ Predicates & Quantified Statements

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 98/203

Predicates

Propositional logic has a simple syntax and simple
semantics. It suffices to illustrate the process of
inference but it quickly becomes impractical, even for
very small worlds. For example, to describe the
commutativity of two natural numbers, we need infinite
propositions:

142=24+1,143=3+1,---.

That’s too many!

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 99/203

Predicates (cont)

To deal with “infinite” facts of this form, the notions of
variables and predicates as well as quantifiers are
required.

With these notions, the infinite propositions can be
summarised as a quantified statement with an equality
predicate and an addition function.

VXVy(x +y =y +x)

But what about x and y?

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 100/203

Predicates (cont)

There are two ways to make sense of x and y:

@ Model theory — they come from certain ‘world’
(natural numbers, integers, real numbers, complex
numbers, etc.) — semantics of logic.

@ Type Theory (where Coq is based).

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 101/203

Predicates (cont)

The mathematical formalism of predicate is stated
below.

Definition
Terms and well-formed formulae are defined
recursively:

@ terms: they represent objects, i.e.

— Variables (normally denoted x, y, x4, X2, - -+ , y1,--+) and
constants (normally denoted as a, b, a;, a,, ---) are
atomic terms.

— If fis a function (which returns a value) of degree (or
arity) rand ty,--- , t, are terms, then f(t;,--- ,f;) is a
term.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 102/203

Predicates (cont)

Definition (cont)

@ formulae: they are relations or functions, i.e.

— If P is a relation (refer to the Topic Sets and Relations)
of degree (or arity) rand t;, - - - , t, are terms, then
P(t;,--- ,t;) is an (atomic) formula.

— If ¢ and y are formulae (abbreviated notation!), and x is
a variable, then the expressions

~ () (8) A (). (9)V (¥). (¢) = (¥). (¢) & (¥),
Yx(¢), x(¢)

are formulae.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 103/203

Predicates (cont)

In English, the “predicate” is the part of the sentence
that tells us something about the subject.

Example 1.6.4

live(x, y): x livesin y.predicate (of degree / arity 2)
live(Mary, Austin): “Mary lives in Austin.” proposition (or
predicate of degree / arity 0)

iscomplex(x): x is a complex number. predicate (of
degree / arity 1)
Racket: complex?

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 104/203

Quantified Statements

Example 1.6.5: http:
//en.wikipedia.org/wiki/First-order_logic
The expression

VxVy(P(f(x)) =~ (P(x) = Q(f(y), x,z))) is a formula
where f is a unary function symbol, P a unary predicate
symbol, and Q a ternary predicate symbol.

Example 1.6.6
The expression Yx x — is not a formula. It is just a
string of symbols!

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 105/203

http://en.wikipedia.org/wiki/First-order_logic
http://en.wikipedia.org/wiki/First-order_logic

Quantified Statements (cont)
Example 1.6.9
Consider the following logic formula

(Yx.3y. P(f(c,y)) A Q(g(9(x)),y)) = (Fz¥Yw. ~ R(z, w))
¢z Yo ¢3
] Y1

we can study the formula formally by applying the rules
mentioned in Definition in Slide 102. We can also
identify

@ function symbols: f, c, g.

@ predicate symbols: P, Q, R.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 106/203

Quantified Statements (cont)

Similar to propositional calculus, conventions have
been developed about the precedence of the logical
operators, to avoid the need to write parentheses in
some cases:

@ ~ is evaluated first

@ A and Vv are evaluated next

@ Quantifiers Y and 1 are evaluated next
@ — and < are evaluated last.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 107/203

Quantified Statements (cont)

In a formula, a variable may occur free or bound.
Intuitively, a variable is free in a formula if it is not
quantified: in Yy P(x, y), variable x is free while y is
bound.

Definition

The free and bound variables of a formula are defined
inductively as follows.

@ Atomic formulas. If ¢ is an atomic formula then x is
free in ¢ if and only if x occurs in ¢. Moreover,
there are no bound variables in any atomic
formula. |

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 108/203

Quantified Statements (cont)
Definition (cont)
@ Negation. x is free in ~ ¢ if and only if x is free in
¢. x is bound in ~ ¢ if and only if x is bound in ¢.

@ Binary connectives. x is free in (¢ —) if and only
if x is free in either ¢ or . x is bound in (¢ — y) if
and only if x is bound in either ¢ or . The same
rule applies to any other binary connective A, v, &
in place of —.

@ Quantifiers. x is free in Vy¢ if and only if x is free
in ¢ and x is a different symbol from y. Also, x is
bound in Yy¢ if and only if x is y or x is bound in ¢.
The same rule holds with din place of V.

Dr Liew How Hui May 2021 109/203

Quantified Statements (cont)

Example 1.6.11
Determine if the variables x, y, z, w are free, bound or
neither in the formula VxVy(P(x) — Q(x, f(x), 2)).

Solution
@ x and y are bound variables
@ zis a free variable
@ w is neither because it does not occur in the
formula.

Dr Liew How Hui UECM1304 DiscRETE MATHEMATICS WITH APPLICATIONS May 2021 110/203

Quantified Statements (cont)

Freeness and boundness are important because of
variables can appear multiple times.

Example 1.6.12

For the formula P(x) — Yx Q(x), the first occurrence of
x is free while the second is bound, i.e. the x in P(x) is
free while the x in Vx Q(x) is bound.

Racket Programming Example

(let ((x 3))
(define (f x) (+ (* 2 (sin x)) 1))
(f x))

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 111/203

Informal & Formal Translation

We use informal languages such as English, Chinese,
Malay, etc. in real life. Informal languages are difficult
for computer to process. To ask computer to help us
solve problems, we need to express human knowledge
in a formal language. The overall process:
Informal Problem — Formal Logic Formula —
Computer — Perform ‘computation’ — Answer
in ‘Abstract Representation’ — Convert to In-
formal Human Language.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 112/203

Informal & Formal Translation (cont)

Racket Example — Formal Langage

(let ((x 3))
(define (f x) (+ (* 2 (sin x)) 1))
(f x))

Informal Language

Let x be 3 and f(x) = 2sin x + 1. Calculate f(x) (same
thing as calculate f(3) but computer needs to know this
using variable bounding).

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 113/203

Informal & Formal Translation (cont)

In mathematics, we have many statements which can
be formalised into various forms defined below.

Definition 1.7.1

Let P(x) and Q(x) be any predicates with free variable
X.
1. A universal statement is a formula of the form

VxP(x)

It corresponds to these English sentences: “For all
x P(x)”, “For every x P(x)” and “For any x P(x)”.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 114/203

Informal & Formal Translation (cont)
Definition 1.7.1 (cont)
2. An existential statement is a formula of the form
IxQ(x).

It corresponds to these English sentences: “There
is/exists an x such that P(x)”, “There is at least
one x such that P(x)”, “Some x satisfies P”, “P(x)
for some x”, etc.

3. A universal conditional statement is a formula of
the form
Vx(P(x) = Q(x)).
It corresponds to the English sentence “For every
x with property P, Q(x)”.

Dr Liew How Hui May 2021 115/203

Informal & Formal Translation (cont)
Example:

@ Universal statement:
Vx(x®+1>0)
Informal: The square of a number plus one is always larger
than zero.
@ Existential statement:
Ix(2sinx+1=0)
Informal: The equation 2sin x + 1 = 0 has a solution.

@ Universal conditional statement:

n(n—+1
vn((n=1) - (1+---4+n= %))
Informal: Summing a sequence from 1 to n is the same as

the half of the product nand n+ 1.
May 2021 116/203

Informal & Formal Translation (cont)
Example 1.7.3: Rewrite the following formal statements
in a variety of equivalent but more informal ways
without using the formal symbols ¥V and 4.

1. Vx(x eR — x2 > 0).

Solution: Any of the following English sentences
are acceptable.

All real numbers have nonnegative squares.

— Every real number has a nonnegative square.
Any real number has a nonnegative square.
The square of any real number is nonnegative.

2. Vx(x eR — x2 # —1).
3. Am(m e Z A m®> = m).

Informal & Formal Translation (cont)

Example 1.7.4: Rewrite the following formal statement
in a variety of informal ways. Do not use quantifiers or
variables.

Vx((x €R) A (X > 2) = (x* > 4)).

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 118/203

Informal & Formal Translation (cont)
It is sometimes tricky to translate from an informal
sentence into a formal sentence, precisely because the
informal sentence may not correspond obviously to the
logical quantifiers and operators.

Example 1.7.5

Translate the sentence ‘Some birds can fly’ into logic.
Let B(x) mean ‘x is a bird’ and F(x) mean ‘x can fly’.

Solution: ‘Some birds can fly’ is translated as
Ax(B(x) A F(x)).

If we translate this back to ‘unpolished’ English, it would be ‘there
is something which is a bird and this thing can fly.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 119/203

Informal & Formal Translation (cont)

Warning! A common pitfall is to translate ‘Some birds can fly’ as
Ix(B(x) — F(x)) Wrong translation!

To see why this is wrong, let p be a frog that somehow got into the
universe. Now B(p) is false, so B(p) — F(p) is true (remember

F — F = T). This is just saying ‘If that frog were a bird then it
would be able to fly’, which is true; it doesn’t mean the frog actually
is a bird, or that it actually can fly. However, we have now found a
value of x — namely the frog p — for which B(x) — F(x) is true,
and that is enough to satisfy Ix(B(x) — F(x)), which is different
from Ax(B(x) A F(x)) which requires us to find a flying bird from
birds.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 120/203

Example 1.7.7

Let A(x) :=xisan animal.
C(x) :=xisacat.
S(x) :=xissmall

GP(x) :=xis a good pet.

The English sentences in on the left side of the table below can be
translated into logic formulae on the right side of the table:

Informal Formal

Cats are animals. Vx(C(x) = A(x))

Cats are small. Vx(C(x) = S(x))

Cats are small animals. Vx(C(x) = S(x) A A(x))
Small animals are good | Vx(S(x) A A(x) = GP(x))
pets.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 121/203

Informal & Formal Translation (cont)
Many mathematical quantified statements can be
written in one of the form in Definition 1.7.1. However,
mathematical writings normally have many implicitly
quantified statements, i.e. statements that do not
contain the “keywords” all or every or any or each or
exist, which often tell us what class of quantified
statements they belong. Hence, we have to look at the
sentence and understand the context.

Example 1.7.10: Translate the sentence “Every integer
is rational.” into a quantified statement.

Solution
Vx(x € Z - x € Q).

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 122/203

Informal & Formal Translation (cont)

Example 1.7.11: Consider the statement “There is an
integer that is both prime and even.” Let P(n) be “nis
prime” and E(n) be “nis even.” Use the notation P(n)
and E(n) to rewrite this statement formally.

Class Discussion.

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 123/203

Informal & Formal Translation (cont)

In calculus courses, the letter x is mostly always used
to indicate a real number, hence the sentence below

“If x > 2 then x> > 4”
is interpreted to mean the same as the statement
“For all real numbers x, if x > 2 then x2 > 4.

orformally Vx((x eRAXx>2)— (x2>4)).or
Vx(x eR) = (x > 2) - (x> 4).

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 124/203

Informal & Formal Translation (cont)
Example 1.7.13: Translate the following statement
formally.

If a number is an integer, then it is a real number.

Example 1.7.14: Let E(x) be the predicate “x is even”.
Translate the following statement

The number 24 can be written as a sum of two even
integers.

into a formal logic formula.

Class Discussion.

Informal & Formal Translation (cont)

Example 1.7.17: Rewrite the following statements
formally using quantifiers and variables.

1. Somebody trusts everybody.

2. Given any positive number, there is another
positive number that is smaller than the given
number.

3. Any even integer equal twice some other integer.

4. For every real number x and every real number y,
if x is positive and y is negative, then the product
of x and y is negative.

Class Discussion.
May 2021 126/203

Informal & Formal Translation (cont)

Let S be the set of students in UTAR, M be the set of
movies that have ever been released, and let V(s, m)
denote “student s has seen movie m”. Translate each
of the following statements into English.

1. Vsdm((s € S) - ((m € M) A V(s, m))).

2. AsAtAm((s € S)A(te S)A(me M) A (s #
t) A V(s,m) A V(t,m)).

3. AsAt((se S)A(te S)A(s#t)AVYm(me M) —
(V(s,m) — V(t,m)))).

Class Discussion.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 127/203

Informal & Formal Translation (cont)
Often the real difficulty in translating English into logic is in
figuring out what the English says, or what the speaker meant
to say. For example, many people make statements like ‘All
people are not rich’. What this statement actually says is

Vx ~ R(x),
where the universe is the set of people and R(x) means ‘x is rich’.
What is usually meant, however, by such a statement is
~ ¥xR(x) or equivalientlydx ~ R(x),
that is, not all people are rich (i.e., some people are not rich)

Such problems of ambiguity or incorrect grammar in English
cannot be solved mathematically and they will not be considered in
this subject. However, they do illustrate one of the benefits of
mathematics: simply translating a problem from English into formal
logic may expose confusion or misunderstanding.

May 2021 128/203

Outline
Q Propositional Logic

© Predicate Logic

@ Logical Equivalence & Logical Implication

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 129/203

Semantics of Quantified Statements

Syntax can be used to describe if a string is a valid
formula.

This is just like writing a program in some programming
language. One can check whether the syntax of the
program is correct. However, even if the program is
correct in syntax, it doesn’t mean that the program is
“‘meaningful” to the user. E.g.

int main()
{

1 + 2 == 3;
}

We know that one needs to “compile” a program so that
it can “run” on a computer with “useful” effects.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 130/203

Semantics (cont)
“Compiling” a program can be viewed as introducing

“semantics” or “interpretation” to a program.

To determine if a logical formula is true or false (as an
extension of the propositional logic), we need to
introduce “semantics” to the formula.

In the semantics of propositional logic, we assigned a
truth value to each atom. In predicate logic, the
smallest unit to which we can assign a truth value is a
predicate P(t;,--- , t,) applied to terms. But we cannot
arbitrarily assign a truth value, as we did for
propositional atoms. There needs to be some
consistency. The way to specify an interpretation (or
semantic) is to specify a model.

Dr Liew How Hui May 2021 131/203

Semantics (cont)
Definition 1.8.1: A model (or structure) M consists of a
nonempty set D that forms the domain of discourse (or
universe of discourse) and an interpretation ()M, which
is @ mapping such that

@ Each function symbol f of degree n is assigned a
function f¥ from D" to D. In particular, each
constant symbol is assigned an individual in the
domain of discourse.

@ Each predicate symbol P of degree n is assigned a
relation PM over D", i.e. PM c D".

In lay man term: With a model, we can assign values
to a valid predicate to determine its ‘truth’ value.
May 2021 132/203

Semantics (cont)

Definition 1.8.2: Let M be a model and t be a term
without variables. Then tV, the interpretation of t in M,
is given as follows:

@ if tis a constant ¢, then t™ = cM, cM e D;

e if t is a variable x, then t™ = o(x), where o is a
variable assignment;

@ if tis an n-ary function f(t,--- , t,), then
tM = MM, ... M),

For predicates and logical connectives, the
interpretation goes through the process T-schema:

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 133/203

Semantics (cont)

Definition 1.8.2 (cont):

@ Atomic formulae.
1. Aformula P(t,--- ,t,) is associated the value T or F

depending on whether (tM, -, tM) e PM c D"
2. Aformulat; = t, is assigned T if tM = t}, i.e. they
evaluate to the same object of the domain of discourse.
@ Logical connectives. A formula in the form ~ ¢,
¢ — U, etc. is evaluated according to the truth
table for the connective in question, as in

propositional logic.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 134/203

Semantics (cont)

Definition 1.8.2 (cont):

@ Existential quantifiers. A formula 3x¢(x) is true
according to M and o if there exists an evaluation
o’ of the variables that only differs from o
regarding the evaluation of x and such that ¢ is
true according to the interpretation M and the
variable assignment ¢o’. This formal definition
captures the idea that Ax¢(x) is true if and only if
there is a way to choose a value for x such that
$(x) is satisfied.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 135/203

Semantics (cont)
Definition 1.8.2 (cont):

@ Universal quantifiers. A formula Yx¢(x) is true according to
M and o if ¢(x) is true for every pair composed by the
interpretation M and some variable assignment o’ that differs
from o only on the value of x. This captures the idea that
Vx¢(x) is true if every possible choice of a value for x causes
#(x) to be true.

If a formula does not contain free variables, and so is a sentence,
then the initial variable assignment does not affect its truth value.
In other words, a sentence is true according to M and o if and only
if is true according to M and every other variable assignment o”.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 136/203

Semantics (cont)

Example 1.8.3: Consider the sentence “None of Alma’s
lovers’ lovers love her.” Let “Alma” can be a constant a,
and the concept “x loves y” can be a binary predicate

L(x,y).

1. Formalise this sentence.
2. Consider the model M defined by D = {p, q, r},

=p, LM ={(p,p),(q,p). (r,p)}. Determine the
truth value of the sentence under this model M.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 137/203

Semantics (cont)

Example 1.8.3 Solution:

1. We can formalise the sentence as
Vx¥y(L(x,a) A L(y,x) =~ L(y,a)).

Intuitively, L(x, a) says that x is AiIma’s lover, and
L(y, x) says that “y loves x”, so L(x,a) A L(y, x)
says that y is one of Alma’s lovers’ lovers. The
formula ~ L(y, a) says that y does not love Aima,
and the quantifiers make sure this is true for any x,

Y.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 138/203

Semantics (cont)
Example 1.8.3 Solution:

2. In order to interpret the formula, we need a
variable assignment o~. Consider

o ={(x,p),(y.q)}. Then
(VxVy(L(x,a) A L(y.x) >~ L(y.a)))"(o)
= LY(o(x).a") A LM((y). o(x)) =~ LM(o(y). a")
=LMp,p) A LM(q,p) =~ LM(qp) = TAT >~ T=T > F=F.

The formula is false under this model.

To show that a universal formula is true, we need to
make sure that it is true for all possible variable
assignments.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 139/203

Logical Equivalence

In comparison to propositional logic in which the truth
assignment leads to truth table (or comparison table)
as a convenient tool to verify the truth value, the
situation in predicate logic is much more complicated.
The truth assignment extends to models and to verify
the tautology of a formula requires it to be true under all
models.

The laws of logical equivalences and “substitution
principle” (Slide 53) are also valid for predicate
calculus. However, we need to replace the term “atomic
statement” with “formula” and introduce the extended
notion of logical equivalence.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 140/203

Logical Equivalence (cont)

Definition 1.8.7: Let ¢ and ¢ be two formulae with free
variables x4, - - - , X, they are logically equivalent, i.e.

¢ = yif = Vxp - Vxo(gp &).

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 141/203

Revision
Propositional Logic:

@ Encode human knowledge (especially
mathematics) in logic without variables. E.g.
142 =2+ 1 (commutative).

@ Well-formed formula involves atomic statements
and connectives (~, A, V, —, <) in the proper
syntax.

@ Truth-table: The value of the formula for different

assignments.

Special formula: tautology

@ Logical equivalence: ¢ = ¢y means ¢ < ¢ is
tautology. Application: simplification of passive
logic circuit.

May 2021 142/203

Revision (cont)

Propositional Logic (cont): Let ¢ and s be any
well-formed formulas.

@ Logical implication: ¢ = ¥ means ¢ — ¥ is
tautology.

@ Rules of inference: Using rules to derive formulas!
There is no truth assignment involved.

@ Link between “true” formula and rules of inference
process (proof theory): All “true” formula can be
derived using rules of inference.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 143/203

Revision (cont)
Predicate Logic:

@ To express x + y = y + x in maths, we need
infinitely many propositions. This is not acceptable.
We need to introduce “variables”, so that we have
the proposition-valued “function”.

@ We are used to functions which returns numbers
(e.g. sine, cosine), “proposition-valued” function
returns “propositions”.

@ Problem: We have to extend “truth assignment”.
E.g. If we have two n x n matrces A and B, then
AB = BA is false in general but can sometimes be
true.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 144/203

Revision (cont)
Predicate Logic (cont):

@ “Model” (universe or domain for the variables) are
introduced to generalise the truth assignment for
predicates. E.g. x + y = y + x is true for the
“‘integer” domain, “real number” domain but false
for string domain. E.g. x="Albert”, y="Einstein”,

x + y="AlbertEinstein” but y + x="EinsteinAlbert”
are different.

@ First order predicate logic studies all the formulas
which are true under all models (generalisation of
tautology)

@ So, we can define logical equivalence and logical
implication, but the rules are much more complex!!!

May 2021 145/203

Logical Equivalence (cont)

Theorem 1.8.8 (laws of logical equivalence): Let ¢ and
be any formulas with free variable x (and y). Let £ be any formula
without free variable x. Then

~VYXp=AX~P; . (Generalised de Morgan law)
~AXP =X ~@; e (Generalised de Morgan law)
Vx(A Y) = (VX 9) A (VX 0);

(¢ v) = (Ix p) v (Ax ¥);

YxVy¢ = VyVx¢;

AxAy¢ = dyAx¢;

& = Vxé = AxE;

Suppose the variable x has no free occurrences in & and is
substitutable for x in &. Then Vx¢& = Vyé[y/x], and

AxE = AYE[Y/X]; oo (change variable name)
VX(EAY) = €A (YXU); IX(E A W) = €A (AX);

VXV) = €V (Yxu); Ix(E V) = £V (Ixy).
.................................. (free variable equivalence)
May 2021 146/203

© ©000606060

Logical Equivalence (cont)
Corollary 1.8.10: Let ¢ and ¢ be any predicates with free
variable x. Let & be any formula without free variable x.Then
1.~ (Yx(¢ — ¢)) = Ix(¢A ~ ¥);
2. x(¢ - y) = (Yx ¢) - (Axy).
3. Vx(§ > y) =& - (Yxy)
Proof:
1. LHS=3x~ (¢ > ¢¥)) =Ax ~ (~ ¢ V¥)) = AX(~~ oA ~
¥)) = RHS

2. LHS=3Ix(~¢Vy)=(Tx~¢) Vv (Axy) =~ (Yx¢) Vv (Ixy) =
RHS

3. LHS =Vx(~éVvy) = (Vx~ &)V (Ixy) =~ (AxE) V (Vxy) =~
&V (Vxy) = RHS
May 2021 147/203

Logical Equivalence (cont)

Definition 1.8.11: Let ¢ and ¢ be formulae with free
variable x. Consider a statement of the form

VX (¢ = ¥). (1)

Its converse form is VX
Ilts inverse form is VX(~ ¢ o~).

= A

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 148/203

Logical Equivalence (cont)

Example 1.8.13: Write formal negations for the
statement “Every prime number is odd.” using the
predicate prime(n) for “n is prime” and odd(n) for “n is
odd”.

Solution
~ ¥n(prime(n) — odd(n)) = An(prime(n)A ~ odd(n))

Dr Liew How Hui UECM1304 DiscrReTE MATHEMATICS WITH APPLICATIONS May 2021 149/203

Logical Equivalence (cont)

Example 1.8.14: Write an informal negation (using
formal reasoning) for the statement

If a computer program has more than 100,000 lines,
then it contains a bug.

Let program(x) be “x is a computer program”,
many_lines(x) be “x has more than 100,000 lines” and
bug(x) be “x has a bug.”

Class Discussion.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 150/203

Logical Equivalence (cont)

Example 1.8.15: Write the contrapositive, converse and
inverse for the following statement formally and
informally:

If a real number is greater than 2, then its square is
greater than 4.

Class Discussion.

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 151/203

Logical Equivalence (cont)

Definition 1.8.21

A formula of the predicate calculus is in prenex normal
form if it is written as a string of quantifiers (referred to

as the prefix) followed by a quantifier-free part (referred
to as the matrix).

Theorem 1.8.22
Every formula in predicate logic is logically equivalent
to a formula in prenex normal form.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 152/203

Logical Equivalence (cont)

Example 1.8.23 (Wikipedia)

Let ¢(y), ¥(2), and p(x) be quantifier-free formulas with
the free variables shown.

VxAyVz(p(y) V (¥ (2) = p(x)))

is in prenex normal form with matrix
o(y) v (¥(2) — p(x)), while

Vx(Aye(y)) v ((Fz¢(2)) = p(x)))

is logically equivalent but not in prenex normal form.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 153/203

Logical Equivalence (cont)

Example 1.8.24: Write the negation of
Vxdy3dzP(x,y, z) in prenex normal form.

Class Discussion.

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 154/203

Logical Equivalence (cont)

Final Exam May 2019 Q1(d): Let F(u, x, y), G(y,v) and
H(x) be predicates. List down the steps and the logical
equivalent rules to transform the following quantified
statement

~ [VXByF(u, X,y) — HX(~VyG(y,v) — H(X))]

to prenex normal form. (6 marks)

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 155/203

Loaical Eauivalence (cont)
Lecturer’s Marking Guide

The steps and rules are listed below:

~ [VxElyF(u, X, y) — Elx(~VyG(y,v) - H(x))]
=~ [~Vx3AyF(u,x,y) v Hx(~VYyG(y,v) - H(x))] [Implication law, 0.5 mark]
= Vx3AyF(u,x,y) A\ ~ 3x(~VyG(y,v) — H(x))
[de Morgan law, double negative, 1 mark]
= Vx3dyF(u,x,y) A\ [Vx ~ (~VYyG(y,v) - H(x))]
[Generalised de Morgan law, 0.5 mark]
= Vx3AyF(u,x,y) A [Vx ~ (VyG(y, V)V H(x))]
[Implication law, double negative, 1 mark]
= Vx3AyF(u,x,y) A [Vx(Vy ~G(y,V)A ~ H(x))]
[Generalised de Morgan law, 0.5 mark]

= Vx3AyF(u,x,y) A\ [VXVy(~G(y,v)A ~ H(x))] [Free variable law, 0.5 mark]
= Vx| AyF(u X, y) AVy(~ Gy, v)A ~ H(x)) [Quantified conjunctive law, 0.5 mark]
= Vx|3yF(u, x,y) A\ Vz(~G(z,V)A ~ H(x)) [Quantifier renaming law, 0.5 mark]
= VxElsz[F(u, X, Y)A ~ G(z,V)A ~ H(x)] [Free variable law, 1 mark]

vy

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 156/203

Logical Equivalence (cont)
Final Exam May 2019 Q2(c): Given the following
quantified statement:

VxVy[((x > 0)A(y > 0)) - (\/x +y = Vx+ \/7)] (%)

1. Translate the quantified statement into an informal
English sentence. (2 marks)

2. Determine whether the quantified statement is true
or false in the domain of real numbers. You need to

defend your answer. (2 marks)
3. Write down the negation of the quantified
statement () in prenex normal form. (5 marks)

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 157/203

Logical Equivalence (cont)

Lecturer’s Marking Guide

(i) The square root of the sum of two numbers is equal to the sum
of the square roots of the two numbers

(i) The quantified statementis false. [1 mark]
To defend, we write a counterexample: Let x =y =1,
VXFy=V2E 1+ V1=2 ... [1 mark]

(iii) By applying the generalised de Morgan law, the negation of (x)
is logically equivalent to

Ax3Ay ~ [((X>O)/\(y>0))—>(\/x+ = Vx + \/}7)]

In prenex normal form, it can be written as

3x3y[(x >0)A(y>0) (\/X—l— # VX + \/_)] [5 marks]

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 158/203

Logical Equivalence (cont)

Quantifiers in the prenex normal form may not be
logically equivalent.

Vx3AyP(x,y) z AyVxP(x, y)
YyaxP(x,y) £ AxVyP(x,y)

Example:

@ Yy3dx(x > y) (for every number, there is a larger
number) — true

@ AxVy(x > y) (there is a number large than all
numbers) — impossible.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 159/203

Logical Equivalence (cont)
Exceptions:

@ VYxVyP(x,y) = VyVxP(x,y) (a special cased of
Laws of Logical Equivalence (e))

@ dx3dyP(x,y) = Ay3IxP(x,y) (a special cased of
Laws of Logical Equivalence (f))

Example 1.8.25
Let P(x,y) denote “x + y = 0”. What are the truth
values of the quantified statements AyVxP(x, y) and
Vx3dyP(x,y)?
@ AYVXP(X,Y) e
@ VXAYP(X,¥) oo

Class Discussion.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 160/203

Logical Equivalence (cont)

Example 1.8.27: Let Q(x, y) be the statement

‘X +y = x—y”. lf model M of this formula consist the
universe of discourse D = Z and the operations are the
normal operations associated with Z. Determine the
truth values of the following formula.

1. VyQ(1,y)

2. IxAyQ(x,y)
3. Vx3AyQ(x,y)
4. yVxQ(x,y)
5. YyaxQ(x, y)

Class Discussion.

Logical Implication
The extension of logical implication from propositional

logic to predicte logic is very complicated and we will
only list some theoretical results.

Theorem 1.9.1: Let [= {¢1,--- ,¢pn}. If [" and
=y, then T’ = .

(It basically says that if ¢ is true for “preconditions” I', it
is also true in a larger system " containing I'.)
Semantic Deduction Theorem: Let [= {¢4, -+ , ¢n}.
FU{gEyiffl E¢ — .

Theorem 1.9.3: If P(x) is a formula with one free
variable x and s and a are closed terms. Then

P(s) E IxP(x); VxP(x) = P(a).

Logical Implication (cont)

Proposition 1.9.4: Let ¢ be a formula with free variable x and a
and s are terms free with respect to x in ¢. Then we have the
following laws.

1. Universal instantiation (or specialisation): Yx¢ = ¢[a/x],
here [a/x] means “a replaces x”. In particular, when ¢ is
P(x), we have YxP(x) = P(a).

2. Universal generalisation: If the term a in ¢[a/x] is arbitrary,
then ¢[a/x] = VYx¢.

3. Existential instantiation (or specialisation): Ix¢ = ¢[s/x],
here [s/x] means “s replaces x”. In particular, when ¢ is
P(x), we have 3xP(x) = P(s).

4. Existential generalisation: For a particular term s,
p[s/x] = Ix¢.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 163/203

Logical Implication (cont)

Theorem 1.9.5: Let p and g be two formula without free
variable x, P(x) and Q(x) be formula with free variable
x. Then

1. Ax(P

(x) A Q(x)) = (Ax P(x)) A (Ax Q(x))
2. (VxP(x)) v (Vx Q(x)) = ¥x (P(x) v Q(x))
3. (IxP(x)) — (¥Vx Q(x)) = ¥x(P(x) = Q(x))
4. Vx(P(x) -

X

Q(x)) = (Vx P(x)) = (VxQ(x))

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 164/203

Logical Implication (cont)

Non-rigorous proof:

o

Ix(P(x) A Q(x)) premise

1. 1/11:

by -

P(s) A Q(s) $1, existential specialisation
IxP(x) A AxQ(x) 4, existential generalisation

(VxP(x)) v (¥x Q(x)) premise

/20
2. Yo
Ys
Ya

(VxP(x)) v (Yy Q(y)) ¢4, change variable name
Vy(VxP(x) v Q(y)) ¢, free variable equivalence
Yy(P(y) v Q(y)) Y2, universal instantiation
Vx(P(x) v Q(x)) Y3, change variable name

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 165/203

Logical Implication (cont)

Non-rigorous proof:
#1: (IxP(x)) = (Vx Q(x)) premise
Yo ~3AxP(x) Vv (Yx Q(x)) ¢4, implication law
3. Yo: ¥x~P(x)V(¥Yx Q(x)) 1, generalised de Morgan

s Yx(~ P(x) Vv Q(x)) Yo, item 2.

: Vx(P(x) = Q(x)) Y3, implication law

#1: Yx(P(x) = Q(x)) premise

Y P(a) - Q(a) #1, universal instantiation
4. Yo : VXxP(x) — P(a) universal instantiation???

Yz YxP(x) —» Q(a) 1,y transitivity

S V¥xP(x) - ¥xQ(x) s, universal generalisation

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 166/203

Logical Implication (cont)

Example 1.9.9: Rewrite the following argument using
quantifiers, variables, and predicate symbols:

If a number is even, then its square is even.

k is a particular number that is even.

. k? is even.
Is the argument valid? Why?

Class Discussion

More examples will be discussed in Tutorial Class.

Dr Liew How Hui UECM1304 DiscRETE MATHEMATICS WITH APPLICATIONS May 2021 167/203

Logical Equivalence (cont)

Final Exam May 2019 Q3(c): Show that the following
argument
Vx(F(x) -~ G(x))
Ax(H(x) A G(x))
Ax(H(xX)A ~ F(x)
is valid using the rules of logical equivalence and
implication. (5 marks)

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 168/203

Logical Equivalence (cont)

Lecture’s Marking Guide
The semantic deduction is shown below

¢1 YX(F(x) -~ G(x)) premise

> Ax(H(x) A G(x)) premise

Y1 H(s) A G(s) ¢2, existential instantiation [1 mark]
Yo F(s) >~ G(s) #1, universal instantiation

vz G(s) W, specialisation [1 mark]
vs ~ F(s) Yo, s, MT Lo [1 mark]
vs H(s) Y, specialisation [1 mark]
ve H(s)A ~ F(s) Y3, ¥4 conjunction

o Ax(H(Xx)A ~ F(x) Ye, existential generalisation [1 mark]

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 169/203

Outline
ﬂ Propositional Logic

@ Predicate Logic

@ Rules of Inference

Dr Liew How Hui UECM1304 DiscRETE MATHEMATICS WITH APPLICATIONS May 2021 170/203

Rules of Inference

Laws of equivalence and laws of logical impliecation
are not the modern (computer) approach to “prove”

quantified statements.

The foundation to modern automated proof theory
(Note that syntactic inference or natural deduction is
not the only method for automated proof, sequent

calculus is another method).

In predicate logic, in addition to the “propositional” rules
of inference (Slide 82), we have the following rules of
inference related to quantifiers:

11. V-introduction: |t — ¢(t)

F Vx¢(x)

12. V-elimination: Vx¢(x) F |t — ¢(t

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 171/203

Rules of Inference (cont)
13. F-introduction: ¢(t) + Ixp(x)
14. 3-elimination: Ix¢(x) +|s, ¢(s) = -

Here, t is a ground term, i.e. a term that does not
contain any variables, a is a constant symbol (which is
arbitrary) which does not occur in the conclusion Y¢(x)
or any assumption in the syntactic derivation, s is a
constant symbol which does not occur in the premise
dx¢(x), conclusion & or any assumptions in the
syntactic derivation.

Note that + indicates logical entailment based on the
rules of inference (there are only 12 of them) instead of
the laws based on the logic semantics.

May 2021 172/203

Rules of Inference (cont)

The V-introduction rule is non-constructive and
probably cannot be ‘proved’ in Coq (at least | don’t
know how to do so):

Parameter X : Type.

Example forall_intro:
forall (P : X->Prop) (t : X),
Pt -> (forall x : X, P x).
Admitted.
(7‘:
Proof.
intros P t.
intro H.
How to generalize dependent t ?7?77?
Qed.
)

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021

173/203

Rules of Inference (cont)

Example forall_elim:
forall (P : X->Prop) (t : X),
(forall x : X, P x) -> P t.

Proof.

intros P t.

intro H.

specialize (H t).

exact H.
Qed.

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 174/203

Rules of Inference (cont)

Parameter s : X.

Example exists_intro:

forall P : X->Prop,

(P s -> (exists x : X, P x)).

Proof.

intros P H.

exists s.

exact H.

Qed.

Example exists_elim:
forall P : X->Prop,

(* s is a particular value such that P(s) is True *)

(exists x : X, P x) -> True. (* By defn, P(s) = True ¥*)
Proof.
trivial.
Qed.

Rules of Inference (cont)

The universal instantiation is the abstraction of the
examples below.

Example 1.10.1:

All men are mortal. - Socrates is mortal.

Example 1.10.2: Consider the formula *
Yn(prime(n) A (n > 2) — odd(n)). ” By applying
universal instantiation with n “instantiate” to the term
“‘m + 4” we obtain

prime(m+4) A (m+ 4 > 2) — odd(m + 4).

Here m + 4 is a term and m is an arbitrary constant.
May 2021 176/203

Rules of Inference (cont)
Let practise how to perform natural deduction.

Example 1.10.3: Show that
~ R(c), Yt(P(t) —» Q(t)), Yt(Q(t) = R(t)) + ~ P(c).

Proof

1 ~ R(c) premise

2 Yi(P(t) - Q(t)) premise

3 Vt(Q() = R(t)) premise

4 P(c) Q(c) 2, Y-elimination

5 Q(c) = R(c) 3, V-elimination

6 P(c) = R(c) 4,6, —-elimination

7 ~ P(c) 1,6, modus tollens (Shown in Slide 90)

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 177/203

ules of Inference (cont)

Parameter X : Type.
Parameter c : X.

Lemma modus_tollens: forall (P Q : Prop),
Q -> (P -> Q) -> "P.
Proof.
intros P Q H1 H2.
intro H3. (* Related to Slide 88: "P=(P->F) *)
apply H2 in H3.
contradiction.
Qed.

Example eg_1_10_3: forall (P Q R : X->Prop),
"R c -> (forall t : X, Pt -> Q t) -> (forall t
-> " P c.

Proof.
intros P Q R H1 H2 H3.
specialize (H2 c).
specialize (H3 c).
apply (modus_tollens (Q c) (R c¢)) in H3.
apply (modus_tollens (P c) (Q c)) in H2.
assumption. assumption. assumption.

Qed.

X, Qt ->R t)

Dr Liew How Hui UECM1304 DiscRETE MATHEMATICS WITH APPLICATIONS

May 2021

178/203

Rules of Inference (cont)

Final Exam May 2019 Q3(d): Let R(x, y) be a predicate
with two variables. Infer the argument involving
quantified statements

VxVYy(R(x,y) =~ R(y,x)) + Yx(~ R(x, x))

syntatically by stating the rules of inference in each
step. (5 marks)

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 179/203

Rules of Inference (cont)
Lecture’s Marking Guide
Let t be an arbitrary term independent of variables x and y.

1 VxVYy(R(x,y) =~ R(y,x)) premise

2 | Vy(R(t.y) >~ R(y.1)) 1V-E ... [1 mark]
3 | R(t1) >~ R(tL1) 2V-E

4 R(t,t) assumption ..[1 mark]
5 ~ R(t, t) 34 -l....... [1 mark]
6 L 4,5 11

7 ~ R(t, 1) 4-6-1....... [1 mark]
8 Vx(~ R(x, x)) 7Yl [1 mark]

May 2021 180/203

Rules of Inference (cont)

Example 1.10.8: Show that the premises “A student in
this class has not read the book,” and “Everyone in this
class passed the first exam” imply the conclusion
“someone who passed the first exam has not read the
book.”

Class Discussion

Let C(x): “x is in this class”; B(x): “x has read the
book”; P(x): “x passed the first exam”.

Try to formulate into premises and conclusion
symbolically and then prove the argument.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 181/203

Rules of Inference (cont)

Example 1.10.9: Show that the following arguments is
valid with a formal proof using the laws of inference.
No junior or senior is enrolled in calculus class.
Ali is enrolled in calculus class. Therefore Ali
Is not a senior.

Class Discussion

Let J(x): “x is a junior”; S(x): “x is a senior”; and C(x):
“x is enrolled in calculus class.”

Try to formulate into premises and conclusion
symbolically and then prove the argument.

Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 182/203

Outline
ﬂ Propositional Logic

© Predicate Logic

@ Applications

Dr Liew How Hui UECM1304 DiscRETE MATHEMATICS WITH APPLICATIONS May 2021 183/203

Applications
The formal logic theories are all developed in the hope
to develop automated theorem-proving software to
ensure mathematics proofs as well as human
reasoning are free from human errors.

The applications of formal logic theories:

@ software specification

@ hardware verification

@ compiler verification

@ logic programming — prolog, ECLiPSe, etc.(?) —
Application to classical Al (see https://www.
sjsu.edu/faculty/watkins/5thgen.htm)

o ...
Dr Liew How Hui UECM?1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 184/203

https://www.sjsu.edu/faculty/watkins/5thgen.htm
https://www.sjsu.edu/faculty/watkins/5thgen.htm

Logic Programming with Prolog
According to Wikipedia, logic programming is a type of
programming paradigm based on predicate logic. Any
program written in a logic programming language is a
set of sentences, expressing facts and rules about
some problem domain. Major logic programming
language families include Prolog (which stands for
Programming in Logic), Datalog (a subset of Prolog for
database and serves as an alternative query system to
SQL, and answer set programming (ASP).

Prolog was once believed to be the artificial intelligence
language but the limitations of the first order logic has
prevented it from getting popular. However, it is still
useful in knowledge-based (or ontology) systems.

May 2021 185/203

Logic Programming (cont)

Definition 1.11.1
In Prolog, a term is either a constant, a variable (starts
with a capital letter or underscore) or a compound term

of the form f(t;,--- , t,) where f is a function symbol of
aritynand t; (i =1,--- ,nand n > 0) are terms.

An atomic formula or actomic term is an expression
of the form p(t;,--- ,t,) where p is a predicate symbol

and t; are terms. If n = 0, there is no argument and the
parentheses are omitted.

A constant can either be a number or an atomic term
(start from small letter, a string in single quotes or
symbols such as +, =\=, etc.).

Dr Liew How Hui May 2021 186/203

Logic Programming (cont)

The rules in Prolog are written in the form of Horn clauses, which
can be regarded as “arguments” in Definition 65.

H :_B‘I""’Bn' (2)
— S~———
head body
rule
where is the same as A, : — is the same as =, H and B; are

usually atomic formulae. So we read (2) as a logical implication in
prenex form:

VXt -V XpBr (X, s Xp) Ao A Bp(Xp- - Xp) = H(X1, -+, Xp).

Facts are rules that have no body, and are written in the simplified
form (which is comparable to a “tautology”):

H. (3)

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 187/203

Logic Programming (cont)

Remarks on Prolog language:

@ A string starts and ends with double quote ”
@ Don’t use single quote, it is for ‘atom’ (or symbol)

@ Anything that starts with small letter is used as
“predicate” or atom.

@ Anything that starts with capital letter is used as
“variables”.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 188/203

Logic Programming (cont)
Example: Analyse the subjects in UTAR DMAS with
and without pre-requisites in Prolog.

:- module(utar_dmas, [courses_without_prerequisites/2,
courses_with_prerequisites/2]).

%

% Facts = NoSQL Database

%

course ("UECM1024", "Calculus I", core, 4, [1).

course ("UECM1034", "Calculus II", core, 4, [’UECM1624°’]).

course ("UECM1204", "Probability and Statistics I",core,4,[]).

course ("UECM1224", "Probability and Statistics II",core,4,[’'UECM1204°]).

course ("UECM1314", "Fundamentals of Linear Algebra",core,4,[]).

course ("UECM1304", "Discrete Mathematics with Applications",core,4,[]).

course ("UECM1703", "Introduction to Scientific Computing",core,3,[]).

course ("UECM2353", "Linear Algebra",core,3,[’UECM1314°’]).

course ("UECS1004", "Programming and Problem Solving",core,4,[]).

course ("UECS1044", "Object-Oriented Application Development",core,4,[’UECS1004°]).

course ("UECS2083", "Problem Solving with Data Structures and Algorithms",core,3,[’UECS1044°']).

course ("UECS2094", "Web Application Development",core,4,[’'UECS1044°]).

course ("UECM2023", "Ordinary Differential Equations",core,3,[’UECM1034°']).

course ("UECM3034", "Numerical Methods",core,4,[]).

%

% Rules = Classical AI

%

courses_without_prerequisites(X,Y) :- course(X,Y,_,_,[]).
courses_with_prerequisites(X,Y) :- course(X,Y,_,_,Z), length(Z, N), N =\= 0.

Liew How Hui UECM

04 DisCRETE MATHEMATICS WITH APPLICATIO!

May 2021 189/203

Logic Programming (cont)

@ To load the Prolog database, one can use either the commands below:

?- [utar_dmas].
?- consult(’utar_dmas.pl’).

@ To query the courses with only the code without prerequisite, we can
type the following query. Note that underscore is used to indicate a value
we are not interested in.

?- courses_without_prerequisites(X,_).

@ To query the courses (showing both code and name) with prerequisite,
we can type the following query.

?- courses_with_prerequisites(X,Y).

@ To exit Prolog, type halt.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 190/203

Logic Programming (cont)

Questions for the use of predicates:

@ Is the predicate ‘course’ with 5 parameters a good
idea?
@ How to update the ‘knowledge’ database?
@ How to translate usual programming languages (C,
C++, Python, Java) to Logic Programming?
— Each programming statements are executed in
sequence.

— if(...) ...

— for (...) ... or while(...) ...

— Define a function: return_type
function_name(arguments)

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 191/203

Logic Programming (cont)

Doing things in sequence in Python:

print ("This is first line")
print ("This is second line:", 1, 2, 3)

Doing things in sequence in Prolog:

% swipl -q hellolines.pl

:- format("This is first line\n").

:- format("This is second line: “d “d “d\n", [1, 2, 3]1).
:- halt.

Note that rules without head are called directives and
are immediately executed by Prolog.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 192/203

Logic Programming (cont)

if (...) ... in Python

if marks<®
elif marks
elif marks
elif marks
elif marks
elif marks
elif marks
elif marks
elif marks
else:

or
>=

def thegrade(marks):

marks>100:
90: return
80: return
75: return
70: return
65: return
60: return
55: return
50: return

return

return
AL
nmpn
L
"Bt
"B"
ngo"
e
nen
g

"2772"

Dr Liew How Hui UECM1304 DiscRETE MATHEMATICS WITH APPLICATIONS

May 2021

193/203

Logic Programming (cont)

if (...) ... in Prolog

thegrade (Marks, Grade)
thegrade (Marks, Grade)
thegrade (Marks, Grade)
thegrade (Marks, Grade)
thegrade (Marks, Grade)
thegrade (Marks, Grade)
thegrade (Marks, Grade)
thegrade (Marks, Grade)
thegrade (Marks, Grade)
thegrade (Marks, Grade)
thegrade (Marks, Grade)

Marks
Marks
Marks
Marks
Marks
Marks
Marks
Marks
Marks
Marks
Grade=

< 0,

> 100,
>= 90,
>= 80,
>= 75,
>= 70,
>= 65,
>= 60,
>= 55,
>= 50,
"F".

Grade="7?7?7?7?",
Grade="7?7?7?7?",

Grade="A+",
Grade="A", !.
Grade="A-",
Grade="B+",
Grade="B", !.
Grade="B-",
Grade="C+",
Grade="C", .

Note: ‘' is called cut, it is liked ignored anything below

if match.

Dr Liew How Hui UECM1304 DiscRETE MATHEMATICS WITH APPLICATIONS

May 2021

194/203

Logic Programming (cont)

if (...) ... in Prolog Version 2

thegrade (Marks, Grade)
thegrade (Marks, Grade)
thegrade (Marks, Grade)
thegrade (Marks, Grade)
thegrade (Marks, Grade)
thegrade (Marks, Grade)
thegrade (Marks, Grade)
thegrade (Marks, Grade)
thegrade (Marks, Grade)
thegrade (Marks, Grade)
thegrade (Marks, Grade)

Marks
Marks

90
80
75
70
65
60
55
50

0

<=

<0,

> 100,
Marks
Marks
Marks
Marks
Marks
Marks
Marks
Marks
Marks

<= 100, Grade="A+"
Grade="A".
Grade="A-".
Grade="B+".
Grade="B".
Grade="B-".
Grade="C+".
Grade="C".
Grade="F".

AN NN ANANANANA

Grade="7?777".
Grade="7777".

90,
80,
75,
70,
65,
60,
55,
50,

Problem with this version: All instructions will be run

(matched). Only one true.

Dr Liew How Hui UECM1304 DiscRETE MATHEMATICS WITH APPLICATIONS

May 2021 195/203

Logic Programming (cont)
for (...) ... in Python

def sum_arithm(n):
thesum = 0
for k in range(l, n+1):
thesum += k
return thesum

def sum_sqgrt(n):
thesum = 0
for k in range(l, n+1):
thesum += k**0.5
return thesum

What is sum_arithm(1000) and sum_sqrt(1000)?

The first one is 122%1901 — 500500 while the second

one is 21097.455887480734

Logic Programming (cont)
for (...) ... in Prolog

Prolog has no for loop, no while loop, how to calculate?

For the first one, we know the formula below (to be
proved in Topic 2):

n(n+1)

—

So the implementation in Prolog can be simple (without

using for loop):
sum_arithm(N, Sum) :- Sum is N*(N+1)/2.

1424 +n=

What about sum_sqrt? We don’t have loop and

function!
May 2021 197/203

Logic Programming (cont)

for (...) ... in Prolog (cont)

We can only use predicate and recursion (call itself).
sum_sqrt(N) = VN + sum_sqgrt(N — 1)

= VN+ VYN -1 + sum_sqrt(N — 2)
== W+ VN=-T+- +V2+ V1

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 198/203

Logic Programming (cont)

for (...) ... in Prolog (cont)

The implementation is as follows:

sum_sqrt(l, Sum) :- Sum is 1, !.
sum_sqrt (N, Sum) :- N < 1, integer(N), Sum="Meaningless"
sum_sqrt (N, Sum) :- N1 is N-1,

sum_sqrt (N1, Sum2),
Sum is sqrt(N) + Sum2.

It is still difficult to understand, | believe.

Dr Liew How Hui UECM1304 DiscreTE MATHEMATICS WITH APPLICATIONS May 2021 199/203

Applications to Database Query

Database Systems:

@ Structured: Sqlite, Postgresql, MySQL, MariaDB,
Oracle DB, Microsoft SQL, etc.
@ NoSQL (refers to Non-relational database):
— Key-value-based: Redis, Memcached, Azure Cosmos
DB, Apache Ignite, etc.
— Object-based: Objectivity/DB, Perst, ZopeDB
— Column-based: Cassandra, ScyllaDB, Amazon
DynamoDB, Google Cloud Datastore, HBase, etc.
— Graph-based: Neo4j, Twitter’s FlockDB, OrientDB,
Azure Cosmos DB, AllegroGraph, etc.

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 200/203

Applications to DB Query (cont)

Query languages:

@ SQL — Structured

@ Datalog — Structured & NoSQL

@ Prolog (need to beward of infinite recursion!) —
Structured & NoSQL

@ SPARQL (stands for SPARQL Protocol and RDF
Query Language) — NoSQL

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 201/203

Applications to Database (cont)

Real-world business software consist a lot of SQL
statements. A dictionary of SQL relational algebra and
Datalog is given below.

SQL Concept | Relational Algebra | Datalog

Intersection R(x,y) N T(x,y) I(x,y)-R(x,y), T(x,y)

Union R(x,y)UT(x,y) U(x,y):-R(x,y).
U(x,y):-T(x,y).

Difference R(x,y)\ T(x,y) D(x,y):-R(x,y),not T(x,y)

Projection 7x(R) P(x):-R(x.y)

Selection ox>10(R) S(x,y):-R(x,y),x > 10

Product RxT P(x,y,z,w):-R(x,y), T(z, w)

Natural Join | R T J(x,y,2)-R(x,y), T(y, 2)

Theta Join Rrpysts T 0(x,y,z,w):-R(x,y), T(z,w),x >
z

Dr Liew How Hui UECM1304 DiscReTE MATHEMATICS WITH APPLICATIONS May 2021 202/203

Applications to Database (cont)
Why are new database query languages related to
logic programming is getting popular? Because logic
can help traverse the “knowledge” network:

#lang datalog
% Paths in a Graph: Datalog Formulation

edge(a,b).
edge(a,c).
edge(b,a).
edge(b,d).

path(X,Y) :- path(X,Z), edge(Z,Y).
path(X,Y) :- edge(X,Y).

E.g. With proper query such as path(X, a)?, we can find
who can reach a.
May 2021 203/203

	Propositional Logic
	Formal Propositions & Truth Table
	Logical Equivalence & Logical Implication
	Rules of Inference

	Predicate Logic
	Predicates & Quantified Statements
	Logical Equivalence & Logical Implication
	Rules of Inference
	Applications

